
Security notions for cloud storage and deduplication∗

Colin Boyd, Gareth T. Davies and Kristian Gjøsteen
NTNU, Norwegian University of Science and Technology, Trondheim, Norway
{colin.boyd,gareth.davies,kristian.gjosteen}@ntnu.no

Håvard Raddum
Simula@UiB

haavardr@simula.no

Mohsen Toorani
University of Bergen, Bergen, Norway

mohsen.toorani@uib.no

Abstract

Cloud storage is in widespread use by individuals and enterprises but introduces a wide array of
attack vectors. A basic step for users is to encrypt their data, yet it is not obvious what security prop-
erties are required for such encryption. Furthermore, cloud storage providers often use techniques
such as data deduplication for improving efficiency which restricts the application of semantically-
secure encryption. Generic security goals and attack models have thus far proved elusive: primitives
are considered in isolation and protocols are often proved secure under ad hoc models for restricted
classes of adversaries.

We formally model natural security notions for cloud storage and deduplication using a generic
syntax for storage systems. We define security notions for confidentiality and integrity in encrypted
cloud storage and determine relations between these notions. We show how to build cloud storage
systems that satisfy our defined security notions using standard cryptographic components.

∗An extended abstract of this work appears at ProvSec 2018. This is the full version.

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Symmetric-Key Encryption (SKE) . 5

2.2.1 Confidentiality for Symmetric Encryption . 6
2.2.2 Confidentiality for MLE-like Symmetric Encryption 6
2.2.3 Authenticated Encryption with Associated Data (AEAD) 7
2.2.4 Integrity for Symmetric Encryption . 8

3 Modelling Cloud Storage 9
3.1 A Model for Cloud Storage . 10
3.2 Modelling Existing Schemes and Literature . 11

4 Confidentiality 12
4.1 Defining Confidentiality for Cloud Storage . 13
4.2 Achieving Confidentiality in Cloud Storage . 15

4.2.1 Per-User Keys . 15
4.2.2 Per-File Keys . 17
4.2.3 Deduplicating Systems using File-Derived Keys 18

4.3 Deduplicating Schemes with non-trivial fkeyGen Procedures 19

5 Integrity 20
5.1 Defining Integrity for Cloud Storage . 20
5.2 Achieving Integrity in Cloud Storage . 21
5.3 Integrity in Deduplicating Schemes . 23

6 Concluding Remarks 25

A Relations between Confidentiality Notions 29

2

1 Introduction

When handing over their data to third parties, it is natural that users regard security and privacy as critical
concerns. Some users may be willing to trust a cloud storage provider (CSP) to secure their data, but as
the Snowden revelations have shown, even well-meaning providers are not immune from compromise.
Users increasingly want to manage confidentiality and integrity of their outsourced data without the
need to trust the CSP. (We use the term users to refer to individuals and to businesses accessing a cloud
service through a gateway.)

It is perhaps surprising that up to now there seems to be no general model of security for remote
storage. What are the essential components of a remote storage system, and how should users protect
their data so that they can interact usefully with the system while maintaining the security requirements?
It may seem obvious that users should simply encrypt their data, but the remote storage scenario is
different from that of communication or local storage. Multiple users interact and files are vulnerable to
manipulation by the CSP. Moreover, efficiency factors may conflict with user goals. Specifically, CSPs
extensively use deduplication for removing redundant copies of data and saving storage.

The overall goal of this paper is to understand how users can achieve basic security properties in
remote storage systems. We define a generic abstract model for cloud storage and a natural security
model which can be instantiated in various ways depending on the security goal and the adversary’s
capabilities. We focus on symmetric (authenticated) encryption as the main mechanism, but we believe
that our model can be easily extended to other cryptographic primitives.

Security Goals for Cloud Storage. Users who trust their storage provider can send plaintext data
for storage: this is today the most common situation. Several commercial storage providers, however,
support client-side encryption so that the cloud provider cannot obtain the plaintext. It is not immediately
obvious which security properties are most appropriate for client-side encryption. In this paper we create
a fine-grained approach to adversarial capabilities in terms of compromise of both users and servers. We
consider three different security goals and show how they can be achieved within our model.

IND This is the usual standard for strong confidentiality of encrypted data: indistinguishability of ci-
phertexts. We will show that this can be achieved in our cloud storage model by appropriate choice
of encryption scheme.

PRV Deduplication cannot take place if strong encryption is deployed. Privacy under a chosen distribu-
tion attack (PRV-CDA) was considered by Bellare et al. [BKR13] to identify achievable security
in the presence of message-derived keys. We will show how this primitive-level goal can be trans-
ferred to the protocol level using our model.

INT In many scenarios the user wishes to remove local copies of outsourced files so has no way check-
ing if a retrieved file has been modified. We introduce a notion of integrity of ciphertexts for cloud
storage schemes (INT-SC), with three flavors corresponding to differing levels of server compro-
mise. Furthermore, we consider integrity in deduplicating schemes and link existing definitions
of tag consistency to our framework.

Contributions. The literature on secure cloud storage has tended to focus on ad hoc solutions rather
than generic models that capture classes of realistic adversaries. We fill this gap by providing a com-
prehensive definition of cloud storage in terms of the input/output behavior of the entities in the system.
For various security properties we use our framework to define game-based notions.

We identify the limits of a number of key security properties in cloud storage and provide generic
security models for encrypted storage and deduplication. Our framework covers many natural and
practically-deployed cloud storage solutions and this approach enables practitioners to identify which
components of a storage scheme need to satisfy certain criteria for a given security goal. Specifically,
we:

3

• create a modular framework for security models in cloud storage;

• cast known and novel attack models and security notions in our framework;

• consider known attacks on schemes.

Previous Work. From the point of view of a single enterprise or an individual, secure outsourced
storage seems straightforward: encrypt all files at the client side using strong symmetric encryption, use
a message authentication code (MAC) or AE for integrity and keep the key(s) secret. In this mindset,
cloud storage appears similar to disk encryption [Gjø05, KMV17], and this is the approach recently
taken by Messmer et al. [MRAM17]. Such an approach ignores more complex interactions between
different clients and servers lacking mutual trust.

Moreover, the business model that allows CSPs to provide cheap storage relies on individuals not
employing encryption so as not to interfere with data deduplication. Since the concept of convergent
encryption [DAB+02] was formalized by Bellare et al. [BKR13] there have been a number of proposals
for secure deduplication [KBR13, Dua14, SSAK14, LAP15a], with each appearing to provide a new
threat model. This has led to uncertainty over what security guarantees these schemes provide. For
example, the protocol of Liu et al. (CCS ’15) [LAP15a], as noted later in a revision to the ePrint
version [LAP15b] and also in subsequent work by some of the same authors [LDLA18], only provides
the security claims if one round of the protocol is considered: for more than one round, any user can
infer whether or not any file is stored on the cloud – a side channel that can result in serious security
issues [HPS10, ABD+17].

Specific functionalities designed for the cloud storage scenario have been modelled and analysed
extensively. These include, but are not limited to: protocols for proofs of retrievability (PoR) [JJ07,
SW13], proofs of data possession (PDP) [ABC+07], proofs of ownership (PoW) [HHPS11], secure
auditing [YJ13, LLXC16] and privacy of interactions (queries and results) between a data owner and a
malicious server [SWP00, Goh03, BCOP04]. PoR schemes assure clients that the data is available on
the cloud storage and can be entirely downloaded if needed. PDP schemes enable a client to verify
that its stored data has not undergone any modifications. PoW protocols are executed between a client
and a CSP and ensure that the user who wants to outsource data really owns (all of) it. In secure
auditing protocols an independent auditing service interacts with the CSP on behalf of users to check
data integrity. Work on query privacy for outsourced storage is by now extensive, and it is arguable that
the literature concerning formal models has indeed caught up with the security properties claimed in
papers detailing protocols and implementations.

Organization. After introducing some preliminaries and definitional choices in Section 2 we give a
formal model for cloud storage systems in Section 3. Fine-grained security notions for confidentiality in
cloud storage are introduced in Section 4. Cloud storage integrity, and the link between our framework
and deduplication tags used in prior literature, is analyzed in Section 5.

2 Preliminaries

2.1 Notation

We use the notation a ← f(b) to denote assignment of a to the result of computing f(b) if f is either

a function or an algorithm. a $←− D means that either a has been chosen from set D (uniformly) or
according to some distribution D. If a is a vector then denote the ith component by a[i], with |a|
denoting the number of components. We denote concatenation of two values, usually bit-strings, by
a||b. If L is a list then the code L

∪←− {a} indicates that a is appended to L.
Throughout this paper we assume that all security parameters and public values are known to all

parties (and algorithms). This means that if ever we need to initialize a primitive or protocol, the gener-
ation of such values is implicit. In situations where algorithms are run with no inputs given, these public
values are still provided. In our security experiments, we consider an adversary that possibly interacts

4

with some oracles before terminating and providing some value as output. We use the concrete security
framework throughout: we make no definition of what it means for a scheme to be secure under a notion
and instead formally define adversarial advantage and the security experiment for that notion. Thus we
do not regard adversaries in terms of some security parameters: in particular we avoid use of negligible
advantage since in the cloud setting the (possibly adversarial) server can perform huge numbers of op-
erations per second. We normalize adversarial advantage so that if some adversary’s success probability
is worse than guessing then this adversary can be modified to one that wins with probability greater
than just by guessing. This removes the need to use absolute values in advantage statements. In our
pseudocode for security games, return b′ ?

= b is shorthand for if b′ = b then return 1 // else return 0,
with output of 1 indicating successful adversarial behavior. We will use an init procedure to represent
initialization of cloud storage systems – this encompasses a number of possible subroutines but for gen-
erality and brevity we use a single line. An oracle in a security game that corresponds to the environment
simulating some functionality func is denoted by O.func (the simulation may invoke some restrictions
on the functionality). In our proofs, if an experiment’s oracle is modified we denote this by O.func′.

Cloud storage infrastructure includes some always-available servers (the CSP) and some clients (that
act on behalf of users) that are sometimes available and interact with the servers. There may additionally
be some parties that interact with the clients and servers to provide extra functionality, such as a key-
server [KBR13] or an auditing mechanism [YJ13, LLXC16]. We regard users as the entities with distinct
logins to a system, and clients as the devices that interact with the server on behalf of their owner, the
user. This allows us to consider two clients that have the same key material, e.g. laptop and phone, of
one user.

2.2 Symmetric-Key Encryption (SKE)

Our results aim to build secure schemes from the most simple and well-understood building block in
cryptography: symmetric encryption. In traditional SKE, two parties agree some key in advance and
then communicate over some (presumed insecure) channel. In the context of outsourced storage the two
parties are often the same user at different points in time. Additionally, the ‘channel’ is not only the
communication lines between the user and the server but also the server’s storage when the ciphertext is
at rest.

We fix the syntax of a symmetric encryption scheme. Our results in Sections 4 and 5 consider au-
thenticated encryption with the ability to handle some associated data (AEAD), but for now we consider
SKE without associated data as a distinct primitive. A symmetric encryption scheme SKE over some
message space and associated data space is defined by a tuple of algorithms (KG,E,D). The algorithms
operate as follows:

• KG: Key generation outputs a symmetric key k, denoted k ← KG.

• E: Encryption takes as input a message m and key k and outputs a ciphertext c, we write this as
c← Ek(m).

• D: Decryption takes a ciphertext c and key k and outputs either a message m or error symbol ⊥.
We denote this by m/⊥ ← Dk(c).

Correctness requires that Dk(c) = m for all messages m, all c ← Ek(m) and all k ← KG. Key
generation is a randomized algorithm, the encryption algorithm may be randomized or stateful, and
decryption is deterministic.

Note that many authors use the notation E(k,m) to denote that message m is encrypted under key
k; we will use the subscript notation throughout.

5

2.2.1 Confidentiality for Symmetric Encryption

We now define multi-challenge, single-key, left-or-right indistinguishability for symmetric encryption.
In this game, an adversary selects a sequence of pairs of equal-length messages1. A left-or-right en-
cryption oracle O.LRb(·, ·) encrypts one of the messages in each pair according to the bit b: we write
this oracle with a subscript b to emphasize that it has the challenge bit hardwired. We also include
non-triviality conditions on messages that the adversary provides to O.LR: we will often omit these
conditions in the rest of the paper for clarity. Note that an adversary can of course send m0 = m1 to its
O.LR oracle to simulate an encryption oracle E: many authors make such an oracle explicit because in
many scenarios a tight reduction is desired in terms of the number ofO.LR queries the adversary makes.
We do not require this distinction and so we only consider a single O.LR oracle.

We define two variants of left-or-right indistinguishability: one for a chosen plaintext attack (IND-CPA),
and one for a chosen ciphertext attack (IND-CCA2) where the adversary is allowed to decrypt any chosen
ciphertexts (with the obvious exception of decrypting the challenge ciphertexts that have been output by
O.LR).

Definition 1 (IND-CPA and IND-CCA2 Security for Symmetric Encryption). Let SKE = (KG,E,D)
be a symmetric encryption scheme. Then the IND-atk advantage for an adversary A against SKE, for
atk ∈ {CPA,CCA2}, is defined by

AdvIND-atk
SKE, A = 2 ·

[
Pr
[
ExpIND-atk

SKE, A = 1
]
− 1

2

]
where experiment ExpIND-atk

SKE, A is given in Fig. 1.

ExpIND-atk
SKE, A :

CL← ∅
b

$←− {0, 1}
k ← KG
b′ ← AO.LRb,(O.D)

return b′ ?
= b

O.LRb(m0,m1) :
if |m0| 6= |m1| then

return ⊥
c← Ek(mb)

CL
∪←− {c}

return c

O.D(c) :
if c ∈ CL then

return ⊥
m← Dk(c)
return m

Figure 1: The experiments defining IND-CPA and IND-CCA2 security for symmetric encryption. For IND-CPA,
the adversary only has access to oracle O.LRb, while for IND-CCA2 the adversary additionally has access to a
decryption oracle O.D.

2.2.2 Confidentiality for MLE-like Symmetric Encryption

One method of enabling data deduplication while allowing encryption is to enforce that users with
the same file arrive at the same ciphertext. This was the idea behind the convergent encryption (CE)
protocol of Douceur et al. [DAB+02], designed for enterprise backup storage. In this scenario, to encrypt
file F the user computes k ← H(F) for some hash function H and encrypts F under k using some
deterministic SKE scheme. This inherently enables perfect data deduplication, since there is only one
possible ciphertext for each plaintext file.
1 Equality in message length is not necessarily obvious in the cloud storage scenario. Many authors simply assume that
files are bitstrings (of finite length) and thus security experiments and results are straightforward. However, this ignores the
processing and segmentation that will be done by the user’s device before any upload occurs.

6

In schemes where the encryption key depends solely on the plaintext2, it is not possible to achieve
the standard notions of indistinguishability mentioned previously. To see this for CE: adversary chooses
distinct m0,m1, computes the key and thus the ciphertext for each value, sends just a single query to
O.LR and compares. In Fig. 2 we detail the PRV-CDA security notion of Bellare et al. [BKR13], which
captures the intuition that such a scheme should provide confidentiality if the plaintext values are un-
predicatble. The definition is parameterized by a message source MS, an efficient algorithm that outputs
two (equal-sized) vectors of messages from some message space along with some auxiliary information:
(m0,m1, Z) ← MS. In the challenge phase the challenger runs MS, then encrypts the output plaintext
messages and returns the resulting ciphertexts and Z to the adversary. Bellare et al. also considered a
real-or-random version of this definition, denoted PRV$-CDA, where the source only outputs one mes-
sage vector, and the adversary must distinguish an encryption of that from a vector of random strings,
but we will not need this notion. Note that unlike the other definitions in this section, we do not include
associated data. For ordinary encryption schemes we would use associated data to achieve integrity, but
for MLE-like schemes a specific integrity mechanism is often provided by means of a tag, which for
example could be the hash of the ciphertext.

Definition 2 (PRV-CDA Security for Symmetric Encryption). Let SKE = (KG,E,D) be a symmetric
encryption scheme. Then the PRV-CDA advantage for an adversary A against SKE is defined by

AdvPRV-CDA
SKE, MS, A = 2 ·

[
Pr
[
ExpPRV-CDA

SKE, MS, A = 1
]
− 1

2

]
where experiment ExpPRV-CDA

SKE, MS, A is given in Fig. 2.

ExpPRV-CDA
SKE, MS, A :

b
$←− {0, 1}

(m0,m1, Z)← MS

for i = 1, . . . , |mb| do
k ← KG(mb[i])
c[i]← Ek(mb[i])

b′ ← A(c, Z)
return b′ ?

= b

Figure 2: The experiment defining PRV-CDA security for symmetric encryption.

2.2.3 Authenticated Encryption with Associated Data (AEAD)

We define authenticated encryption (AE) that can handle associated data as a distinct primitive from
SKE. A secure AE scheme will simultaneously provide confidentiality and integrity. The algorithms of
AE = (KG,E,D) are specified as follows for completeness:

• KG: Key generation outputs a symmetric key k, denoted k ← KG.

• E: Encryption takes as input a message m, some associated data AD and key k and outputs a
ciphertext c, written c← Ek(m, AD).

• D: Decryption takes a ciphertext c, some associated data AD and key k and outputs either a message
m or error symbol ⊥. We write this m/⊥ ← Dk(c, AD).

2 Note that in the literature referenced in this subsection, authors use the term messages rather than files, since files are subject
to segmentation and other processes: their messages refer to the inputs to their storage algorithms and protocols. We attempt
to avoid ambiguity by referring to files where possible in this paper.

7

Correctness requires that Dk(c) = m for all messages m, associated data AD, all c ← Ek(m) and all
k ← KG. Key generation is a randomized algorithm, the encryption algorithm may be randomized or
stateful, and decryption is deterministic.

In many definitions of AEAD security, including the original formulation by Rogaway [Rog02], the
encryption oracle either works correctly (in the real game) or returns a random string. We consider
generic ciphertext spaces in the following definition, and follow e.g. Paterson et al. [PRS11, BPS15,
JSSW17] in giving a left-or-right variant of the all-in-one notion of Rogaway and Shrimpton [RS06].
Any scheme secure under Rogaway and Shrimpton’s notion will be secure in the definition below for
message spaceM = {0, 1}∗.

Definition 3. Let AE = (KG,E,D) be a symmetric encryption scheme with some message spaceM and
ciphertext space C. Then the AEAD advantage for an adversary A against AE is

AdvAEAD
AE, A = 2 ·

[
Pr
[
ExpAEAD

AE, A = 1
]
− 1

2

]
where experiment ExpAEAD

AE, A is given in Fig. 3.

ExpAEAD
AE, A :

CL← ∅
b

$←− {0, 1}
k ← KG
b′ ← AO.LRb, O.Db

return b′ ?
= b

O.LRb(m1,m0, AD) :
cb ← Ek(mb, AD)

CL
∪←− {(cb, AD)}

return cb

O.Db(c, AD) :
if (c, AD) ∈ CL then

return ⊥
m← Dk(c, AD)
if b = 1 then

return m
if b = 0 then

return ⊥

Figure 3: The experiment defining AEAD security for symmetric encryption.

Note that the pair {(c, AD)} is added to the experiment’s forbidden list CL rather than just c, so the
adversary is allowed to ask its decryption oracle O.D for some {(c, AD′)} if AD 6= AD′.

2.2.4 Integrity for Symmetric Encryption

While AE schemes provide integrity by design, it is often useful to consider integrity for symmetric
encryption in isolation. To this end we will define integrity in terms schemes that can handle associated
data, but of course this input can be ignored to get notions for the setting in which AD is not used. There
are three main notions of integrity for symmetric encryption: non-malleability, plaintext integrity and
ciphertext integrity [BN00]. Non-malleability formalizes an adversary’s inability to transform a given
ciphertext into a different ciphertext so that their corresponding plaintexts are “meaningfully related”.
Plaintext integrity formalizes an adversary’s inability to create a new ciphertext decrypting to a message
that the sender had never encrypted. Ciphertext integrity formalizes an adversary’s inability to create a
ciphertext that decrypts correctly.

Ciphertext integrity implies plaintext integrity, but the two notions are not equivalent. The two in-
tegrity notions are usually independent of non-malleability: non-malleability usually implies confiden-
tiality, while the two integrity notions do not. Plaintext integrity is often the intuitively correct notion
for an application, but usually ciphertext integrity is needed for proofs. This is why we only consider
ciphertext integrity in this paper.

In the following definitions we need an SKE that can handle associated data, AD. Formally, this
simply means that AD is an input to both Ek() and Dk().

8

Definition 4. Let SKE = (KG,E,D) be a symmetric encryption scheme. Then the INT-CTXT advantage
for an adversary A against SKE is

AdvINT-CTXT
SKE, A = Pr

[
ExpINT-CTXT

SKE, A = 1
]

where experiment ExpINT-CTXT
SKE, A is given in Fig. 4.

ExpINT-CTXT
SKE, A :

b← 0
CL← ∅
k ← KG
AO.E,O.D
return b

O.D(c, AD) :
m← Dk(c, AD)
if m 6= ⊥ ∧ (c, AD) 6∈ CL then
b← 1

return m

O.E(m, AD) :
c← Ek(m, AD)

CL
∪←− {(c, AD)}

return c

Figure 4: The experiment defining ciphertext integrity (INT-CTXT) for symmetric encryption.

Just like in the AEAD experiment, if {(c, AD)} ∈ CL then the adversary is allowed to ask its decryp-
tion oracle O.D for some {(c, AD′)} if AD′ 6= AD.

3 Modelling Cloud Storage

Our goal is to study security of cloud storage in terms of confidentiality and integrity of files. Such anal-
ysis is only possible if the model provides sufficient detail about adversarial capabilities. The challenge
is to provide a sufficiently detailed model that allows analysis, yet is generic enough to facilitate study
of natural schemes. It is desirable that the model can easily be extended to incorporate particular exotic
design choices. We present here what is to our knowledge the first such model for (secure) outsourced
storage that accommodates both widely-deployed (and conceptually straightforward) solutions as well
as much of the literature (in particular schemes facilitating encrypted data deduplication). As for any
storage scheme, a user of a cloud storage scheme should be able to store, retrieve and delete files. A user
must be able to specify which previously stored files to retrieve or delete, and we shall achieve that by
having the user choose a unique file handle (identifier) for each file when storing. Correctness can then
be defined in the expected way, stated here for a notational introduction:

Definition 5 (Correctness). If user uid previously stored F under handle id then when it later retrieves
id the result will be F, unless client has sent del(id).

We use storage handles, denoted by id, to indicate the value that the user wishes to use in the future
to retrieve that file. We regard the generation of id as outside the scope of the model. It is perhaps
easiest to think of id as a random value that is generated by the user’s device for each file. In practice
all a user sees is a list of filenames (which are certainly not suitable for our purposes due to non-
uniqueness): this approach allows us to focus on issues directly related to confidentiality and integrity.
This handle is distinct from the deduplication ‘tags’ used in prior literature on message-locked encryp-
tion [DAB+02, BKR13, ABM+13, BK15]. In client-side-deduplicating systems the user first sends some
short, message-derived tag (for example in convergent encryption [DAB+02] this is τ = H(H(C)) for
ciphertext C) and if the server already has this tag, informs the user not to send the full ciphertext and
updates that ciphertext’s metadata to indicate that the user can in future retrieve the ciphertext. Note that
this process also occurs in deduplicating schemes that do not use any encryption. In this context, this
tag is all that is required to claim ownership of a file. Our handles do not have this feature: they simply
ensure that retrieve queries work ‘correctly’. In Section 5 we will discuss integrity in the context of
deduplicating and non-deduplicating cloud storage, and differences between our handles and these tags
in more detail.

9

init
01. ST← ∅

newu(uid)
02. ukuid ← kgen
03. KTuid ← ∅
04. return ukuid

del(uid, id)

05. KTuid
∪←− {(⊥, id)}

06. if ∃ {uid, ·, id, 0} in ST then
07. ST

∪←− {(uid,−, id, 1)}

upl(uid, c, id)

08. ST
∪←− {(uid, c, id, 0)}

store(uid,F, id)
09. fk← fkeyGen(F, ukuid)
10. c← Efk(F, id)
11. upl(uid, c, id)

12. KTuid
∪←− {(fk, id)}

retr(uid, id)
13. if ∃ (uid, ·, id, 1) ∈ ST or
14. ∃(⊥, id) ∈ KTuid then
15. return ⊥
16. if ∃ (uid, c, id, 0) ∈ ST and
17. ∃(fk, id) ∈ KTuid then
18. F← Dfk(c, id)
19. return F
20. else
21. return ⊥

Figure 5: Definition of a cloud storage scheme CS.

3.1 A Model for Cloud Storage

Our model for cloud storage is depicted in Fig. 5. A cloud storage scheme CS[SKE, fkeyGen] =
(init, newu, store, retr, del) is parameterized by a symmetric-key encryption scheme SKE = (KG,E,D)
and a file-key generation procedure fkeyGen, and supports natural functionalities: init for initialization,
newu for adding a new user, store for storing a file, retr for retrieval and del for deletion.

Each user is associated with a user identification uid, and each file is identified by a storage handle
id. We define per-user keys uk and per-file keys fk. Each user has some (preferably small) local storage
and the server maintains (what is from an abstract perspective at least) a vast data structure. Generation
of per-user key material uk (line 02) may include keys for a number of different purposes. The user
stores this material and their own KT (‘Key Table’) locally and the server(s) maintains a database ST
(‘Store Table’) that it uses to track file ownership and retrieval handles. This means that there is only one
ST but there could be many KTs. Our model retains generality: to our knowledge it incorporates almost
all intuitive schemes and all protocols from the literature (more details in next subsection). We make
no assumption about how files are handled in terms of segmentation, nor do we consider redundancy at
the server’s backend. The model that follows is, by design, modular and generic enough to cope with
straightforward modifications to incorporate such processes.

We now discuss the design choices that require further attention. In line 02 we explicitly regard the
per-user key generation procedure as occurring separately from the other procedures, this is to retain
generality and to allow us to focus on file-key generation. ST tracks deletion status of each file for
each user (lines 13-15), using a bit as the fourth value in each entry. In deployed systems this abstract
procedure may not be done as directly as we describe. Line 07 indicates that the server may at this point
delete the ciphertext for the deleted file, however we do not enforce this: the ‘1’ flag indicates deletion
has occurred3for user uid and handle id. Encryption algorithm E takes id as input (line 10): if SKE
is an AEAD scheme then id could be the associated data – we model this construction in Theorem 2.
Lines 16-19 specify that the file can only be retrieved if it has not been removed either by the client or
the server: in particular line 17 says that if there exists an fk such that (fk, id) ∈ KTuid then the retrieve
is allowed to continue.

We differentiate between store – the entire process of storing a file on the server and updating the
client’s local storage – and upl– the specific action that occurs server-side. The definition generalizes
3 Many CSPs never actually delete files at the backend, and this is understandable: the cost of finding, accessing and removing
a file and all its redundant copies is often considerable, and if the CSP uses client-side deduplication then if the user (or any
other) uploads that file in the future this will incur a bandwidth cost.

10

Scheme fkeyGen(F, uk)

1 No encryption fk← ⊥
2 Per-user key fk← uk

3 Per-file key fk← KG
4 MLE [BKR13] fk← H(F)
5 Liu et al. [LAP15a] fk← PAKE.Out(F)
6 DupLESS [KBR13] fk← OPRF.Out(F)
7 Duan [Dua14] fk← DOKG(F)
8 Stanek et al. [SSAK14] fk← Thr.PKE.KG(F)
9 CDStore [LQLL16] fk← SS(H(F))

Figure 6: Specification for fkeyGen procedure for existing cloud storage schemes

to include the simplest and most widely-deployed solution, which is without any client-side encryption
at all. Any scheme that distributes files among multiple servers is also included, incurring a rather
complicated outsourced state ST, however the results in the remainder of this paper will mainly focus
on the single server case. To satisfy correctness we require an implicit assumption that the CSP forwards
all requests honestly: this approach reflects cryptographic models for key exchange. If fk used for store
(encryption) is not the same as the one used for retr (decryption) then no scheme can be correct. The
adversaries that we consider cannot modify KT so key symmetry is implicit in our model and for the
rest of the paper.

3.2 Modelling Existing Schemes and Literature

In Fig. 6 we detail the file-key generation procedure for natural constructions and a number of schemes
from the existing literature. The natural scenarios include a CSP that does not support client-side en-
cryption (line 1), a CSP wherein each user holds a per-user key and encrypts all files with that key (line
2), and a CSP wherein a per-file key is randomly chosen at the point of the file being uploaded (line
3). The per-user key scenario (line 2) allows deduplication of a particular user’s files (but not cross-user
deduplication) which can still allow great savings, particularly in the backup setting. This case also re-
flects some enterprise scenarios in which an organization has a storage gateway (that may interact with
trusted hardware, such as a hardware security module) that deduplicates files and encrypts (under one
key) on behalf of all of its employees before sending to some public cloud (CSP). The per-file key sce-
nario (line 3) intuitively provides increased confidentiality, but introduces challenging key management.
A gateway can also be used in this case as described in the Omnicloud architecture [KW14]: this of
course requires the gateway to additionally manage the vast number of keys that could be generated in
the enterprise scenario.

Schemes in lines 4-9 all aim to provide ‘secure cross-user deduplication’ to some extent, providing
more confidentiality than using no encryption (line 1) but at the risk of opening a side channel that
may allow a user to learn if a file is already stored on the server [HPS10, ABD+17]. In many schemes
such as those of Keelveedhi et al. (DupLESS) [KBR13] and Liu et al. [LAP15a], the fkeyGen procedure
is not a single algorithm but a protocol run between the user and the key server or the other users in
the protocol, respectively. Stanek et al. [SSAK14] use both convergent encryption and an outer layer
threshold encryption scheme to produce ciphertexts, and the fkeyGen protocol interacts with two trusted
third parties. The protocol of Duan [Dua14] attempts to avoid the single point of failure inherent in
having a single (semi-trusted) key server (KS) in DupLESS-like schemes: fkeyGen generates encryption
keys using a distributed oblivious key generation (DOKG), instantiated using a (deterministic) threshold
signature scheme. The CDStore protocol of Li et al. [LQLL16] distributes shares of a file to multiple
cloud servers using so-called convergent dispersal.

The restriction to SKE in line 10 of Fig. 5 is for the purposes of results in Sections 4 and 5. Note
here that schemes 1-7 in Fig. 6 precisely fit our model while schemes 8 and 9 do not simply encrypt

11

using SKE – for these schemes E represents some other encryption mechanism. In the schemes that do
precisely fit our model, generation of file key fk could happen as part of the key generation procedure
kgen: for example in the per-user key case (line 2 of Fig. 6) fkeyGen is the identity function. This is one
of many potential modular extensions of our framework: we could of course consider a model in which
(for example) the fkeyGen and E algorithms are general functions with arbitrary inputs.

Cloudedup [PMÖL13] uses block-level convergent encryption to send ciphertexts to a third party
that adds further (symmetric) encryption and manages metadata. Dang and Chang [DC17] similarly
assume some trusted entity, in their case hardware. A trusted enclave uses an oblivious PRF (similarly
to the key server in DupLESS) to get block-derived keys to allow the enclave to perform deduplication:
the enclave acts as a deduplication gateway then applies randomized encryption before sending the
ciphertexts to the CSP. In these schemes encryption is essentially done in two phases and the per-block
keys are managed by the third party; this does not quite fit our model but it is straightforward to modify
how KT (and SKE) works to analyze such schemes. Recently Shin et al. [SKYH17] presented a scheme
that attempts to distribute the role of the key server in DupLESS-like schemes by additionally using
inter-KS deduplication. Again it is straightforward to extend our model to allow this type of scheme.

To simplify much of our analysis later on we require that every time a new file is stored by a client,
a new id is generated. This leads to the following assumption:

Assumption 1. In all cloud storage schemes CS considered in this paper, store is never called on the
same id twice.

We emphasize that id is the retrieval handle chosen by the client, and is distinct from the deduplication
‘tags’ used in prior literature. This assumption (and the existence of the id) emphasizes that our handles
are there to distinguish file uploads from one another: each {uid, id} pair can only ever occur once.

4 Confidentiality

Now that we have defined a suitable syntax for cloud storage schemes, we can begin to consider the many
ways in which security features can be obtained. In this section we turn our attention to confidentiality
of files with respect to realistic adversaries. Defining confidentiality notions of security is a two-step
process: We first define what we want to prevent the adversary from learning (the goal), and then we
specify the adversary’s capabilities.

There are several possible goals. The classical cryptographic goal is indistinguishability, where one
of two adversary-chosen files was stored and the adversary is unable to decide which file was stored.
This is similar to semantic security, where a file sampled from one of two adversary-chosen probability
spaces was stored, and the adversary is unable to decide which distribution the file was sampled from.
A weaker notion is to sample a file from one of two pre-chosen high-entropy probability spaces. The
adversary has two distinct capabilities when attacking a cloud storage system. The first is the ability to
influence the actions of the honest users. The second is the ability to influence the CSP.

When considering corruption of users, it is important to note that an adversary can usually create
genuine logins to a system, and thus receive a valid uid and uk for an arbitrary number of users. We
model this by distinguishing between two types of newu query: O.newuC creates a valid (Corrupt)
user and outputs its uk to the adversary, and O.newuH that only creates a valid (Honest) user4. For its
corrupted users the adversary may not necessarily use uk and fkeyGen correctly (which O.store cannot
handle): we model this capability by giving the adversary access to an O.upl oracle that pushes some
{(uid, c, id, 0)} tuple to the server’s storage table ST. We regard the minimum adversarial capability as
being able to have full control over a number of corrupted users and to make honest users store files,
we refer to this notion as a chosen store attack (CSA). The adversary may even be able to get honest
users to retrieve files from the cloud storage system, a chosen retrieve attack5(CRA). Analogously to
4 It is certainly possible to extend this model to adaptive corruptions, however this would add considerable extra complexity
to any scheme. 5 Note that other authors including Kamara and Katz [KK08] use CRA as an acronym for other adversarial
capabilities.

12

encryption, CSA and CRA somewhat correspond to CPA and CCA, respectively.6

The adversary’s control of the CSP can be usefully divided into three levels: the adversary may
have no influence at all on the CSP then we have an honest CSP giving the adversary zero access (Z).
The adversary may also be able to look at the CSP’s storage and key material, but not tamper with
anything, a passively corrupt (P) CSP. This models both honest-but-curious CSPs and snapshot hackers
(of the cloud’s storage servers or the communication channel). And finally, the adversary may have
full control over the CSP, an actively corrupt (A) adversary. When the CSP is honest, it may seem
that our model always guarantees confidentiality because the adversary would never have access to
ciphertexts. However, this is not the case, since the file key generation procedure is regarded as a protocol
and may leak information (as mentioned earlier with the protocol of Liu et al. [LAP15a]). Roughly
speaking, we can say that when the CSP is honest, we consider only the security of the file key generation
protocol. When the CSP is passively corrupt, we must additionally consider the confidentiality of the
encryption used. When the CSP is actively corrupt, we must also consider the integrity of the encryption
mechanism. This separation of concerns is by design.

4.1 Defining Confidentiality for Cloud Storage

In combination we define a generic IND-atk-csp experiment with six distinct cases: atk ∈ {CSA,CRA},
csp ∈ {Z,P,A} and this IND-atk-csp experiment is detailed in Fig. 7. Just as in our general definition
for storage protocols (Fig. 5) we keep track of the retrieval capability by using a table ST, initially set
to empty. The security experiment keeps track of the O.LR queries using a forbidden list CL to prevent
trivial wins.

In order to model the attacker’s influence on the CSP, we introduce three new oracles: O.peek,
O.erase and O.insert. These are not functionalities of storage systems so they are not included in
Fig. 5. O.peek allows the adversary to see the ciphertext (and deletion status) for some user uid and
some storage handle id, and this is available to an adversary that is passively corrupt (P). O.insert and
O.erase model actively malicious (or completely compromised) CSPs, granting the adversary the ability
to store or delete arbitrary items in the CSP’s database: these two oracles are only available to an actively
corrupt (A) attacker.

Definition 6 (IND-atk-csp Security for Cloud Storage). Let CS = (init, newu, store, retr, del) be a
cloud storage scheme. Then the IND-atk-csp advantage for an adversary A and atk ∈ {CSA,CRA},
csp ∈ {Z,P,A} against CS is defined by

AdvIND-atk-csp
CS, A = 2 ·

[
Pr
[
ExpIND-atk-csp

CS, A = 1
]
− 1

2

]
where experiment ExpIND-atk-csp

CS, A is given in Fig. 7.

On Our Model. Our weakest notion of server compromise, IND-atk-Z, refers to a very limited ad-
versary, with no access to the server’s database and only capable of making ‘challenge’ store queries
(modelled by O.LRb) with users that it does not have the key material for, resulting in ciphertexts that
it cannot access. Thus, even a scheme with no encryption can be secure under this notion. This is by
design: the only schemes that do not meet this minimum requirement are those that leak information
about the file to other users during the store procedure.

It is possible to imagine adversaries that may wish to act without being noticed by the users they
have infiltrated. This CRA adversary would thus retrieve but not store or delete – and yet seems to be
more ‘limited’ than a CSA adversary that does perform store/delete operations and does not mind if the
user notices its behavior. This is the nature of adversaries in cloud storage: the clear hierarchy that exists
for encryption does not easily translate.
6 It is possible to define an equivalent of a passive adversary, however since our definitions are multi-challenge, the adversary
can always call O.LRb on F0 = F1 to mimic a store query (though it cannot query O.retr on these ciphertexts due to CL).

13

ExpIND-atk-csp
CS, A :

init
b

$←− {0, 1}
CL, usersC, usersH ← ∅
b′ ← Aoracles

return b′ ?
= b

O.newuC(uid) :
usersC

∪←− uid
ukuid ← kgen
KTuid ← ∅
return ukuid

O.newuH(uid) :
usersH

∪←− uid
ukuid ← kgen
KTuid ← ∅
return ⊥

O.store(uid,F, id) :
do store(uid,F, id)

O.upl(uid, c, id) :
if uid ∈ usersC then

do upl(uid, c, id)

O.del(uid, id) :
do del(uid, id)

O.LRb(uid,F0,F1, id) :
if uid /∈ usersH then

return ⊥
else
O.store(uid,Fb, id)
CL

∪←− {(uid, id)}

O.retr(uid, id) : // CRA only
if uid /∈ usersH or (uid, id) ∈ CL then

return ⊥
else

F← retr(uid, id)
return F

O.peek(uid, id) : // P, A only
return {(uid, c, id, 0/1) ∈ ST}

O.erase(uid, id) : // A only
ST← ST \ {(uid, ·, id, ·) ∈ ST}

O.insert(uid, c, id, d) : // A only
ST

∪←− {(uid, c, id, d)}

Figure 7: The experiment defining IND-atk-csp security for cloud storage, for atk ∈ {CSA,CRA}, csp ∈
{Z,P,A}. All adversaries have access to the oracles on the left-hand side and O.LRb. CRA additionally has
access to O.retr, P additionally has the O.peek oracle and finally A additionally has the O.erase and O.insert
oracles.

The concept of length equality for files in cloud storage is not as clear cut as it is for bitstrings in an
IND-based game for encryption. If the encryption scheme is not length hiding and the adversary submits
one O.LR query and one O.peek query: if the ciphertext lengths differ then the adversary trivially wins
the game. As mentioned earlier, this means that an inherent restriction exists on O.LR queries: if the
length of (the segmentation of) F0 and F1 differs then the experiment does not go ahead with the store
procedure7.

Relations Between Notions. While we have just defined six adversarial capabilities, in fact only three
are distinct. Fig. 8 summarizes how the notions relate to each other, and we detail these relations
fully in Appendix A. We give a brief intuition here. If notion A has strictly more oracles than notion
B then any CS secure under A will also be secure under notion B. This means that IND-atk-A ⇒
IND-atk-P ⇒ IND-atk-Z for atk ∈ {CSA,CRA}, and also IND-CRA-csp ⇒ IND-CSA-csp for csp ∈
{Z,P,A}. This leaves three equivalences and two separation results. IND-CSA-Z and IND-CRA-Z are

7 In deduplicating schemes the segmentation procedure can be a side channel in itself, see Ritzdorf et al. [RKSC16]. If the
adversary can observe a distinguishable error symbol as part of its O.LR queries then this may cause issues. We strictly
disallow this by not returning anything to the adversary and assuming a stringent restriction on allowed file pairs for O.LR.

14

equivalent since it is always possible to simulate the O.upl queries of an IND-CRA-Z adversary: this
adversary can only use O.store to place items in ST that it can later retrieve (since O.LR and O.upl are
forbidden), and by correctness this means a simulator can just keep track of these queries in a table. A
similar approach can be used to show that IND-CSA-P and IND-CRA-P are equivalent. To show that
IND-CSA-P and IND-CSA-A are equivalent, the simulator needs to successfully simulate O.insert and
O.erase queries. This is indeed possible: the simulator keeps track of such queries in a table. As we have
mentioned, the CS built using no encryption is IND-atk-Z. It is however not IND-CSA-P: the adversary
simply performs one O.LR query with distinct files and then queries O.peek on that entry. We give the
final separation result after Theorem 1. We will henceforth refer to these three distinct notions using
IND-atk-Z, IND-CSA-P and IND-CRA-A.

IND-CSA-Z
IND-CRA-Z

⇐;
IND-CSA-P
IND-CRA-P
IND-CSA-A

⇐; IND-CRA-A

Figure 8: Relations between IND notions for confidentiality of cloud storage systems.

4.2 Achieving Confidentiality in Cloud Storage

We now show four straightforward reductions, showing that the intuitive protocols that we expect to meet
all security goals – strong encryption with random file identifiers – do in fact provide confidentiality. In
Theorem 1 we show that if users encrypt using an IND-CPA-secure encryption scheme using their own
key then the overall system is IND-CSA-P secure (and thus also secure in the sense of IND-CRA-P and
IND-CSA-A). By this we mean that the key generation procedure for CS outputs a random key to each
user (or in other words that kgen runs the SKE’s KG algorithm) and fkeyGen(F, uk) just outputs uk for all
F. In Theorem 2 we show that this same construction, when implemented with an AEAD scheme, yields
an IND-CRA-A-secure cloud storage system, our strongest notion. These theorems provide justification
for the choices made in defining our adversarial capabilities. Theorem 3 considers the scenario in which
a random symmetric key is created for each file, and perhaps surprisingly this construction meets the
strongest IND-CRA-A notion of security even with IND-CPA-secure encryption. Finally Theorem 4
considers the secure deduplication setting with a reduction to PRV-CDA security of the underlying
encryption: for this we need a modified security experiment (Fig. 13). For the results here and in the
next section, if we are describing key usage for a specific symmetric-key encryption scheme (i.e. for a
defined fkeyGen) then we use a subscript SKEi, and for generic results (i.e. result holds for any scheme)
we omit the suffix and use SKE. We summarize the results from this section in Fig. 9.

Thm Key Usage Encryption Conf of CS
1 Per-user + IND-CPA ⇒ IND-CSA-P
2 Per-user + AEAD ⇒ IND-CRA-A
3 Per-file + IND-CPA ⇒ IND-CRA-A
4 File-derived + PRV-CDA ⇒ PRV-CSA-P

Figure 9: Summary of the results in this section.

4.2.1 Per-User Keys

Theorem 1. Let CS = (init, newu, store, retr, del) be a cloud storage protocol that uses a symmetric
key encryption scheme SKE1 = (KG,E,D) as in Fig. 5, with per-user keys and at most n honest users.
For any adversary A1 against IND-CSA-P there exists an adversary B1 such that

AdvIND-CSA-P
CS, A1

≤ n ·AdvIND-CPA
SKE1, B1

15

Proof. We define n + 1 hybrid games G0,G1, . . . ,Gn corresponding to each of the honest users. The
games all work like ExpIND-CSA-P

CS, A , except in the behaviour of their O.LRb and O.store oracles. Since
the reduction does not know user i’s per-user key uk, it needs to call its own OSKE.LRb oracle when the
adversary calls O.LRb or O.store. In the ith game, the O.LRb oracle will always use F1 for the first i
users, and always use F0 for the remaining users. In G0, theO.LRb oracle will always behave as if b = 0,
while in Gn it will always behave as if b = 1. Define Pi = Pr [b′ = 0 in Gi]. We get that

AdvIND-CSA-P
CS, A1

= |P0 − Pn| ≤
n∑

i=1

|Pi−1 − Pi|.

In other words, we have a bound on the adversary’s advantage in terms of the difference of behaviour of
consecutive games. We must now bound this difference.

B1,i playing ExpIND-CPA
SKE1

:

ST← ∅
b′ ← Aoracles

1

return b′

O.store′(uid,F, id) :
if uid = uidi then
c← OSKE.LR(F,F)

else
c← Eukuid(F)

ST
∪←− {(uid, c, id, 0)}

KTuid
∪←− {(ukuid, id)}

O.LR′b(uid,F0,F1, id) :
if uid /∈ usersH then

return ⊥
if uid = uidj , j < i then

do store(uid,F1, id)
else if uid = uidj , j > i then

do store(uid,F0, id)
else
c← OSKE.LR(F0,F1)

ST
∪←− {(uid, c, id, 0)}

KTuid
∪←− {(ukuid, id)}

Figure 10: Reduction B1,i for proof of Theorem 1, where adversary A1, playing ExpIND-CSA-P
CS, A1

has access to
oracles = {O.newuC, O.newuH, O.store′, O.upl, O.del, O.LR′

b, O.peek}. For queries to the non-specified
oracles, the reduction performs the required operations exactly as defined in Fig. 7.

We use the reduction B1,i against IND-CPA defined in Fig. 10. Our reduction simulates a left-right
oracle for A1 by always using F1 for the first i − 1 users, always using F0 for the last n − i − 1 users
and using its own left-right oracle to encrypt F0 or F1 for the ith user. By inspection, if the reduction’s
left-right oracle always encrypts F0, the execution proceeds exactly as in Gi−1. If the left-right oracle
always encrypts F1, the execution proceeds exactly as in Gi. It follows that

|Pi−1 − Pi| = AdvIND-CPA
SKE1, B1,i .

We have therefore constructed n + 1 IND-CPA adversaries. Letting B1 be one of these adversaries
with maximal advantage, the claim follows.

Remark 1. The scheme described for this theorem is not IND-CRA-A secure, even if SKE1 is IND-CCA2
secure. This is due to a cut-and-paste attack: an adversary can manipulate ST in such a way that it can
call O.retr on something it had previously added via an O.LR query. See Appendix A for full details of
this attack.

We now show that if the underlying SKE scheme is secure in the sense of AEAD, then a construction
using this scheme with id as the associated data yields an IND-CRA-A cloud storage protocol CS.

Theorem 2. Let CS = (init, newu, store, retr, del) be a cloud storage protocol that uses a symmetric
key encryption scheme AE2 = (KG,E,D) as in Fig. 5, with per-user keys (with AD = id) and at most n
honest users. For any adversary A2 against IND-CRA-A there exists an adversary B2 such that

AdvIND-CRA-A
CS, A2

≤ n ·AdvAEAD
AE2, B2

16

Proof. The proof follows the same approach as that of Theorem 1 except we now need to deal with
the adversary’s O.retr, O.erase and O.insert queries. The latter two are straightforward: the reduction
simply performs the actions according to Fig. 7. Whenever A2 makes an O.store call for uidi the
reduction B2 must call its own O.LR on the same two values: this adds the resulting ciphertext to its
forbidden list. To deal with this, B2 needs to keep track of the (F, id, c) tuples that it would be disallowed
from decrypting in the event of an O.retr query by A2, it does this using the list AEL. The reduction is
detailed in Fig. 11.

B2,i playing ExpAEAD
AE2

:

ST,CL,AEL← ∅
b′ ← Aoracles

2

return b′

O.store′(uid,F, id) :
if uid = uidi then
c← OAE.LR(F,F, id)

AEL
∪←− {(F, c, id)}

else
c← Eukuid(F, id)

ST
∪←− {(uid, c, id, 0)}

KTuid
∪←− {(ukuid, id)}

O.LR′b(uid,F0,F1, id) :
if uid /∈ usersH then

return ⊥
CL

∪←− {(uid, id)}
if uid = uidj , j < i then

do store(uid,F1, id)
else if uid = uidj , j > i then

do store(uid,F0, id)
else
c← OAE.LR(F0,F1, id)

ST
∪←− {(uid, c, id, 0)}

KTuid
∪←− {(ukuid, id)}

O.retr′(uid, id) :
if (uid, id) ∈ CL then

return ⊥
if uid = uidj , j = i then for {uid, c, id, 0} ∈ ST

if ∃x : (x, c, id) ∈ AEL then
F← x

else
F← OAE.D(c, id)

else
do F← retr(uid, id)

return F

Figure 11: Reduction B2,i for proof of Theorem 2, where adversary A2, playing ExpIND-CRA-A
CS, A2

has access
to oracles = {O.newuC, O.newuH, O.store′, O.upl, O.del, O.LRb, O.retr′, O.peek, O.erase, O.insert}. For
queries to the non-specified oracles, the reduction performs the required operations exactly as defined in Fig. 7.

4.2.2 Per-File Keys

When the file encryption keys are generated randomly for each file (fkeyGen ignores uk and selects
uniformly at random from the keyspace using KG), the adversary still has the ability to upload related
files, which may help in distinguishing target files. Therefore we need to apply a reduction similar
to that for proving multi-user security of encryption, for example using techniques similar to those of
Bellare, Boldyreva and Micali [BBM00]. Here, however, the loss in the reduction is the number of
adversarial calls to its O.LR oracle, rather than the number of users. Perhaps surprisingly, even with
an IND-CPA-secure encryption scheme, we get our strongest notion of security for the resulting cloud
storage protocol.

Theorem 3. Let CS = (init, newu, store, retr, del) be a cloud storage protocol that uses a symmetric
key encryption scheme SKE3 = (KG,E,D) as in Fig. 5, with per-file keys. For an adversary A3 against

17

B3,i playing ExpIND-CPA
SKE3

:

ST← ∅
b′ ← Aoracles

3

return b′

O.LR′b(uid,F0,F1, id) :
if uid /∈ usersH then

return ⊥
if # of queries < i then

do store(uid,F1, id)
else if # of queries > i then

do store(uid,F0, id)
else
c← OSKE.LR(F0,F1, id)

ST
∪←− {(uid, c, id, 0)}

KTuid
∪←− {(ukuid, id)}

Figure 12: Reduction B3,i for proof of Theorem 3 where adversary A3, playing ExpIND-CRA-A
CS, A3

has access to
oracles = {O.newuC,O.newuH,O.store,O.upl,O.del,O.LRb,O.retr,O.peek,O.erase,O.insert}. For queries
to the non-specified oracles, the reduction performs the required operations exactly as defined in Fig. 7.

IND-CRA-A there exists an adversary B3 such that

AdvIND-CRA-A
CS, A3

≤ f ·AdvIND-CPA
SKE3, B3

where f is a bound on the number of calls to the O.LRb oracle by the adversary.

Proof. We define f +1 hybrid games. The games all work like ExpIND-CRA-A
CS, A , except in the behaviour

of their O.LRb oracle. In the ith game, the oracle will always use F1 for the first i queries, and always
use F0 for the remaining queries. In G0, the O.LRb oracle will always behave as if b = 0, while in Gf it
will always behave as if b = 1.

The proof now proceeds exactly as the proof of Theorem 1, using the reduction B3,i as defined in
Fig. 12. In particular, since a random key is chosen for O.store and O.LRb queries, the reduction can
simulate all encryptions except those it needs to send to its own O.LRb oracle. These values are added
to CL so cannot be acquired via an O.retr query, so the reduction can adequately simulate all oracle
queries. The claim follows.

Remark 2. Note that the reduction used in the proof of Theorem 3 never uses its OSKE.E oracle, and
uses its OSKE.LR oracle exactly once. This means that we could in principle use a one-time secure
symmetric cryptosystem, and still get security.

4.2.3 Deduplicating Systems using File-Derived Keys

A natural way for using SKE in deduplicating systems is to derive encryption keys from the files them-
selves [DAB+02, BKR13]. Cloud storage schemes with this property cannot achieve the usual indistin-
guishability notion because the adversary knows the possible files and therefore the possible encryption
keys used.

For encryption schemes that derive encryption keys from the file itself (as defined in Section 2.2.2),
the PRV-CDA notion of security asks an adversary to distinguish ciphertexts when files are sampled
from some pre-chosen high-entropy probability space and then encrypted. The probability space must be
independent of the encryption scheme to avoid pathological situations, hence pre-chosen. This security
notion can be achieved by both deterministic [BKR13] and randomised schemes [BKR13, ABM+13].

Based on such an encryption scheme, we define a natural cloud storage scheme by having fkeyGen
simply run the encryption scheme’s key derivation algorithm. We define a notion of security for such
cloud storage similar to PRV-CDA, where we sample two vectors of files and store every file from one of
those vectors. The adversary’s task is to determine which vector was stored. We then prove the natural
theorem.

18

Definition 7 (PRV-atk-csp Security for Cloud Storage). Let CS = (init, newu, store, retr, del) be a
cloud storage scheme. Then the PRV-atk-csp advantage for an adversary A, message source MS and
atk ∈ {CSA,CRA}, csp ∈ {Z,P,A} against CS is defined by

AdvPRV-atk-csp
CS, MS, A = 2 ·

[
Pr
[
ExpPRV-atk-csp

CS, MS, A = 1
]
− 1

2

]
where experiment ExpPRV-atk-csp

CS, MS, A is given in Fig. 13.

Recall that due to Assumption 1, just as for the IND notions the adversary cannot call O.LRb or
O.store with any (uid, id) pair that it has called before. The relations between IND notions from Fig. 8
and Appendix A follow through to the PRV setting.

Theorem 4. Let CS = (init, newu, store, retr, del) be a cloud storage protocol that uses a symmetric key
encryption scheme SKE = (KG,E,D) as in Fig. 5, with file-derived keys. For an adversary A4 against
PRV-CSA-P and message source MS there exists an adversary B4 such that

AdvPRV-CSA-P
CS, MS, A4

≤ AdvPRV-CDA
SKE, MS, B4 .

Proof. In the PRV-CDA experiment, parameterized by message source MS, the adversary receives a
vector of encryptions of messages chosen from one of the source’s output vectors. In the syntax for the
PRV-CDA game (Fig. 2) the adversary is given the ciphertext vector resulting from encrypting one of
the message vectors output by MS. This means that when B4 (playing PRV-CDA) runsA4 andA4 makes
its O.LR query, B4’s simulation of the O.store oracle must store the ciphertexts it received from its own
challenger (under the user identities and handles provided by A4).

4.3 Deduplicating Schemes with non-trivial fkeyGen Procedures

The results so far in this section have only considered schemes for which fkeyGen is an operation that can
be run locally, without the need for communicating with other users, the server or third parties (i.e. lines
1-4 of Fig. 6)8. While our model (Fig. 5) can handle deduplicating schemes with complex fkeyGen
protocols such as that of Liu et al. [LAP15a], Duan [Dua14] and Keelveedhi et al. (DupLESS) [KBR13],
our security definitions do not fully capture them due to the ‘unnatural’ inputs to fkeyGen when it is
‘called’ by store. In order to consider the confidentiality of such schemes within our model it is necessary
to incorporate a simple extension: an O.fkeyGen oracle that the adversary can call on arbitrary inputs.

Our model is also easily extensible to the distributed storage context: the O.peek oracle, instead
of returning the tuple {(uid, c, id, 0/1)}, could take as input some indices that correspond to different

8 The threshold scheme of Stanek et al. [SSAK14] is a special case since fkeyGen is run locally but the encryption algorithm
is not a symmetric encryption scheme.

ExpPRV-atk-csp
CS, MS, A :

init
flag← 0
CL, usersC, usersH ← ∅
b

$←− {0, 1}
b′ ← Aoracles

return b′ ?
= b

O.LRb(uid, id):
if flag = 1 or ∃uid ∈uid: uid /∈ usersH then

return ⊥
(m0,m1, Z)← MS

for i = 1, . . . , |mb| do
store(uid[i],mb[i],id[i])

CL
∪←− {(uid[i],id[i])}

flag← 1

Figure 13: The experiment defining PRV-atk-csp security for cloud storage with file-derived keys, for atk ∈
{CSA,CRA}, csp ∈ {Z,P,A}. The algorithms from Fig. 7 are also included. The oracles to which the adversary
has access are the same as for our IND notions.

19

B4 playing ExpPRV-CDA
SKE,MS,B4 :

receive (c, Z)
ST← ∅
flag← 0
b′ ← AO.LRb

4

return b′

O.LRb(uid, id):
if flag = 1 then

return ⊥
else
for i = 1, . . . , |c| do

ST
∪←− {(uid[i],c[i],id[i]),0}

flag← 1

Figure 14: Reduction B4 for proof of Theorem 4. The O.newuC, O.newuH, O.store, O.upl, O.del and O.peek
oracles are not listed, but are as defined in Fig. 7.

servers and return the information stored on that subset of the servers, if any, under uid and id. This
would enable a rigorous analysis of schemes such as CDStore [LQLL16].

It is straightforward to create a variant of our generic IND experiment for deterministic encryption:
the adversary is not allowed to send the same file to O.LR or O.store. In particular, the experiment
initializes an empty list, and on each F or (F0,F1) query to store, resp. O.LR, that value is added to the
list. If the adversary later attempts to perform O.store or O.LR with a file already on that list, return ⊥.
Certainly any scheme that is IND-atk-csp is also D-IND-atk-csp for some {atk, csp}, and furthermore
D-IND-atk-csp⇒ PRV-atk-csp.

Since Duan [Dua14] showed that the DupLESS system achieves D-IND$ (in the random oracle
model), we would expect that DupLESS would meet strong security in our model. However if we
assume that the adversary has a fkeyGen oracle as described above, DupLESS does not even meet
D-IND-CSA-P. The attack is straightforward: The adversary calls its fkeyGen oracle on F0 to get
fkF0 ; then again for some distinct F1 to get fkF1 ; calls O.LRb(F0,F1) for some (uid, id) and does
O.peek(uid, id) to receive the c that Fb is stored under. All that is left to do is to attempt to decrypt
c using the two keys it got from fkeyGen earlier to get Fb, then output b. This indicates how weak a
D-IND$ notion is: in a realistic attack setting, it is trivial for an adversary that has (even only snapshot)
access to the cloud’s storage to be able to distinguish ciphertexts.

5 Integrity

Once a user of a cloud storage system has decided to use encryption to ensure confidentiality of files,
the user will also wish that integrity is retained for the ciphertexts sent to the CSP. One approach to this
requirement is to use proofs of retrievability (PoR) [JJ07, SW13], where users embed some data in their
files (ciphertexts) and periodically engage in some protocol with the CSP to check that the files have not
been deleted or modified. We consider the simpler problem of ensuring that retrieved files are correct.
Our approach is inspired by the ciphertext integrity notions from the cryptography literature. As before,
we focus on generic results rather than concrete instantiations.

We formally define a notion of integrity of ciphertexts for cloud storage schemes, denoted INT-SC
(INTegrity of Stored Ciphertexts). The experiment is given in Fig. 15. An adversary, in control of a
number of users of the cloud storage scheme CS, wins the game by making a user retrieve a file that
either the user had previously deleted, or that the user did not store in the first place. This of course rules
out schemes for which a file hash is all that is required to indicate ownership of that file (Dropbox pre-
2011 [MSL+11, DMM+12, vdL], content distribution networks, etc.): we will discuss later the meaning
of ciphertext integrity in these deduplicating systems.

5.1 Defining Integrity for Cloud Storage

What follows is a definition of integrity for cloud storage with three flavours corresponding to the
different levels of server compromise detailed in Section 4.1. We call this notion INT-SC-csp for
csp ∈ {Z,P,A}.

20

We use a second storage table TrueST to track all activities that the adversary makes the (notional)
users do: store, retr and del. The other ST tracks all of these activities in addition to the oracles mod-
elling active server compromise: O.erase and O.insert. In Section 5.2 we focus on actively corrupted
servers manipulating the storage database: the adversary will always have access to O.peek, O.erase
and O.insert and this corresponds to INT-SC-A. We will later consider integrity in client-side dedupli-
cating systems: a scenario where an adversarial client (INT-SC-Z) is (inherently) given more power by
the mechanism that saves communication bandwidth.

Note that in the description of O.retr′, the code if {(uid, ·, id, ·)∈ST} 6= {(uid, ·, id, ·)∈TrueST}
means that for fixed uid and id, if there exists an entry in ST and an entry in TrueST such that the tuples
are not exactly equal then this condition is met. This means that the ciphertext component or the deletion
bit (or both) being different means that this condition is achieved.

Definition 8 (INT-SC-csp for Cloud Storage). Let CS be a cloud storage system based on a symmetric
cryptosystem as in Fig. 5, and let A be an adversary. Then the INT-SC-csp advantage for an adversary
A and csp ∈ {Z,P,A} against CS is defined by

AdvINT-SC-csp
CS, A = Pr

[
ExpINT-SC-csp

CS, A = 1
]

,

where experiments ExpINT-SC-csp
CS, A are defined in Fig. 15.

ExpINT-SC-csp
CS, A :

b← 0
ST← ∅
TrueST← ∅
Aoracles

return b

O.del′(uid, id) :
do del(uid, id)
if (uid, ·, id, 0) ∈ TrueST then

TrueST
∪←− (uid, ·, id, 1)

O.store′(uid,F, id) :
do store(uid,F, id)

TrueST
∪←− {(uid, c, id, 0)}, where

(uid, c, id, 0) ∈ ST

O.retr′(uid, id) :
do F← retr(uid, id)
if {(uid, ·, id, ·) ∈ ST} 6= {(uid, ·, id, ·) ∈ TrueST}

and F 6= ⊥
then b← 1

return F

Figure 15: The experiment defining INT-SC-csp for cloud storage. The adversary has access to O.newuC,
O.newuH, O.store′, O.upl, O.del′ and O.retr′. If csp = P then the adversary additionally has access to O.peek,
and if csp = A then the adversary additionally has access to O.erase and O.insert. The oracles that are not
explicitly stated are as defined in Fig. 7.

Our definition of del in Fig. 5 firstly removes the KT entry and then updates ST if an applicable
entry exists. This formulation makes it extremely difficult for an adversary to win the INT-SC-csp game
by retrieving a file it previously deleted since it has no ability to edit KT entries. If del would only delete
the KT entry after checking existence of a ST entry then this would give the adversary a trivial way to
de-synchronize TrueST and ST. We acknowledge that this technical issue is awkward but believe that
this exposition gives the clearest possible definition of ciphertext integrity for cloud storage systems as
we have defined them.

5.2 Achieving Integrity in Cloud Storage

We now show how to construct a cloud storage protocol that meets our strongest INT-SC-A notion. The
construction is straightforward: each user holds their own symmetric key and uses an encryption scheme
that is INT-CTXT secure during the store procedure (line 2 from Fig. 6). For this we require the syntax
for an encryption scheme that can handle associated data (see Section 2.2.4). Just as in Thm. 2 the
associated data is the handle id.

21

Theorem 5. Let CS be a cloud storage system that uses a symmetric cryptosystem SKE5 with per-user
keys, with at most n users, with AD = id, and let A5 be an adversary against ciphertext integrity for CS.
Then there exists an adversary B5 against ciphertext integrity for SKE such that

AdvINT-SC-A
CS, A5

≤ n ·AdvINT-CTXT
SKE5, B5 .

Proof. Since each user’s key material is independent of every other user’s key material, it is sufficient
to prove the result for a single user, since a standard hybrid argument will complete the argument, also
incurring a factor n. So consider an adversary A5 in the experiment ExpINT-SC-A

CS,A with a single user.
Based on this, we can construct an adversary B5 against INT-CTXT by replacing the encryption and
decryption in O.store and O.retr by calls to the encryption and decryption oracles in the INT-CTXT
game. Suppose b is set to 1 in the retrieve oracle. Since deletions are recorded in KT and therefore
are correctly handled, it must be the case that the retrieve oracle has read and correctly decrypted a
ciphertext that is different from the ciphertext stored by the store oracle. Since the identity is included
in every ciphertext as associated data, and since (by assumption) the store oracle is never called twice
with the same identity, it follows that the ciphertext that was correctly decrypted was not created by the
store oracle under that identity. It then follows that the retrieve oracle has submitted a ciphertext to its
decryption oracle that decrypted correctly, but was not returned by the encryption oracle with the same
associated data. It follows that B5 has won the INT-CTXT game.

Remark 3. The use of id as associated data to tie ciphertexts to handles is certainly necessary here. If
SKE that uses per-user keys is IND-CCA2 but does not use AD then the adversary can store some file for
some corrupt client (E will use uk that is known to the adversary) under some uid and id, erase that entry
from ST, insert a different ciphertext c′ ← Euk(F

′) under the same uid and id, then do O.retr(uid, id) to
win the INT-SC-A game.

We now prove an intuitive theorem inspired by Bellare and Namprempre’s IND-CPA and INT-CTXT⇒
IND-CCA2 result for symmetric encryption [BN00].

Theorem 6. Let CS be a cloud storage system, and let A6 be an adversary against indistinguishability
under a chosen retrieve attack with an actively compromised server (IND-CRA-A). Then there exist
adversaries B6 and C6 such that

AdvIND-CRA-A
CS, A6

≤ AdvIND-CSA-P
CS, B6 +AdvINT-SC-A

CS, C6 .

Proof. Game G0 is the original IND-CRA-A game. In Game G1, we modify O.store and O.del so that
they keep track of what is added to ST. Likewise, we modify O.retr so that when doing a retrieve,
it first compares the contents of ST with its records of what ST should contain, as recorded by the
modified store and delete oracles. If there is a mismatch between the actual contents of ST and the
records, the modified retrieve oracle fails instead of retrieving the data. The modifications to the store
and delete oracles are unobservable: the only case where the response of the modified retrieve oracle
would differ from the response of the original retrieve oracle corresponds exactly to the case where an
integrity adversary wins the INT-SC-A game. If Game G1 can be distinguished from Game G0 with
advantage ε1, then we have an adversary against INT-SC-A whose success probability is equal to ε1.

In Game G2, we modify O.retr so that it no longer decrypts ciphertexts to get its responses, but
instead gets its responses from the data recorded by the modified store and delete oracles. In either
game, the retrieve oracle will only respond if the stored data is unchanged, so by correctness, Game G2

cannot be distinguished from Game G1.
Finally, we can make an adversary against IND-CSA-A whose probability of guessing b correctly is

exactly the same as the original adversary’s probability of guessing b correctly in Game G2. The claim
follows, since without a retrieve oracle, the adversary’s erase and insert oracles are useless.

Remark 4. Note that the proof of Theorem 6 works equally well if we replace IND-CRA-A and IND-CSA-P
with PRV-CRA-A and PRV-CSA-P. Indeed, it works for any goal that is IND-like.

22

5.3 Integrity in Deduplicating Schemes

For deterministic schemes such as convergent encryption (fk← H(F)) it is trivial for an adversary with
active server compromise to create new ciphertexts that decrypt correctly. For this reason Bellare et
al. (BKR) [BKR13] discussed tag consistency: their tags served a different purpose to our handles as
their syntax assumes the server does not track the set of allowed users for each file (i.e. tag ownership is
enough to retrieve). This assumption opens up systems to duplicate-faking attacks [SGLM08] in which
a malicious client can find a tag collision for a target file, upload an ill-formed ciphertext under that tag,
and stop genuine users from retrieving the target file. Our assumption on handles (Assumption 1) rules
out this type of attack, so we must consider a modified definition of a cloud storage system to include an
additional tagging algorithm. This formalism is given in Fig. 16.

A deduplicating cloud storage scheme is a tuple DCS = (init, newu, store, retr, del) as before, but
in addition to SKE = (KG,E,D) and fkeyGen we also require a TGen algorithm. We follow BKR and
define the TGen algorithm as acting on ciphertexts only: tag← TGen(c). This is without loss of gener-
ality: the HCE1, HCE2 and RCE schemes that they describe calculate tag← H(fk) to give a ciphertext
formed as tag||Efk(F), then the TGen algorithm parses this value and outputs tag. Again following
BKR we define a deduplicating encryption mechanism SKE.Dedup = (fkeyGen,E,D,TGen) that com-
bines an SKE’s encryption and decryption algorithms with the fkeyGen and TGen procedures. BKR
called this primitive an MLE, and their definition was for generic KG: for our purposes it is sufficient to
only consider the fkeyGen algorithm we have previously described since in the deduplicating scenario
fkeyGen typically does not use any material that is unique to each user. This combined construction
defines all the inputs to the wider cloud storage system: we write this as DCS[SKE.Dedup].

init
1. ST← ∅

newu(uid)
2. ukuid ← kgen
3. KTuid ← ∅
4. return ukuid

del(uid, id)

5. KTuid
∪←− {(⊥, id, tag)}

6. if ∃ {uid, ·, id, tag, 0} in ST then
7. ST

∪←− {(uid,−, id, tag, 1)}

upl(uid, c, tag, id)

8. ST
∪←− {(uid, c, id, tag, 0)}

store(uid,F, id)
9. fk← fkeyGen(F, ukuid)
10. c← Efk(F, id)
11. tag← TGen(c)
12. upl(uid, c, id, tag)

13. KTuid
∪←− {(fk, id, tag)}

retr(uid, id)
14. if ∃ (uid, ·, id, tag, 1) ∈ ST or
15. ∃(⊥, id, tag) ∈ KTuid then
16. return ⊥
17. if ∃ (uid, c, id, tag, 0) ∈ ST and
18. ∃(fk, id, tag) ∈ KTuid then
19. F← Dfk(c, id)
19a. tag′ ← TGen(c)
19b. if tag′ 6= tag then
19c. return ⊥tag

20. return F
21. else
22. return ⊥

Figure 16: Definition of a deduplicating cloud storage scheme DCS[SKE.Dedup].

In a client-side deduplicating cloud storage system, the upl procedure will be a two stage pro-
cess: first the user sends tag, gets a response indicating whether it should send the ciphertext or
not, and then finally it sends the ciphertext if asked to. In our syntax line 8 initially only requires

23

(uid, id, tag) as inputs and checks its own storage for a tag match: if ∃{·, c, ·, tag, ·} ∈ ST then ST
∪←−

{(uid, c, id, tag, 0)}. If a match is not found, the server sends a message, sometimes referred to as a
deduplication signal [ABD+17], to the user to let them know that it is necessary for the ciphertext to be
transmitted.

Lines 19a-19c in Fig. 16 represent an optional tag check that has a (possibly distinguishable) error
symbol: this operation is employed by the HCE2 and RCE schemes described by BKR. We will see
shortly that using this check or not creates an important distinction in the integrity properties we achieve
in our wider storage protocols.

We now reproduce BKR’s definitions of Tag Consistency (TC) and Strong Tag Consistency (STC)
that are used to capture duplicate-faking attacks. For TC it should be hard to create a pair (F, c′) such
that the tags are the same but the ciphertexts decrypt to different files. STC asks that it is hard to create
such a pair with the same tag but here the adversary wins even if c′ decrypts to ⊥: if this property holds
then it is hard to erase files stored by other users.

Definition 9. Let SKE.Dedup = (fkeyGen,E,D,TGen) be a deduplicating encryption mechanism.
Then the TC/STC advantage for an adversary A against SKE.Dedup is

Adv
TC/STC
SKE.Dedup, A = Pr

[
Exp

TC/STC
SKE.Dedup, A = 1

]
where experiments ExpTC

SKE.Dedup, A and ExpSTC
SKE.Dedup, A are given in Fig. 17.

ExpTC
SKE.Dedup, A :

(F, c′)← A
if (F = ⊥) or (c′ = ⊥) then

return 0
fk← fkeyGen(F, uk)
c← Efk(F)
F′ ← Dfk(c

′)
tag← TGen(c)
tag′ ← TGen(c′)
if (tag = tag′) and (F 6= F′) and (F′ 6= ⊥) then

return 1
else

return 0

ExpSTC
SKE.Dedup, A :

(F, c′)← A
if (F = ⊥) or (c′ = ⊥) then

return 0
fk← fkeyGen(F, uk)
c← Efk(F)
F′ ← Dfk(c

′)
tag← TGen(c)
tag′ ← TGen(c′)
if (tag = tag′) and (F 6= F′) then

return 1
else

return 0

Figure 17: Games defining TC and STC adapted from BKR [BKR13].

The attacker considered by (S)TC is a malicious client that does not have any access to the server’s
database, i.e. Z in our hierarchy. Recall that in our INT-SC-Z game the adversary has access to {O.newuC,
O.newuH, O.store′, O.upl, O.del′, O.retr′} only. We note that this model is very similar to the chal-
lenger defined in the (S)TC games.

We now consider the relationship between the (strong) tag consistency of the underlying deduplicat-
ing encryption mechanism and the resulting DCS when the adversary is corrupted (INT-SC-A).

Remark 5. If DCS[SKE.Dedup] does not implement the tag check (lines 19a-19c in Fig. 16), then
SKE.Dedup being STC does not necessarily imply that DCS is INT-SC-A.

To see this, consider a scheme SKE.Dedup that employs no encryption, and the tagging algorithm
just outputs the ciphertext: ⊥ ← fkeyGen(F); c = F ← E(fk,F); c ← D(fk, c); c ← TGen(c).
This trivial scheme certainly meets STC since the tagging algorithm is injective. However it is of
course not INT-SC-A since an adversary can perform the following queries to win: O.store(uid,F, id);
O.erase(uid, id); O.insert(uid, c, id,F, 0) for some c 6= F; O.retr(uid, id).

24

Remark 6. A scheme DCS[SKE.Dedup] can be INT-SC-A yet SKE.Dedup is not TC.

Consider the CS created by using SKE5 in Thm. 5. We can turn this into a deduplicating cloud
storage scheme by including the degenerate tagging procedure 0 ← TGen(c) for all ciphertexts c. This
does not affect INT-SC-A and yet the SKE.Dedup is certainly not TC, since any valid (F, c′) will of
course give the same tag.

These two remarks emphasize that (S)TC and INT-SC are tangential concerns: deduplication tags
serve a different purpose to retrieval handles.

If the tag check procedure is enforced as part of retr, then using a SKE.Dedup that is STC does in
fact yield a DCS that is INT-SC-A.

Theorem 7. If DCS[SKE.Dedup] implements the tag check (lines 19a-19c in Fig. 16) and if SKE.Dedup
is STC then DCS is INT-SC-A.

Proof. We assume an adversary A7 that wins the INT-SC-A game. If A7 wins, it must submit a O.retr
query that succeeds, even though either the requested file has been deleted before the query or the
cloud storage server returns a different ciphertext than was originally stored (and recorded in the game’s
TrueST table). Because deletion is recorded in KT, the former cannot happen. Since the O.retr query
succeeded, we know that the ciphertext returned by the cloud storage service has the same tag as is
found in KT. Since the tag found in KT was recorded at the time of storage, we know that the original
ciphertext has this tag. In other words,A7 has produced two distinct ciphertexts with the same tag. From
here we can build a reduction B7 that wins the STC game.

6 Concluding Remarks

In this paper, we defined notions of security for cloud storage and deduplication. We provided a generic
model for cloud storage with a set of functionalities for secure uploading, retrieval and deletion of data
on the cloud that covers all the existing cloud storage systems. We defined indistinguishability-based
notions of confidentiality for our model and emphasized how to construct secure schemes in each of the
three distinct levels of adversarial control. We also defined a notion of integrity of ciphertexts for cloud
storage schemes, and showed how to achieve this goal from standard existing notions of integrity for
encryption. Furthermore, we showed the relationship between our notion of integrity and the existing
notion of tag consistency in deduplicating schemes.

For practitioners our results allow rigorous classification of so-called secure storage schemes in a
fine-grained threat model. There are many ways that our model can be further enhanced, some of which
have already been mentioned in the text. These include: consideration of multiple storage servers;
length-hiding properties to avoid practical attacks based on ciphertext length [RKSC16]; file sharing
between different clients for the same user; and additional security properties such as anonymity.

Acknowledgements. We thank Frederik Armknecht and Yao Jiang for input to discussions for this
project. We would also like to thank Jian Liu and N. Asokan for discussions about their protocol when
Gareth T. Davies visited Aalto University in August 2016. This research was funded by the Research
Council of Norway under Project No. 248166.

25

References

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted
stores. In Proceedings of the 2007 ACM Conference on Computer and Communications Se-
curity, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 598–609. ACM,
2007. Cited on page 4.

[ABD+17] Frederik Armknecht, Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Mohsen
Toorani. Side channels in deduplication: Trade-offs between leakage and efficiency. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Se-
curity, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 266–274.
ACM, 2017. Cited on pages 4, 11, and 24.

[ABM+13] Martín Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and Gil Segev. Message-
locked encryption for lock-dependent messages. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages 374–391.
Springer, 2013. Cited on pages 9 and 18.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, 2000. Cited on page 17.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public
key encryption with keyword search. In EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 506–522. Springer, 2004. Cited on page 4.

[BK15] Mihir Bellare and Sriram Keelveedhi. Interactive message-locked encryption and secure
deduplication. In Public-Key Cryptography - PKC 2015 - 18th IACR International Confer-
ence on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March
30 - April 1, 2015, Proceedings, volume 9020 of Lecture Notes in Computer Science, pages
516–538. Springer, 2015. Cited on page 9.

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption
and secure deduplication. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Com-
puter Science, pages 296–312. Springer, 2013. Cited on pages 3, 4, 7, 9, 11, 18, 23,
and 24.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Advances in Cryptology -
ASIACRYPT 2000, 6th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 531–545. Springer, 2000. Cited on
pages 8 and 22.

[BPS15] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling AE
robustness notions. In Cryptography and Coding - 15th IMA International Conference,
IMACC 2015, Oxford, UK, December 15-17, 2015. Proceedings, volume 9496 of Lecture
Notes in Computer Science, pages 94–111. Springer, 2015. Cited on page 8.

26

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Re-
claiming space from duplicate files in a serverless distributed file system. In ICDCS, pages
617–624, 2002. Cited on pages 4, 6, 9, and 18.

[DC17] Hung Dang and Ee-Chien Chang. Privacy-preserving data deduplication on trusted pro-
cessors. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, USA, June 25-30, 2017, pages 66–73. IEEE Computer Society, 2017. Cited
on page 12.

[DMM+12] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna Sperotto, Ramin Sadre, and Aiko
Pras. Inside Dropbox: understanding personal cloud storage services. In Proceedings of
the 12th ACM SIGCOMM Internet Measurement Conference, IMC ’12, Boston, MA, USA,
November 14-16, 2012, pages 481–494. ACM, 2012. Cited on page 20.

[Dua14] Yitao Duan. Distributed key generation for encrypted deduplication: Achieving the
strongest privacy. In Proceedings of the 6th edition of the ACM Workshop on Cloud Com-
puting Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014, pages 57–68.
ACM, 2014. Cited on pages 4, 11, 19, and 20.

[Gjø05] Kristian Gjøsteen. Security notions for disk encryption. In Computer Security - ESORICS
2005, 10th European Symposium on Research in Computer Security, Milan, Italy, Septem-
ber 12-14, 2005, Proceedings, volume 3679 of Lecture Notes in Computer Science, pages
455–474. Springer, 2005. Cited on page 4.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003. Cited on
page 4.

[HHPS11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of own-
ership in remote storage systems. In Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011,
pages 491–500. ACM, 2011. Cited on page 4.

[HPS10] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels in cloud ser-
vices: Deduplication in cloud storage. IEEE Security & Privacy, 8(6):40–47, 2010. Cited
on pages 4 and 11.

[JJ07] Ari Juels and Burton S. Kaliski Jr. PORs: proofs of retrievability for large files. In Proceed-
ings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 584–597. ACM, 2007. Cited on
pages 4 and 20.

[JSSW17] Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bogdan Warinschi. Multi-key au-
thenticated encryption with corruptions: Reductions are lossy. In Theory of Cryptography
- 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science, pages 409–441.
Springer, 2017. Cited on page 8.

[KBR13] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. DupLESS: Server-aided en-
cryption for deduplicated storage. In Proceedings of the 22th USENIX Security Sympo-
sium, Washington, DC, USA, August 14-16, 2013, pages 179–194. USENIX Association,
2013. Cited on pages 4, 5, 11, and 19.

[KK08] Seny Kamara and Jonathan Katz. How to encrypt with a malicious random number gener-
ator. In Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne,
Switzerland, February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture
Notes in Computer Science, pages 303–315. Springer, 2008. Cited on page 12.

27

[KMV17] Louiza Khati, Nicky Mouha, and Damien Vergnaud. Full disk encryption: Bridging theory
and practice. In Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at
the RSA Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings,
volume 10159 of Lecture Notes in Computer Science, pages 241–257. Springer, 2017.
Cited on page 4.

[KW14] Thomas Kunz and Ruben Wolf. OmniCloud – the secure and flexible use of cloud storage
services. Technical report, Fraunhofer Institute for Secure Information Technology SIT,
2014. Cited on page 11.

[LAP15a] Jian Liu, N. Asokan, and Benny Pinkas. Secure deduplication of encrypted data without
additional independent servers. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-6, 2015, pages
874–885. ACM, 2015. Cited on pages 4, 11, 13, and 19.

[LAP15b] Jian Liu, N. Asokan, and Benny Pinkas. Secure deduplication of encrypted data without
additional independent servers. IACR Cryptology ePrint Archive, 2015:455, 2015. Cited
on page 4.

[LDLA18] Jian Liu, Li Duan, Yong Li, and N. Asokan. Secure deduplication of encrypted data:
Refined model and new constructions. In Nigel P. Smart, editor, Topics in Cryptology -
CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference 2018, San Francisco,
CA, USA, April 16-20, 2018, Proceedings, volume 10808 of Lecture Notes in Computer
Science, pages 374–393. Springer, 2018. Cited on page 4.

[LLXC16] Jingwei Li, Jin Li, Dongqing Xie, and Zhang Cai. Secure auditing and deduplicating data
in cloud. IEEE Trans. Computers, 65(8):2386–2396, 2016. Cited on pages 4 and 5.

[LQLL16] Mingqiang Li, Chuan Qin, Jingwei Li, and Patrick P. C. Lee. CDStore: Toward reliable,
secure, and cost-efficient cloud storage via convergent dispersal. IEEE Internet Computing,
20(3):45–53, 2016. Cited on pages 11 and 20.

[MRAM17] Sebastian Messmer, Jochen Rill, Dirk Achenbach, and Jörn Müller-Quade. A novel cryp-
tographic framework for cloud file systems and CryFS, a provably-secure construction. In
Data and Applications Security and Privacy XXXI - 31st Annual IFIP WG 11.3 Confer-
ence, DBSec 2017, Philadelphia, PA, USA, July 19-21, 2017, Proceedings, volume 10359
of Lecture Notes in Computer Science, pages 409–429. Springer, 2017. Cited on page 4.

[MSL+11] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and Edgar R.
Weippl. Dark clouds on the horizon: Using cloud storage as attack vector and online slack
space. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings. USENIX Association, 2011. Cited on page 20.

[PMÖL13] Pasquale Puzio, Refik Molva, Melek Önen, and Sergio Loureiro. Cloudedup: Secure dedu-
plication with encrypted data for cloud storage. In IEEE 5th International Conference on
Cloud Computing Technology and Science, CloudCom 2013, Bristol, United Kingdom, De-
cember 2-5, 2013, Volume 1, pages 363–370. IEEE Computer Society, 2013. Cited on page
12.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter:
Attacks and proofs for the TLS record protocol. In Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073
of Lecture Notes in Computer Science, pages 372–389. Springer, 2011. Cited on page 8.

28

[RKSC16] Hubert Ritzdorf, Ghassan Karame, Claudio Soriente, and Srdjan Capkun. On information
leakage in deduplicated storage systems. In Proceedings of the 2016 ACM on Cloud Com-
puting Security Workshop, CCSW 2016, Vienna, Austria, October 28, 2016, pages 61–72.
ACM, 2016. Cited on pages 14 and 25.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the
9th ACM Conference on Computer and Communications Security, CCS 2002, Washington,
DC, USA, November 18-22, 2002, pages 98–107. ACM, 2002. Cited on page 8.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap
problem. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 373–390. Springer, 2006. Cited on page 8.

[SGLM08] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long, and Ethan L. Miller. Secure
data deduplication. In Proceedings of the 2008 ACM Workshop On Storage Security And
Survivability, StorageSS 2008, Alexandria, VA, USA, October 31, 2008, pages 1–10. ACM,
2008. Cited on page 23.

[SKYH17] Youngjoo Shin, Dongyoung Koo, Joobeom Yun, and Junbeon Hur. Decentralized server-
aided encryption for secure deduplication in cloud storage. IEEE Transactions on Services
Computing, PP(99), 2017. Cited on page 12.

[SSAK14] Jan Stanek, Alessandro Sorniotti, Elli Androulaki, and Lukas Kencl. A secure data dedu-
plication scheme for cloud storage. In Financial Cryptography and Data Security - 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised
Selected Papers, volume 8437 of Lecture Notes in Computer Science, pages 99–118.
Springer, 2014. Cited on pages 4, 11, and 19.

[SW13] Hovav Shacham and Brent Waters. Compact proofs of retrievability. J. Cryptology,
26(3):442–483, 2013. Cited on pages 4 and 20.

[SWP00] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages 44–55.
IEEE Computer Society, 2000. Cited on page 4.

[vdL] Wladimir van der Laan. Dropship. https://github.com/driverdan/dropship
(Date last accessed 13-August-2017). Cited on page 20.

[YJ13] Kan Yang and Xiaohua Jia. An efficient and secure dynamic auditing protocol for data
storage in cloud computing. IEEE Trans. Parallel Distrib. Syst., 24(9):1717–1726, 2013.
Cited on pages 4 and 5.

A Relations between Confidentiality Notions

Here we expand on the relations between our notions for confidentiality introduced in Section 4. Recall
that all adversaries have access to O.newuC, O.newuH, O.store, O.upl, O.del and O.LR. CRA addi-
tionally has access to O.retr, P additionally has the O.peek oracle and finally A additionally has access
to O.erase and O.insert. Fig. 18 is a more detailed version of Fig. 8 in Section 4, with labels to indicate
the non-trivial remarks below that desribe the relations.

If an adversary in the IND-Y game has access to a subset of the oracles available to an IND-X adver-
sary then trivially IND-X⇒ IND-Y. This gives rise to the trivial relations IND-atk-A⇒ IND-atk-P⇒

29

https://github.com/driverdan/dropship

IND-atk-Z for atk ∈ {CSA,CRA}, and also IND-CRA-csp⇒ IND-CSA-csp for csp ∈ {Z,P,A} (these
are the right-to-left and bottom-to-top arrows in Fig. 18).

Otherwise, to show that IND-X ⇒ IND-Y for some X,Y it is sufficient to show that a reduction
playing IND-X can perfectly simulate the oracles from the IND-Y game that it does not have access
to, and further that a successful underlying adversary in the IND-Y game will lead to victory in the
reduction’s IND-X game. This latter requirement is straightforward in our cases because all of these
adversaries are distinguishing the actions invoked by their O.LR oracle.

IND-CSA-Z
⇐

8 ; IND-CSA-P ⇔7 IND-CSA-A
m9 m10 ⇑
;

11

IND-CRA-Z
⇐

8 ; IND-CRA-P
⇐

11 ; IND-CRA-A

Figure 18: Relations between IND notions for confidentiality of cloud storage systems.

Remark 7 (IND-CSA-P ⇒ IND-CSA-A). Reduction forwards O.newuH, O.newuC, O.store, O.upl,
O.del, O.LR and O.peek queries to its own oracles. Reduction can simulate the extra O.insert and
O.erase queries since there is noO.retr oracle: it simply keeps a table for each ofO.insert andO.erase
and whenever adversary does an O.peek (or O.del) at an entry in either table, reduction responds
appropriately.

Remark 8 (IND-CSA-Z ; IND-CSA-P and IND-CRA-Z ; IND-CRA-P). Let SKE be the scheme that
employs no encryption: SKE.E is identity function, c ← F. IND-CSA-P adversary does one O.LRb

query with distinct F0,F1 for some uid and id, does O.peek(uid, id) to see Fb.

Remark 9 (IND-CSA-Z ⇒ IND-CRA-Z). Reduction needs to simulate adversary’s O.retr queries.
Anything sent via O.upl or O.LR is forbidden, so needs to deal with O.store. If scheme is correct then
reduction just keeps a table, which is must update in the event of an O.del query.

Remark 10 (IND-CSA-P ⇒ IND-CRA-P). To simulate O.retr queries, reduction needs to keep a log
of everything the adversary added via itsO.store queries, so it can successfully respond. Correctness of
the underlying scheme ensures that this simulation is perfect.

Remark 11 (IND-CSA-P ; IND-CRA-A). Given CS = (init, newu, store, retr, del) that is IND-CSA-P,
create CS′ as follows:

• store′(uid,F, id): c← c′||uid where c′ is ciphertext stored by CS.

• retr′(uid, id): parse c as c′||uid′ and do retr(uid′, id).

with all other operations unchanged. This scheme is still IND-CSA-P and correct. Attack:

• O.LRb(uida,F0,F1, id)

• O.peek(uida, id) to see c = c′||uida

• O.insert(uidb, c′||uida, id, 0)

• O.retr(uidb, id)

TheO.retr call is allowed since (uidb, id) /∈ CL; it will parse the inserted ciphertext and run retr(uida, id)
and output Fb.

Another (less contrived) scheme that demonstrates this separation is per-user keys with IND-CPA
(or IND-CCA2 without AD) SKE, as mentioned in Remark 1. The attack uses O.insert to overwrite an
existing value (O.erase does not affect KT), but because of the per-user keys the O.retr query will still
work correctly:

30

• O.store(uid,F, id1) for any F

• O.LRb(uid,F0,F1, id2) for some valid F0 6= F1

• O.peek(uid, id2) to see c = Eukuid(Fb)

• O.erase(uid, id1)

• O.insert(uid, c, id1, 0)

• O.retr(uid, id1) to get Fb

31

	Introduction
	Preliminaries
	Notation
	Symmetric-Key Encryption (SKE)
	Confidentiality for Symmetric Encryption
	Confidentiality for MLE-like Symmetric Encryption
	Authenticated Encryption with Associated Data (AEAD)
	Integrity for Symmetric Encryption

	Modelling Cloud Storage
	A Model for Cloud Storage
	Modelling Existing Schemes and Literature

	Confidentiality
	Defining Confidentiality for Cloud Storage
	Achieving Confidentiality in Cloud Storage
	Per-User Keys
	Per-File Keys
	Deduplicating Systems using File-Derived Keys

	Deduplicating Schemes with non-trivial fkeyGen Procedures

	Integrity
	Defining Integrity for Cloud Storage
	Achieving Integrity in Cloud Storage
	Integrity in Deduplicating Schemes

	Concluding Remarks
	Relations between Confidentiality Notions

