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Abstract. Shock filter represents an important family in the field of
nonlinear Partial Differential Equations (PDEs) models for image restora-
tion and enhancement. Commonly, the smoothed second order derivative
of the image assists this type of method in the deblurring mechanism.
This paper presents the advantages to insert information issued of ori-
ented half Gaussian kernels in a shock filter process. Edge directions
assist to preserve contours whereas the gradient direction allow to en-
hance and deblur images. For this purpose, the two edge directions are
extracted by the oriented half kernels, preserving and enhancing well
corner points and object contours as well as small objects. The proposed
approach is compared to 7 other PDE techniques, presenting its robust-
ness and reliability, without creating a grainy effect around edges.

Keywords: Half Gaussian Kernels, Shock Filter, PDE.

1 From Heat Equation to Anisotropic Diffusion

Since 1960, digital images may simply be deblurred by combining the difference
between an original image I0 and ∆I: a blurred version of this same image.
Usually, ∆I corresponds to a blur process equivalent to the heat equation or
a convolution of I0 with an isotropic Gaussian. This original theory proposed
by Gabor is proportional to using the Laplacian operator [7]. Thus, a simplest
manner to remove blur in an image remains the equation:

∂I

∂t
= I0 − α ·∆I, (1)

where t represents the time or the observation scale and α < 1 is a little scalar
to control the deblurring. This process is equivalent to the inverse heat equa-
tion. However, this technique is not stable because the procedure blows up after
several iterations and generates an unusable image [7]. To improve eq. 1, rather
than applying a global operator on all the image, the main idea is to iterate local
operator at level of each pixel. Nonlinear Partial Differential Equations (PDEs)
may achieve this task [7,2], practicing anisotropic diffusions of pixel information
in the image. Indeed, PDEs belong to one of the most important part of math-
ematical analysis and are closely related to the physical world. In this context,
images are considered as evolving functions of time and a regularized image can
be seen as a version of the original image at a special scale.
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2 On Existing Shock Filters

The main PDEs for image deblurring are presented in this section. In order to
regularize images by controlling the diffusion, the pioneer work of Perona and
Malik on anisotropic diffusion has been one of the most influential paper in the
area [17]. The proposed model is described by the following equation:

∂I

∂t
(x, y, t) = div (g (|∇I|) · |∇I|) , (2)

where |∇I| represents the modulus of the gradient with mask of type [-1 1] and
g a decreasing function satisfying g(0) = 1 and g(+∞) = 0; this function may
be:

g (|∇I|) = e−( |∇I|K )
2

, (3)

with K ∈ R+
∗ a constant that can be assimilated to a gradient threshold or a dif-

fusion barrier, slowing down diffusion near edges, where |∇I| is large. Moreover,
by developing eq. 2, it is well known that the diffusion moves backward when
|∇I|>K, creating time-reverse equation (deblurring effect) called a shock filter.

Original Shock Filter: In the PDE framework, the seminal contribution [16]
is equivalent to eq. 1, the 2D formulation of the original shock filter is:

∂I

∂t
= −sign(∆I) · |∇I|. (4)

This PDE produces a dilation/erosion for each pixel, creating a high sensitivity
to noise pixels, so a number of improvements have been proposed.

Shock Filter involving Gaussian: In order to be more robust to noise, the
Gaussian function Gσ may be convolved with Iηη, the second directional deriva-
tive of the image in the gradient direction, where σ represents the standard
deviation of the Gaussian. Coupling diffusion (Iξξ term [7,2,19,13]) and shock
filter, Alvarez and Mazorra (AM) in [3] proposed the following equation:

∂I

∂t
= Cξ · Iξξ − sign(Gσ ∗ Iηη) · |∇I|, (5)

where |∇I| is the modulus of the gradient with a 3×3 mask (as Sobel masks), Cξ
denotes a control function of the diffusivity, as in eq. 3, Iξξ denotes the second
derivative in the orthogonal direction of η, i.e., the edge direction. It corresponds
to a pure diffusion in the contour directions, called the curvature equation.

Some evolutions of this approach have been proposed, as in [8], where an
isotropic diffusion (∆I) is applied concerning small gradients. Fu et al. [5] pro-
posed a PDE technique that weights the diffusion and shock terms in accordance
with threshold values of the gradient magnitude:

∂I
∂t = c1 · Iξξ − sign(Gσ ∗ Iηη) · |∇I|, if |∇I| > T1
∂I
∂t = c1 · Iξξ − c2 · sign(Gσ ∗ Iηη) · |∇I|, if T1 > |∇I| > T2
∂I
∂t = ∆I = Iξξ + Iηη elsewhere,

(6)
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with c1 = 1
1+ζ1·I2ξξ

, (ζ1 ∈ R+), and c2 = |th(ζ2 · Iηη)|, (ζ2 ∈ R+). The authors

divided the image into three-type regions by its smoothed gradient magnitude.
For high gradients (generally boundaries), a shock-type backward diffusion is
performed in the gradient direction for the deblurring. For medium gradients
(such as textures and details), a soft shock-type backward diffusion is performed,
as eq. 5. As far as small gradients are concerned(such as inside different areas or
flat regions), an isotropic diffusion is applied (heat equation).

On the other hand, Bettahar [4] proposed a combination of nonlinear reaction-
curvature diffusion and shock filter. The gradient modulus of f(s) = f 1

1+s2/k

applied on the gradient magnitude |∇(f(|∇Iσ|))| favors or inhibits the shock
filter in accordance with the gradient magnitude.

The main problem of the based-Gaussian models is the creation of homo-
geneous blobs in flat noisy regions, as illustrated in Figs. 1(b), 5(b) and Fig.
6(b). Moreover, after a certain number of iterations a corner smoothing could
be created, as show for the extremity of the star in Fig. 5(b).

Complex Shock Filter : A different solution proposed by Gilboa et al. [6] is
to change the sign function (cf. eq. 4) in order to take into account both the 2nd
order direction of the the second derivative and its magnitude. Denoting Im(I),
the imaginary part of I, by using 2

πarctan(a · Im( Iθ )), a ∈ R
+ represents the

parameter controlling the steepness of the slope of the 2nd order derivative near
0. When θ ∈ R+

∗ tend to 0, Im( Iθ ) may be considered as the smoothed 2nd order
derivative of I. The complex shock filter is described by the following equation:

∂I

∂t
= − 2

π
arctan(a · Im(

I

θ
)) · |∇I|+ Λ · Iηη + Λ̃ · Iξξ, (7)

where Λ is a complex diffusion term regularizing the noise and indicating in-
flection points. Λ̃ is a real scalar parameter which correspond to the amount of
diffusion in level-set direction. Using eq. 7, the regions close to contours where
the 2nd order derivative has a higher magnitude, i.e., inflection points will not
have equal weights. This translates into a higher deblurring speed near edges
and contours than in the flat regions of the image.

The complex shock has been improved in [9] to correct its main default: a
weak edges enhancement. Denoting ∂I

∂t = It and Re(I) the real part of I, the
mathematical expression of this PDE can be decomposed in two expressions:

Re(It) =
2

π
arctan(a.Im(

I

θ
)).f1 · |∇I| − sign(Re(Iηη)).f2 · |∇I|

+f1 · (Re(Λ) ·Re(Iηη)− Im(Λ) · Im(Iηη) + Λ̃ ·Re(Iξξ))
(8)

Im(It) = Im(λ) ·Re(Iηη)−Re(λ) · Im(Iηη) + Λ̃ · Im(Iξξ). (9)

As this filter is an improvement of the eq. 7, it possesses the same variables.
However the 2 new functions f1 and f2 are the filter core, and control the tran-
sition between an entirely complex and an entirely real filter. For N iterations,
they are define as: for i = 0, 1, ..., N − 1 and Tl1 , Ts1 , Tl2 , Ts2 ∈ (0, N − 1),
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f1(Tl1 , Ts1) =


1, i < Tl1
1− i−Tl1

Ts1−Tl1
, elsewhere,

0, i > Ts1

f2(Tl2 , Ts2) =


0, i < Tl2
i−Tl1
Ts2−Tl2

, elsewhere.

1, i > Ts2

When f1=1 and f2=0 this technique behaves exclusively as a complex shock
filter. In the case where f1=0 and f2=1 it correspond to an edge enhancement
filter by using the classic shock filter. Elsewhere, it corresponds to a mix of both.

Despite the originality of complex shock filter and its evolutions, the main
drawback of this techniques concerns noisy images. Namely, in the presence of
noise, the deblurring process creates images looking grainy a level of edges (cf.
Sec. 4). In other words, edges are not straight, but rather serrated boundaries.

Structure Tensor based Approaches Shock Filter The coherence enhanc-
ing shock filter has been developed by Weickert [22] with the shock filter theory
via structure tensor based approach. Thus, the corresponding PDE:

∂I

∂t
= −sign((Gσ ∗ I)ω+ω+

) · |∇I| (10)

allows shock filtering along the direction of the eigenvector ω+ corresponding
to the largest eigenvalue of the structure tensor: Jρ(∇Iσ) = Gρ ∗ (∇Iσ · ∇ITσ ),
where the parameters ρ and σ represent standards deviations of the Gaussian.

Tschumperlé and Deriche proposed a different form of the diffusion shock
filter coupling especially for enhancement of color images [19]. This model can
be generalized to gray level images using the structure tensor:

∂I

∂t
= α·(I0−I)+cω− ·Iω−ω−+cω+ ·Iω+ω+−(1−g(N ))·sign((Gσ ∗I)ω+ω+)·|∇I| (11)

where α ∈ R+
∗ , and cω+/− are two decreasing functions: cω−(N ) = 1√

1+N 2
and

cω+(N ) = 1
1+s2 , with N =

√
λ+ + λ−. The shock is controlled by g(N ) (cf. eq.

3), where λ+ and λ− denote the two eigenvalues tied to the eigenvectors ω+ and
ω− respectively, related to the tensor Jρ.

These tensorial techniques behave like a contrast enhancing shock filter, they
enhance well strip structures as in Fig. 6(c), however they create artificial lines or
may engender an undesirable grainy effect around edges when dealing with highly
noisy images, see Fig. 1(c). Notwithstanding a long-term and large scientific
effort for PDE-based methods, a satisfactory solution has not been found yet.

(a) Noisy image (b) Fu filter [5] (c) Weickert [22] (d) Eq. 17

Fig. 1. Restoration of a real highly noisy image.
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3 A New Half Kernel based Shock Filter

As stated in the methods above, image derivatives (Iξξ, Iηη), and the gradient
are crucial information for the image enhancement via PDEs. The more these
features are accurate and robust against noise, the more the diffusion process
is efficient. This section presents an oriented half kernels-based technique which
enables a gradient computation and an estimation of edge directions modulo 2π.
Thereafter, these components are useful for the creation of image derivatives and
represent fundamental information tuning the proposed PDE.

3.1 Derivative Half Gaussian Kernels

Gaussian kernels are used in a large part of Shock filter for their efficiency in
edge detection. Nevertheless weaknesses can be noticed at level of corners and
small objects present in the image (as stated above about shock filters involving
Gaussians). Edge detection techniques using elongated kernels are efficient at
detecting large linear structures correctly [18], but small structures are consid-
ered to be noise and their edges are not extracted. Consequently, the accuracy of
the detected edge points decreases strongly at corner points and for non-straight
object contour parts. To bypass this undesirable effect, an anisotropic edge de-
tection method is developed in [14] and deeper evaluated in [10]. Indeed, the
proposed technique is able to detect crossing edges and corners due to two elon-
gated and oriented filters in two different directions. The main idea is to “cut”
the anisotropic Gaussian kernel using a Heaviside function (see Fig. 2(c)). The
half kernel (HK) can be implemented using Gaussian and its first derivative:

• a half smoothing part: G(s) = H(s) · e
s2

2·µ2 , with H the Heaviside function,

• a derivative part of the filter: G1(s)=s · e
s2

2·σ2 , with σ, µ∈R∗+ and s∈R.
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Fig. 2. Representation of filter supports concerning edges and corners. (c)Derivative
Gaussian kernel. (d) 2D half kernel. (d) Selection of points before applying the HKθ.
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For signal and image processing, s belongs to integers. Fig. 2(d) shows an ex-
ample of a HK, built with the two function G1 at the horizontal and G at the
vertical respectively. In order to create an elongated filter, the support of the half
smoothing part must be higher than the derivative support i.e., µ > σ. Then,
the HK is rotated in several directions θ from 0 to 2π (bilinear rotation) to ob-
tain a rotated version of the filter HKθ. The convolution of the image I with
HKθ (i.e., I ∗HKθ) allows to compute a derivative information at each desired
angle (illustrated in Fig. 2(e)-(f)). In order to better understand this technique
to extract edge, the filter support of a HK on a straight contour is equivalent
to 1/2 on both sides of the edge, illustrated in Fig. 2(b). On the contrary, for a
corner point with a π/2 radian angle, the support of the half filter remains 1/2
on both sides of the edge, whereas it is around 1/4 and 3/4 concerning other
filter supports [10](cf. Fig. 2(a)). Eventually, HK corresponds to an oriented fil-
ter derivative, so its responses are either positive, or negative. For each pixel of
coordinates (x, y), the gradient |∇I| corresponds to the maximum value minus
the minimum value of I ∗HKθ among all the θ directions:

|∇I|(x, y) = maxθ∈[0,2π[I ∗HKθ(x, y)−minθ∈[0,2π[I ∗HKθ(x, y)
θ1(x, y) = argmaxθ∈[0,2π[(I ∗HKθ(x, y))
θ2(x, y) = argminθ∈[0,2π[(I ∗HKθ(x, y))

η(x, y) = θ1+θ2
2

β(x, y) =

{
|θ1(x, y)−θ2(x, y)|, if |θ1(x, y)−θ2(x, y)|6π
2π − |θ1(x, y)− θ2(x, y)| elsewhere.

(12)

Note that the matlab code of the HK is available on mathworks website [11],
involving different HK filters. Once |∇I|, θ1 and θ2 have been obtained, η corre-
sponds to the gradient orientation i.e., to the bisector between these two direc-
tions, thus the oriented second derivative Iηη may be created (Fig. 3(d)). Also, as
represented in Fig. 4(c), β denotes the angle formed by θ1 and θ2, corresponding
to an angular sector. These directions are useful and efficient for image restora-
tion via PDE [13], corner detection [1] or image descriptor [20]. All these entities
computed via eq. 12 are required for the proposed shock filter PDE.

3.2 Diffusion using Directions of Half Gaussian Kernels

Diffusion along Directions of Edges: PDE-based methods are a mature
technique. Therefore, PDE-based image regularization techniques using gradient
intensities or tensorial diffusion smooth the image either both in the directions of
edges ξ or ω− and gradient direction η or ω+. This process is doable by combining
the current diffused image with oriented second derivative of the image (Iξξ and
Iηη, see PDE in Section 2). However, all these approaches do not take the two
directions of edges into account, for example at a level of a corner.

Similar to the curvature equation Iξξ, the original idea developed in [12] is
to smooth anisotropically at level of edges in two diffusion directions θ1 and θ2:

∂I

∂t
=

∂2I

∂θ1∂θ2
= Iθ1θ2 . (13)

In [12], the two directions necessary for the diffusion are not computed by
derivative half Gaussian kernels, only the diffusion process imports here. Indeed,
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(a) Original image (b) ∂I
∂t

= Iθ1θ2 (c) ∂I
∂t

= Iθπ1 θπ2 (d) Iηη image

Fig. 3. A diffusion along θ1 and θ2 directions creates a blur effect around edges.

contrary to previous methods, Iθ1θ2 is computed by interpolations in the θ1 and
θ2 directions, from 0 to 2π, with one and only one direction for each angle. As
illustrated in Fig. 4(e), for each pixel, the smoothing is doable in 3×3 mask with
the two pixels interpolated by the unweighted average in the desired directions.
Yet, applying this PDE in an image using θ1 and θ2 issued from eq. 12 is not
stable and Iθ1θ2 creates an effect of dilation/erosion close to edge points, because
θ1 and θ2 are not well directed. Fig. 3(b) illustrates this undesirable effect.

A Mirror Rotation in order to Enhance the Diffusion: The PDE pre-
sented in eq. 13 may be controlled by the gradient magnitude, for example, but
an undetermined quantity of blur will be created. Consequently, instead of dif-
fusing alongside the directions θ1 and θ2, it was proposed in [15] to diffuse in
the opposite directions, i.e., the directions θπ1 =θ1 − π and θπ2 =θ2 − π. Fig. 4
illustrates these modifications where β keeps the same value. The new diffusion
PDE becomes:

∂I

∂t
=

∂2I

∂θπ1 ∂θ
π
2

= Iθπ1 θπ2 . (14)

Simply by a mirror effect, this diffusion offers a better preservation than the
original as seen in Fig. 3(c), after many iterations without any control (!). Using
the original diffusion the white pixels near the border are attracted by the color
of the border which causes the appearance of grey blotches. By inverting the
direction of the diffusion, those pixels are not attracted anymore and the disk is
preserved, while few pixel of noise have disappeared in the middle of the image.
The purpose of getting a stable PDE is to control the diffusion of eq. 14 before
developping a new combination with a shock filter scheme.
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Fig. 4. Mirror rotation of θ1 and θ2 directions to avoid a blurring effect in the diffusion
process. (a): Pixel close to an edge. (b-c): Diffusion directions for the selected point.
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A Diffusion Tuned by the Gradient and the Directions of Edges: The
presented schemes in eqs. 13 and 14 do not control the diffusion, they correspond
to linear models. In other words, the pixel intensities are propagated involving
interpolations along (θ1, θ2) or (θπ1 , θ

π
2 ) directions with a constant speed (cf. Fig.

4(e)). In order to avoid an over-smoothing of important parts of the image, as
edges and corners, the diffusion must be nonlinear. There are many existing
nonlinear models to smooth and restore images via PDEs [17,7,2,19,13]. The
main idea is to smooth extensively inside homogeneous regions, whereas edges
must be enhanced. The g function in eq. 3 represents a good manner to tune
the diffusion depending on gradient modulus. Inspired by the model developed
in [13], a control function is proposed here to decrease the diffusion both at edge
and corner points (when the angle between θπ1 and θπ2 is not open: β < π):

C(k,h)(|∇I|, β) =
1

2
· e−( |∇I|k )

2

+
1

2
· e−( (π−β)

(π·h) )
2

with (k, h) ∈ ]0; 1]2 (15)

Thus, eq. 14 becomes: ∂I

∂t
= C(k,h) · Iθπ1 θπ2 . (16)

The smoothing process is driven by the gradient magnitude and β. The C(k,h)

function ensures the diffusion preserving edges and corners and enables an ex-
tensive smoothing inside homogeneous regions. In case of a small gradient and a
β angle close to π, the considered pixel will be largely diffused. If the gradient is
important and the β angle is small, smoothing is weak and preserves boundaries.

A New Shock Filter Scheme: As stated in section 2, corner rounding is the
main weakness of the shock filter. To correct this problem a control function is
inserted for the shock filter term, inversely to the control of Iθπ1 θπ2 . Thus, eq. 16
evolves into:

∂I

∂t
= C(k,h) · Iθπ1 θπ2 − (1− C(k,h)) · sign(Iηη). (17)

Consequently, the smoothing process and the shock are both tuned by C(k,h).
When |∇I|≈0, it corresponds to homogeneous regions, C(k,h)→1, and shock term
does not work. If β is a close angle and the gradient is weak, the process must
smooth this region; it is doable when k>h in eq.16. When |∇I|≈1, it refers
to pixels of (or close to) contours, C(k,h)→0, thus edges are enhanced. Fig.5(d)
illustrates the enhancement of an image containing corners (with k=0.1, h=0.05).

(a) Noisy image (b) AM filter [3] (c) Tschumperlé [19] (d) Eq. 17

Fig. 5. Image restoration. For (b), σ=1, (c) σ=1, ρ=3 and (d) σ=1, µ=3.
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(a) Painting (b) AM filter [3] (c) Tschumperlé [19] (d) Eq. 17

Fig. 6. Comparition of several PDE schemes on a picture of Vincent van Gogh paint.
For (b), σ=1, (c) σ=1, ρ=3 and (d) σ=1, µ=3.

4 Experimental Results
Several application results of the proposed PDE are presented in this section.
These results are compared to the different approaches described above. The
parameters used for all the methods are also detailed. As far as the evaluation
process is concerned, the Structural Similarity Index Measure (SSIM) [21] is
reported and plotted as a function of the number of iterations for each method.

The parameters for the half kernels are σ=1 for the derivative and µ=3 for
the smoothing during all the experiments. Such a set of parameters enables
an enhancement of small objets and thin structures. With the enlargement of
these two parameters, the scale effect will lead only to the enhancement of the
large structures or dominant edges. The first result presented in Fig. 5 shows the
behavior of the proposed PDE method with an image containing pointed corners.
Even though the original image does not contain blur, edges remain sharp after
50 iterations whereas the noise disappears completely. For the second original
image in Fig. 6, stripes are created by a brush on a painting. This result is
somewhat reminiscent of tensorial approaches [22,19] After 50 iterations, results
depict the coherence of the proposed PDE scheme because the lineaments, trees
and characters are preserved and enhanced. With the same number of iterations,
boundaries in the image presented in Fig. 1 are well enhanced while corners are
highly improved, as detailed in Figs. 7(b) and (d).

To shed light on the effectiveness of the proposed shock filter, two tested im-
ages are noised by adding random Gaussian noise and blurred using a convolution
with a Gaussian of standard deviation of σ = 1, cf. Figs. 8(a)-(b) and 9(a)-(b).
Then they are independently treated by Perona-Malik (PM), Alvarez-Mazorra

Fig. 7. Enlargement of parts extracted from images (a) -left- and (d) -right- in Fig. 1.
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(a) Original image (b) Degraded image (c) SSIM evolution

(d) PM [17] (e) AM filter [3] (f) Gilboa [6] (g) Luduzan [9]

(h) Bettahar [4] (i) Fu [5] (j) Tschumperlé [19] (k) Eq. 17

Fig. 8. Restoration a blurred (σ = 1) and noisy image, 272×272, in (b), SNR=13.1dB.

(AM), Gilboa, Luduzan, Fu, Tschumperlé and Bettahar methods. The param-
eters for methods involving Gaussians is σ=1 and ρ=3 for tensorial PDEs. For
complex shock filters, θ=0.001, a=2 and λ̂=λ=0.1. In order to compare objec-
tive performance of these approaches, the SSIM is calculated for each iteration;
presented images are tied to the best score of the measure. As shown in Figs.
8(c) and 9(c), the SSIM curve of the proposed scheme is above the others (called
Half-filter), translating a better image enhancement than other PDE methods.
The degraded images contain a strong noise and small objects have to be re-
stored. As an example, the gray structure in the middle of the tripod in Figs.
8(a) is well enhanced by the new filter. Indeed, this object is recognizable and
realistic, contours are straight. Details are also enhanced like the camera and the
cameraman’s lock of hair. Finally, by using the new PDE, the corners and edges
of Fig. 9(b) are well deblurred, without creating a grainy effect around edges.

5 Conclusion

A new shock-filter for digital image enhancement has been presented in this pa-
per. The principal characteristic of this filter is the use of half Gaussian kernels to
detect a gradient modulus. This kind of kernels allows the filter to detect corners
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Fig. 9. Restoration a blurred (σ = 1) and noisy image, 256×256, in (b), SNR=13.53dB.

and their associated directions with accuracy. Furthermore, the shock-diffusion
strategy depends on the value of the gradient modulus and the two directions
of the estimated edges. By applying a mirror rotation of these directions, a new
diffusion process via PDE is proposed and improves the shock-filter efficiency.
Experiments on blurred and noisy images show the efficiency in removing blur
and noise while enhancing important features like edges and also corners or small
objects. The presented experimental results and images resulting of this PDE
tied to the best score of the SSIM illustrates the relevance of the proposed image
enhancement method. Future works will include automatic diffusion that would
lead to an unsupervised restoration. In other words, it constrains to stop the
PDE after a number of iterations allowing the enhancement of an image. This
is doable by learning or statistic approaches estimating the level of noise and
blur before the first iteration. On the other hand, an unsupervised measure (for
example a method estimating if flat regions are really flat) on the restoration
level may be useful to stop the diffusion process. The adaptation of the proposed
method to color image enhancement remains a challenge without creating color
artifacts, several manners must be explored for the diffusion process and overall
the deblurring process. Eventually, this paper is not a breakthrough, but it adds
some contribution, since it devotes an attention to the diffusion directions.
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