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Abstract. In many cases, tainted information in a computer network
can spread in a way similar to an epidemics in the human world. On the
other had, information processing paths are often redundant, so a single
infection occurrence can be easily “reabsorbed”. Randomly checking the
information with a central server is equivalent to lowering the infection
probability but with a certain cost (for instance processing time), so it is
important to quickly evaluate the epidemic threshold for each node. We
present a method for getting such information without resorting to re-
peated simulations. As for human epidemics, the local information about
the infection level (risk perception) can be an important factor, and we
show that our method can be applied to this case, too. Finally, when
the process to be monitored is more complex and includes “disruptive
interference”, one has to use actual simulations, which however can be
carried out “in parallel” for many possible infection probabilities.
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1 Introduction

We deal here with the problem of the spreading of tainted information in an
unsupervised computer network, such as algorithmic (high frequency) trading [1],

The main competitive advantage (given the same information) is the process-
ing time [2], which prevents the possibility of checking the information against a
central database. However, in this way a tainted information may quickly spread
and “contaminate” the whole network, in a way similar to what happens for epi-
demic in the human world. We have to consider, however, that in many cases
the information is processed in a redundant way, so that the tainted information

? franco.bagnoli@unifi.it
?? emanuele.bellioni@unifi.it

? ? ? emanuele.emassaro@epfl.ch

ar
X

iv
:1

80
7.

08
30

2v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 2

2 
Ju

l 2
01

8



can actually diffuse only if it is able to survive and spread in the network, much
like an infection which has to fight against the defences of hosts.

Well-known results from the theoretical epidemiology field show that there
is a strict relationship between the infection probability τ , the average number
of contacts 〈k〉 and its variance, i.e., 〈k2〉: the critical value τc for the onset of an

epidemic is τc = 〈k〉
〈k2〉 ' 〈k〉

−1 for sharp-distributed networks [3]. In many cases

however the contact network can be approximated by a scale-free distribution
with diverging variance, for which there is no hope of controlling epidemics only
by reducing the infection probability [4, 5].

The influence of risk perception in epidemic spreading has been studied for
human epidemics [6], where the knowledge about the diffusion of disease among
neighbours (without knowing who is actually infected) lowers the effective prob-
ability of transmission. For regular, random, Watts-Strogatz small-world and
non-assortative scale-free networks with exponent γ > 3 there is always a fi-
nite level of precaution parameter for which the epidemic goes extinct [3]. For
scale-free networks with γ < 3 the precaution level depends on the cut-off of
the power-law, which at least depends on the finite number of the nodes of the
network.

In humans, information about the disease may not come from physical con-
tacts, but rather from the “virtual” social contact networks [7–9]. Clearly, one
expects that if these two networks are completely different, the perception of
the risk is of less value than when the two networks coincide. Again, this is a
common situation also for automatic trading and computer networks.

In a computer network, a node can indeed choose not to accept the process-
ing of an incoming information, but this refusal also has a certain cost. In other
words, it is sometimes preferable to suspend the information processing than
risking the elaboration of false data, according with the cost of such operation.
We can model this situation by assuming that the tainted information can prop-
agate with a certain probability, that may depend on the knowledge one has
about the infection levels in the network or at least in its neighbourhood. This
infection probability is however also a measure of the cost of processing. In order
to lower the infection probability one may have for instance to contact a central
server, lowering al,so the transaction frequency. On the other hand, information
processing paths are often redundant, so a single infection occurrence can be
easily “cured” by other nodes, assuming that all nodes cooperate, sharing the
cost.

It is therefore vital to quickly assess the epidemic threshold for a given net-
work (that may change in time), with real-time estimates of the infection proba-
bility threshold, that may change from node to node. The optimal probability is
that just below the epidemic threshold, in which the cost of checking is minimal
but the tainted information cannot diffuse and is eliminated in the long time
limit by the redundancy of information-processing paths.

We present here a method (first introduced in Ref [10] and extended in
Ref. [11]) that can be applied in such situations. The proposed method allows
to obtain the epidemic threshold in just one run, without having to repeat the



simulation with many tentative infection probabilities, looking for the outbreak
threshold. This method can be considered an example of self-organized crit-
icality [12], in which a system automatically discovers the critical value of a
parameter. In particular, it is very reminiscent of the Bak-Sneppen evolution-
ary model [13]. The proposed method can be directly implemented in computer
networks, allowing nodes to exchange also their estimated epidemic threshold.

Epidemic models are characterized by a monotone increasing of the probabil-
ity of being contaminated with the number of infected neighbours, and this char-
acteristic allows to explicitly obtain the epidemic threshold by the self-organized
critical method. We can consider also other processes, for instance with an “in-
terference” among infective agents, and in general processed based on generic
local rules like cellular automata [14]. However, in this cases the monotonicity is
lost and one has to consider more complex data structures [15].

2 The Infection Model

We consider a set of N nodes xi, with two states: 0 for “healthy” and 1 for
“tainted” (or contaminated). Node i process information coming from other
nodes j, defined by an adjacency matrix aij = 1(0) for connected (disconnected)
nodes. We define the input connectivity of node i as ki =

∑
j aij . We assume

that if a node i is tainted, it can “infect” other nodes with a probability τ , that
for the moment is fixed.

Let us start with a simple percolation model: a node i can be infected by
each of its k neighbors separately with a probability τ , so that if s of them are
infected, the total infection probability q(s, ki) is

q(s, ki) = 1− (1− τ)s ' sτ

for small τ . It is evident that the knowledge of the average number of infected
neighbours is a crucial information for deciding whether to process the received
information or not.

We assume that after having processed the information, nodes do not retain
any tainted data, so the process is a SIS (Susceptible-Infected-Susceptible) one.
We consider a parallel SIS model, which is equivalent to a directed percolation
problem where the directed direction is the time. Actually, this is an example of
a directed bond percolation.

This model is implemented by computing for each node i and time t the state
xi(t) by taking the OR (∨) of the infection process along each connection, where
the single infection event from node j to node i is computed by extracting a
random number rij , evenly distributed between 0 and 1, and comparing it with
τ , i.e.,

xi(t+ 1) =
∨

j=j
(i)
1 ,...,j

(i)
ki

[τ > rij(t)]xj(t), (1)

where
∨

represents the OR operator and the multiplication represents the AND.
The square bracket represents the truth function, [·] = 1 if “·” is true, and zero



otherwise. The quantity rij(t) is a random number between 0 and 1, drawn
independently for each triplet i, j, t.

Alternatively one can study the site percolation process, where the node xi
first processes all incoming information and then, probabilistically (π), checks
the result. In this case the dynamics is

xi(t+ 1) = [π > ri(t)]
∨

j=j
(i)
1 ,...,j

(i)
ki

xj(t). (2)

In the case of risk perception, we assume that τ is replaced by a probability
u(s, ki) that a site i with connectivity ki is infected by any one of its s infected
neighbours as

u(s, ki) = τf(s; J), (3)

where τ is the “bare” infection probability and f(s; J) is a monotonic decreasing
function of the number of infected neighbours s, depending on some parameter
J . For instance, in Ref. [6], the probability u(s, ki) was assumed to be

u(s, ki) = τ exp

(
−J s

ki

)
, (4)

The idea is that the perception of the risk, given by the percentage of in-
fected neighbours and modulated by the factor J , effectively lowers the infection
probability because the node checks the received information against the central
server, paying the delay.

3 The Self-Organized Percolation Method

The basic idea is that each node i estimates its own minimum value τi of the
infection probability, or the maximum value of the the precaution Jc for barely
being infected. Iterating this procedure for long time, we find the critical value of
the parameters for having the smallest surviving epidemics, for the given choice
of the random numbers ri(t).

Once chosen, these random numbers behave like a quenched field. In principle
the epidemic threshold is given by the average over the statistical ensemble, i.e.,
over many repetitions of the processes. However, in many cases the process is
self-averaging [16], i.e., a large enough system gives the same results as the whole
statistical ensemble, possibly inducing some small error in the determination of
the critical threshold, since in this case the correlation length diverges.

Let us pretend that we are performing several simulations of the bond per-
colation process in parallel, with different values of τ but using the same set of
random numbers. Due to the “monotonic” character of the infection, if, for a
given site i and time t, the percolation stops for some value of τ , it stops also
for all lower values. We can therefore replace xi(t) by [τ > τi(t)] (or [π > πi(t)]
for the site problem).
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Fig. 1. Evolution of the local minimum value of the percolation parameter pi for a 1D
regular network with k = 2.

For the bond percolation problem, Eq. (1) becomes:

[τ > τi(t+ 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[τ > rij(t)][τ > τj(t)]. (5)

Since [τ > a][τ > b] is equal to [τ > max(a, b)] and [τ > a] ∨ [τ > b] is equal to
[τ > min(a, b)], Eq. (5) becomes:

[τ > τi(t+ 1)] =

[
τ >

(
MIN

j=j
(i)
1 ,...,j

(i)
ki

max
(
rij(t), τj(t)

))]
, (6)

and we get the desired equation for the τi’s

τi(t+ 1) = MIN
j=j

(i)
1 ,...,j

(i)
ki

max
(
rij(t), τj(t)

)
. (7)

Let assume that at time t = 0 all sites are infected, so that xi(0) = 1 ∀τ . We
can therefore write τi(0) = 0. We can iterate Eq. (7) and get the asymptotic
distribution of τi. The minimum of this distribution gives the critical value τc
for which there is at least one percolating cluster with at least one “infected”
site at large times, i.e., there is an epidemic spreading in the whole system. This
procedure is illustrated in Fig. 1 for a regular lattice in 1 dimension and k = 2.

For site percolation, the equivalent equation is

πi(t+ 1) = max
(
ri(t), MIN

j=j
(i)
1 ,...,j

(i)
ki

πj(t)
)
. (8)
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Fig. 2. Asymptotic number of infected individuals c versus the bare infection proba-
bility τ for the SIS dynamics for different networks. From left to right, for c = 0: Scale
Free (SF), Random (Poisson), Regular. Here N = 10000.

We investigated the SIS dynamics over regular, Poisson and scale-free net-
works as shown in Fig. 2. In particular we evaluated the critical epidemic thresh-
old values τc for which there is at least one percolating clusters with at least one
infected nodes (points marked ”Theory τc in Fig. 2).

Considering a regular lattice with connectivity degree k = 2, we found τc '
0.6447 which is compatible with the results of the bond percolation transition
in the Domany-Kinzel model [17].

In the case of random networks with Poisson degree distributions the critical
epidemic threshold is τc = 〈k〉/〈k2〉 ' 〈k〉−1 if the distribution is sharp [18]. In-
deed, for a Poisson network with 〈k〉 = 12 the self-organized percolation method
gives τc ' 0.08 ' 1/12.

For a scale-free network with 〈k〉 = 13.95 and 〈k2〉 = 538.5 we get from
simulations τc ' 0.026, in agreement with the expected value.

Now, let us apply the method to a more difficult problem, for which the
percolation probability depends on the fraction of infected sites in the neigh-
bourhood (risk perception), es expressed by Eq. 3. In this case we want to find
the extremal value of the parameter J for which there is no spreading of the
infection at large times.
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Fig. 3. Critical level Jc for which the infection is stopped, for networks with fixed or
peaked connectivity k = 10 and N = 1000 in the mean-field (MF), regular (RN) and
random (RG) case.

Again, we can replace xi(t) by [u > ui(t)] and invert the relation ui(t) =
τf(s; J) so that that at the end one gets an equation for the xi(t) like [J ≶ Ji(t)]
which can be iterated.

Let us consider for illustration the case of Eq. (4). The quantity [u > r] =
[τ exp(−Js/k) > r] is equivalent to [J < −(k/s) ln(r/τ)]. Therefore Eq. (5) is
replaced by

[J < Ji(t+ 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[
J < −ki

si
ln

(
rij(t)

τ

)]
[J < Jj(t)] (9)

where
si ≡ si(J) =

∑
j=j

(i)
1 ,...,j

(i)
ki

xj =
∑

j=j
(i)
1 ,...,j

(i)
ki

[Jj(t) ≥ J ]. (10)

So

[J < Ji(t+ 1)] =
∨

j=j
(i)
1 ,...,j

(i)
ki

[
J < − ki

si(Jj(t))
ln

(
rij(t)

τ

)]
[J < Jj(t)] (11)

and therefore

Ji(t+ 1) = MAX
j=j

(i)
1 ,...,j

(i)
ki

min

(
− ki
si(Jj(t))

ln

(
rij(t)

τ

)
, Jj(t)

)
. (12)
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Fig. 4. The phase diagram of the Domany-Kinzel cellular automaton model. In the
quiescent phase only the state with 0 infected sites is stable. In the active phase the state
0 is unstable and the average number of infected sites is larger than 0. In this phase
the long-time evolution only depends on the initial condition, so it may be defined
disordered. In the conditionally chaotic and chaotic phase the evolution depends on
the initial condition and therefore varies when the configuration is varied (therefore
“chaotic”). In the chaotic phase this dependence occurs for all implementations, in the
conditionally chaotic one only for some particular computational scheme.

Analogously to the previous case, the critical value of Jc is obtained by taking
the maximum value of the Ji(t) for some large (but finite) value of t.

The results are quite interesting compared with the simple SIS dynamics,
for which there is always an epidemic threshold (Fig. 2). By inserting the risk
perception it is possible to stop the epidemic for every value of the bare infection
probability τ up to τ = 1, for networks with finite variance. Let us consider for
instance the case of random networks with 〈k〉 = 10; for which for the simple
infection process we found a critical value τc = 0.165. As shown in Fig. 3, beyond
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Fig. 5. Left: the average density (ρ) as a function of the bare infection probability
τ and in the inset the distribution of the values of πi for which the infection reaches
site i (black bar) for the site percolation problem in a regular network with k = 2
(DK model, p = q). Right: the average density (ρ) as a function of the bare infection
probability τ and in the inset the distribution of the values of πi for which the infection
reaches site i (black bar) for the a “nonlinear” (XOR) percolation problem in a regular
network with k = 2 (DK model q = 0).

this value of τc the epidemics can still be stopped if all agents adopt a sufficiently
high precaution level J . The same consideration can be done also for the other
scenarios.

However, as reported in Ref. [6], for some scale-free networks even the per-
ception of the risk is not able to stop the epidemics, and one has to resort to more
specialized techniques, like using special precautions for hubs, which is what is
usually done also in the computer world.

4 Non Monotonic Infection Probability

The self-organized method for finding the epidemic threshold relies on the mono-
tonicity of the infection probability f with respect to the considered parameter,
Eq (3).

However, not all processes fulfils this requirement. In particular, if there is a
“disruptive interference” among possible spreaders that diminishes the infection
probability, it may happen that a larger number of infected neighbours actually
slows down the epidemics.

In order to illustrate this problem, let us consider the Domany-Kinzel model [17].
It is probably the simplest model on a regular one-dimensional lattice with
nearest-neighbours interactions still presenting an interesting phase diagram 4.
The DK model is a totalistic cellular automaton with k = 2 inputs, so it is
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ative variation equal to 0.10, 0.15, 0.20, 0.25. Computation for 10,000 time steps,
N = 10, 000, q fixed in steps of 0.01 and p sampled in 64 equally-spaced points from
0.5 to 1.

defined by 3 transition probabilities τ(1|n) which is the probability that a site
will be infected in the following time step if n of its neighbours are infected,
n = 0, 1, 2. Since the appearance of new infected individuals in a healthy popu-
lation is a rare event, we set τ(1|0) = 0. The other two parameters are p = τ(1|1)
and q = τ(1|2).

This model generalizes the bond and site percolation problems, as shown in
Fig. 4. Above the line marked “bond DP” there is a synergistic infectious effect:
the probability of being infected by two contaminated neighbours is higher that
the “superposition” of the two separate events. Below the line marked “site
DP” there is an interference effect, and the probability of being infected by



two simultaneous contaminated neighbours is less than the probability of being
infected by just one of them.

The self-organized method works above the site DP line, as illustrated in
Fig. 5 for q = p and q = 0. In the insets, the asymptotic distribution of the
infection for sites and for all values of the parameter p is shown. One can see
that the corresponding segments are compact for the site percolation problem
q = p, white they are fragmented for q = 0. This means that in the first case
one can simply iterate the computation for the lower end of the segment, which
is the essence of the self-organized method.

For the rest of the phase diagram, one can resort to a parallel computation
for many values of the parameters, simply by coding the possible statuses us-
ing multi-bit technique, as described in Ref. [15]. In Fig. 5 the result of such
computation keeping fixed q and sampling p using 64 bits (indicated by pj ,
j = 1, . . . , 64) is reported. The quantity shown is the number of “holes” in the
segments, i.e., the number of times for which is a given site one has infection
for a certain value pj while the site is not infected for pj+1. One can see that
the region for which the infection probability shows such negative changes is
concentrated around the corner p = 1, q = 0, i.e., where the interference effect is
larger. By comparison with Fig. 4, is seems that this region coincides with the
chaotic one, i.e., the region in which the evolution of the system depends also on
the initial conditions, and not only on the choice of the random numbers [19,20].

5 Conclusions

We investigated the problem of epidemic spreading of tainted data on computer
networks, exploiting a self-organized method, that automatically gives the per-
colation threshold in just one simulation.

We showed that this method can be extended by considering the knowledge
of the local infection level, and that this element may allow to halt an infection
even for large “bare” infection probabilities. The method can be extended also to
the case in which the knowledge about the infection comes from sourced partially
different from the ones that actually communicate the “disease”, provided that
this difference is not too large.

Finally, we considered the case of more complex processes, including “disrup-
tive interference” among spreaders. In this case the probability of being infected
for a given site at an asymptotic time is not monotonous with the control pa-
rameters , and our self-organized method cannot be used. In these cases one
can however exploit the self-averaging character of the problem, and carry out
parallel simulations using multi-bit coding and just one or two random numbers
per site. For the Domany-Kinzel cellular automaton, the region for which the
self-organized method is not applicable seems to coincide with the “chaotic” one,
for which the evolution is not only given by the choice of random numbers, but
is still dependent on the initial state.

In the future, we shall work to develop a security protocol based on such
scheme and test it on more realistic computer networks and processes.
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