Skip to main content

Training Neural Networks Using Predictor-Corrector Gradient Descent

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

  • 8506 Accesses

Abstract

We improve the training time of deep feedforward neural networks using a modified version of gradient descent we call Predictor-Corrector Gradient Descent (PCGD). PCGD uses predictor-corrector inspired techniques to enhance gradient descent. This method uses a sparse history of network parameter values to make periodic predictions of future parameter values in an effort to skip unnecessary training iterations. This method can cut the number of training epochs needed for a network to reach a particular testing accuracy by nearly one half when compared to stochastic gradient descent (SGD). PCGD can also outperform, with some trade-offs, Nesterov’s Accelerated Gradient (NAG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One caution ought to be mentioned here: brain predictions also enable prejudices, so one must be careful how much trust is placed in predictions.

  2. 2.

    Note that the jacobian, J, is not specific to the column of \(A_{t+1}\).

References

  1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NIPS (2016)

    Google Scholar 

  2. Beck, A., et al.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cassioli, A., et al.: An incremental least squares algorithm for large scale linear classification. Eur. J. Oper. Res. 224(3), 560–565 (2013)

    Article  MathSciNet  Google Scholar 

  4. Daniel, C., et al.: Learning step size controllers for robust neural network training. In: AAAI (2016)

    Google Scholar 

  5. Dozat, T.: Incorporating Nesterov momentum into Adam. In: ICLR Workshop (2016)

    Google Scholar 

  6. Duchi, J., et al.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Heeger, D.J.: Theory of cortical function. Proc. Natl. Acad. Sci. USA 114(8), 1773–1782 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ho, Q., et al.: More effective distributed ML via a stale synchronous parallel parameter server. In: NIPS, pp. 1223–1231 (2013)

    Google Scholar 

  9. Hratchian, H., et al.: Steepest descent reaction path integration using a first-order predictor-corrector method. J. Chem. Phys. 133(22), 224101 (2010)

    Article  Google Scholar 

  10. Kingma, D., et al.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  11. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, Computer Science, University of Toronto (2009)

    Google Scholar 

  12. Krizhevsky, A.: cuda-convnet. Technical report, Computer Science, University of Toronto (2012)

    Google Scholar 

  13. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  14. Luca, M.D., et al.: Optimal perceived timing: integrating sensory information with dynamically updated expectations. Sci. Rep. 6, 28563 (2016)

    Article  Google Scholar 

  15. Neelakantan, A., et al.: Adding gradient noise improves learning for very deep networks. arXiv:1511.06807 (2015)

  16. Nesky, A., et al.: Training neural networks using predictor-corrector gradient descent: Appendix (2018). http://www-personal.umich.edu/~anesky/PCGD_appendix.pdf

  17. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  18. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  19. Polyak, B.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  20. Scieur, D., et al.: Regularized nonlinear acceleration. In: NIPS (2016)

    Google Scholar 

  21. Simonetto, A., et al.: Prediction-correction methods for time-varying convex optimization. In: IEEE Asilomar Conference on Signals, Systems and Computers (2015)

    Google Scholar 

  22. Süli, E., et al.: An Introduction to Numerical Analysis, pp. 325–329 (2003)

    Google Scholar 

  23. Tieleman, T., et al.: Lecture 6a - rmsprop. COURSERA: Neural Networks for Machine Learning (2012)

    Google Scholar 

  24. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701 (2012)

  25. Zhang, Y., et al.: Prediction-adaptation-correction recurrent neural networks for low-resource language speech recognition. arXiv:1510.08985 (2015)

  26. Zhang, Y., et al.: Speech recognition with prediction-adaptation-correction recurrent neural networks. In: IEEE ICASSP (2015)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256260. This work used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number OCI-1053575. Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Nesky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesky, A., Stout, Q.F. (2018). Training Neural Networks Using Predictor-Corrector Gradient Descent. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics