
Dealing with Topological Information within a
Fully Convolutional Neural Network

Etienne Decencière1, Santiago Velasco-Forero1, Fu Min2, Juanjuan Chen2

Hélène Burdin3, Gervais Gauthier3, Bruno Laÿ3
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Abstract. A fully convolutional neural network has a receptive field
of limited size and therefore cannot exploit global information, such as
topological information. A solution is proposed in this paper to solve this
problem, based on pre-processing with a geodesic operator. It is applied
to the segmentation of histological images of pigmented reconstructed
epidermis acquired via Whole Slide Imaging.
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1 Introduction

Image processing and analysis has been revolutionized by the rise of deep learn-
ing. For semantic segmentation, deep learning approaches use mainly convolu-
tional neural networks (CNN) [3,4]. In the biomedical field, U-Net [5] has be-
come the state-of-the-art method for this task, but other solutions exist, such
as SegNet [1]. These networks are fully convolutional. Their receptive fields are
of limited size. Therefore, they cannot intrinsically process global information,
such as topological information [6]. We recall that, unlike in networks containing
fully connected layers, where the value of each unit depends on the entire input
to the network, a unit in a convolutional networks only depends on a region of
the input. This region in the input is the receptive field for that unit.

In the following, we present a practical real-world situation where the seg-
mentation result depends on topological information. We show that a classical
fully convolutional CNN does not give satisfactory results and propose a solution
to this problem.

During the past years, the way of working in the histological field has changed
due to the emergence of Whole Slide Imaging solutions that are now available
and useful for pathologists but also for dermatologists and cosmetologists. These
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automated scanners improve digital histology by allowing several hundred slides
a day to being acquired through imaging process, and stored, used for second
opinions or for automated analysis. This well-established technology provides
large sets of image data that need to be automatically processed whatever the
amount of generated data. Image analysis methods based on Deep Learning have
proved to be extremely useful in this field [2,8].

To circumvent this, we propose a method that allows neural networks based
on convolutional layers to take into account non-local information. It is based on
a geodesic operator, a popular tool from mathematical morphology. We apply it
to the segmentation of whole slide images of pigmented reconstructed epidermis,
as described hereafter.

2 Material

The images that were collected include pigmented reconstructed epidermis sam-
ples used to evaluate and identify the de-pigmenting or pro-pigmenting efficiency
of cosmetic ingredients. They have been colored using a Fontana Masson stain-
ing, a silver stain that is used to highlight melanin and to also reveal skin layer
morphology. Their sizes are diverse and can reach up to 20 million pixels. The
ground truth (GT) has been obtained by an automatic method developed by the
ADCIS company, whose results were manually edited and modified by L’Oréal
experts, when needed. On those images, the goal of the segmentation is to iden-
tify two regions corresponding to two specific skin layers: the stratum corneum
(SC) and the living epidermis.

The boundary between the SC and the background is usually rather difficult
to determine, mainly because it can be composed of different layers separated
by gaps due to the desquamation process that happens in the SC. Such layers
are only considered as part of the SC if they constitute an unbroken boundary
between the background and the sample. This feature is highly non local, and
as such a convolutional neural network cannot enforce it.

The resulting database contains 120 color images, coming from 46 different
slides. The original images are of variable size, and can contain more than 20
million pixels. The test database has been built with approximately 20% of the
images. The remaining images were used for learning and validation. We took
care to transfer all the images from a given slide into the same database.

Given the layered structure of the images, segmenting them into four regions
is equivalent to finding three frontiers (see Fig. 1). The top one, between back-
ground and SC, has a variable appearance. In some images it corresponds to a
contrasted contour; in other to a soft irregular contour. More importantly, its
exact position depends on non-local information. Indeed, when a layer of the SC
is separated from the rest of the tissue, it will belong to the SC region only if
it is connected to the rest of the SC, or if it constitutes an unbroken frontier,
going from the left side of the image to the right. Therefore it is not possible to
make that decision based uniquely on local information. This kind of situation
is illustrated by Fig. 1.



Fig. 1. Examples of original images with overlayed contours of the reference segmen-
tation (best viewed in colour). Red/top contour: frontier between background and SC.
Note that its position can be completely shifted if the detached layer is unbroken (top)
or broken (bottom). Green/middle contour: frontier between SC and living epidermis.
Cyan/bottom contour: frontier between living epidermis and collagen scaffold (here
considered as background).

The second frontier separates SC from living epidermis. On our images, the
distinction between those regions raises from different textures. The third frontier
corresponds to the limit between living epidermis and collagen scaffold. Note that
the fourth region to be segmented is made up of two compartments: the collagen
scaffold that supports the reconstructed skin, and background. The collagen
scaffold contains some large “holes” that can locally look as the “holes” within
the SC.

The ground truth was generated using an automatic method developed by the
ADCIS company, whose results were manually edited and modified by L’Oréal
experts, when needed. Given that the top and bottom regions of the ground truth
contained both a large white region, which could not be locally differentiated,
we decided to only consider three labels: label 1 corresponds to the background



(both at the top and the bottom of the images) and collagen scaffold; label 2 to
the SC; label 3 to the living epidermis.

3 Methods

It was decided to use convolutional neural networks to tackle this problem. Dur-
ing the learning phase, we worked with crops of a given size. After running some
tests, the final size of the crops was 512 × 512.

The ground truth segmentations, as they contained three labels, were classi-
cally represented as an image with three binary channels. Given that background
white regions covered the majority of the images, for training we only used the
crops that contained at least label 2 or label 3. This procedure is illustrated
in Fig. 2. The resulting set of crops contains 1458 elements. 80% are randomly
picked for learning; the other 20% are used for validation.

Concerning the loss functions, based on our experience with segmentation
using convolutional neural networks, we chose the following loss function between
two same length vectors X and Y , containing values included between 0 and 1:

J2 = 1 − XY + ε

X2 + Y 2 −XY + ε

where ε is a small constant, used for numerical reasons. This loss is based
on the Jaccard index, also called “intersection over union” similarity measure,
often used to evaluate the quality of a segmentation.

3.1 Neural network architecture and first results

After testing several network architectures, the one that gave the best results was
U-Net [5] (using a sigmoid in the last activation layer, and using zero-padding
in the convolutional layers). Full details are given in section 3.3. The validation
loss of the resulting model was 0.085.

The networks output contains 3 channels. Each one can be interpreted as
the probability of a given pixel of belonging to each region. In order to obtain
a segmentation, we naturally gave to each pixel the label corresponding to the
channel with the highest probability.

A qualitative analysis of the first results showed that the resulting frontiers
between SC and living epidermis, on the one hand, and between living epidermis
and collagen scaffold, on the other hand, were very satisfactory. However, the
frontier between background and SC, in some cases, contained errors. In Fig. 2
(middle) we see that this frontier is incorrectly detected and that the gap between
the detached SC layer, on the right, is incorrectly considered as belonging to the
SC. These errors span from the fact, as we previously said, that the definition
of this frontier is based on non local information.



Fig. 2. Top: original image, showing the selected crops. Middle: results without using
global information. Bottom: result using global information, thanks to the presented
method. These segmentation results have not been postprocessed. They are overlayed
on the original data using the following colour code: SC (magenta), living epidermis
(orange) and other regions (cyan).



3.2 Taking into account non local information in a convolutional
neural network

A new method is proposed here to cope with non local information within con-
volutional neural networks. It is based on a geodesic reconstruction of the input
image from the top and bottom of the image, channel-wise.

We recall that the geodesic reconstruction [7] of a grey level image I from an
image J0 (often called marker) is obtained by iterating the following operation
until idempotence:

Jn+1 = δ(Jn)
∧
I

where δ is a morphological dilation, here with the cross structuring element,
corresponding to the 4-connectivity. Our marker image J0 is equal to I on the
first and last rows of the image domain, and to zero elsewhere. The process will
“fill” the holes within the tissue, and preserve the intensity of the pixels that
belong to the connected components of the background that touch the top and
bottom of the image. This geodesic operation thus allows to bring topological
information, which is essentially global, to a local scope.

In order to recover some of the bright details of the tissue sample, the result
of this reconstruction is combined with the initial image by computing their
mean. If we call J the result of the above reconstruction, the output image is
simply:

F = (J + I)/2.

This operator is illustrated in Fig. 3. All images follow the same pre-processing
(before computing the crops). Learning is done as before, with the same param-
eters.

The new CNN suppresses the segmentation errors due to the lack of global
information on the background / SC boundary. Fig. 2 clearly shows this im-
provement.

The validation loss of the model is 0.028, to be compared with the previous
value of 0.085.

3.3 Hyper-parameters optimization and data augmentation

We tuned the hyper-parameters of our system through manual grid search us-
ing the validation dataset. The parameters of the final model are: Optimizer:
adadelta [9], with default parameters (learning rate: 1; rho: 0.95; epsilon: 10-8;
decay: 0); epochs: 200; patience: 20, batch size: 4. The initial number of convo-
lutional filters of the U-Net network is 16 (instead of 64 in the original paper),
resulting in a network with 1,962,659 parameters.

We also tested several standard data augmentation methods, but they did
not bring any improvement. We believe that this result means that our database
constitutes a representative sampling of our image domain.



Fig. 3. Top: original image. Bottom: image after pre-processing based on the geodesic
reconstruction. Differences are mainly visible on the holes within the tissue sample.

3.4 Post-processing

The current results are already satisfactory. There are however a few defects
in the resulting segmentation (as can be seen in Fig. 2), most of which can be
corrected with the following post-processing method:

1. For the SC and the living epidermis, keep only the largest connected com-
ponent; for the background, keep the connected components that touch the
top and the bottom of the image.

2. Pixels without label are given the label of the closest labelled pixel.

4 Results

It is interesting to note that once a convolutional neural network has been trained
(with crops of constant size, as previously stated) it can be applied to images of
almost arbitrary sizes. There are only two limitations: the system memory has to



Fig. 4. Zoom-in on some test images to illustrate the results, as well as its robustness to
acquisition artifacts. The contours of the segmentation computed with the final model
are overlayed on the original images.

be large enough and neural network architectures that use downsampling layers
impose that the dimensions be multiple of some 2n (where n is the number of
such layers, supposing that the sampling steps are equal to 2). This approach is
interesting not only for practical reasons (no need to compute any more crops
and stitch them back together at prediction time) but also significantly alleviates
border effects .

There are 23 images in the test database. Globally, the results were considered
as very good by the final users. They are illustrated in Fig. 4. Only two errors
were visible at first sight among the 23 images. They are shown in Fig. 5. Other
errors are less visible. They correspond most of the time to a slight displacement
of the obtained contour 5.

Tab. 1 gives some quantitative results on the test database. Accuracy val-
ues (the proportion of pixels that are correctly classified) show that incorrectly

5 One image in Fig. 4 contains such an error; let the reader try to find it!



classified pixels are three times less numerous with our proposed method than
with the standard approach. The Jaccard index6 of the living epidermis region
shows almost no improvement: this is natural, as this region can be correctly
segmented based solely on local information. On the contrary, the Jaccard index
of the stratum corneum shows a significant improvement, as the definition of this
region heavily relies on non-local information. Finally the mean distance between
predicted contours and ground truth (GT) contours confirms this improvement.

Table 1. Quantitative results on test database.

Accuracy
Jaccard of

stratum corneum
Jaccard of

living epidermis
Mean distance to

GT contour

Standard U-Net 98.33% 91.46% 94.24% 18 pixels

Proposed method 99.49% 97.43% 94.82% 4 pixels

Fig. 5. Zoom-in onto the two more significant errors found on the 23 images of the test
database.

Processing times are as follows. The standard U-Net takes 171 seconds to pro-
cess the full 23 test images on a conventional laptop with a NVidia GeForce GTX
980M graphics card. The improved method, including the geodesic reconstruc-
tion, takes 407 seconds. We think that the pre-processing could be optimized,
but the current version is already fast enough for the application at hand.

6 The Jaccard index of two sets is the ratio between the size of their intersection and
the size of their union



5 Conclusion

A novel method to utilize global information within a convolutional neural net-
work has been introduced. Based on the morphological reconstruction by dila-
tion, it allows the network to take advantage of geodesic information.

This method has been successfully applied to the segmentation of histological
images of reconstructed skin using a U-Net architecture. We believe that a similar
improvement should be obtained with other fully convolutional neural networks,
such as SegNet.

The method is being integrated in a complete software in order to use it in
routine practice.

As a perspective, it would be interesting to explore other ways to use global
information within convolutional neural networks, and compare them.
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