Skip to main content

Evolutionary Computing Applied to Solve Some Operational Issues in Banks

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

Banking industry is the backbone of the economy of any country, and it does have many operational issues as well as other financial issues. As regards to solving operational issues such as Portfolio optimization , Bankruptcy prediction, FOREX rate prediction, ATM cash replenishment, ATM/Branch location prediction, Interbank payments, liquidity prediction, etc., banking industries are moving away from conventional ways toward more automated and more robust methods. Evolutionary and Swarm Optimization (ESO) based techniques play a vital role in solving the above-mentioned operational issues because they yield global or near-global optimal results. We survey most of the works reported in this space starting from 1998 to 2016. While the application of ESO techniques to solve the business issues is well-documented, the same on the operational issues is very relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkpatrick, S., Gelatt, C., Jr., & Vecchi, M. (1994). Optimization by simulated annealing. Science, 80(220), 76–86.

    MATH  Google Scholar 

  2. Dueck, G., & Scheurer, T. (1990). Threshold accepting: A general purpose optimization algorithm. Journal of Computational Physics, 90, 161–175.

    Article  MathSciNet  Google Scholar 

  3. Glover, F. (1989). Tabu search Part I. INFORMS Journal on Computing, 1, 190–206.

    Article  Google Scholar 

  4. Glover, F. (1989). Tabu search—Part II. ORSA Journal on Computing, 2(1), 4–32.

    Article  Google Scholar 

  5. Back, T., Fogel, D., & Michalewicz, Z. (1997). Handbook of evolutionary computation. IOP Publishing Ltd.

    Google Scholar 

  6. Golberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Addison Wesley.

    Google Scholar 

  7. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In 1995 IEEE International Conference on Neural Networks (Vol. 4, pp. 1942–1948).

    Google Scholar 

  8. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 341–359.

    Article  MathSciNet  Google Scholar 

  9. Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding European Conference on Artificial Life (pp. 134–142).

    Google Scholar 

  10. Ruiz-Torrubiano, R., & Suarez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36, 125–142.

    Article  Google Scholar 

  11. Ponsich, A., Jaimes, A. L., & Coello, C. A. C. (2013). A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computation, 17, 321–344.

    Article  Google Scholar 

  12. Kim, M. J., & Han, I. (2003). The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms. Expert Systems with Applications, 25, 637–646.

    Article  Google Scholar 

  13. Etemadi, H., Anvary Rostamy, A. A., & Dehkordi, H. F. (2009). A genetic programming model for bankruptcy prediction: Empirical evidence from Iran. Expert Systems with Applications, 36, 3199–3207.

    Article  Google Scholar 

  14. Chen, N., Ribeiro, B., Vieira, A. S., et al. (2011). A genetic algorithm-based approach to cost-sensitive bankruptcy prediction. Expert Systems with Applications, 38, 12939–12945.

    Article  Google Scholar 

  15. Lalbakhsh, P., & Chen, Y.-P. P. (2015). TACD: A transportable ant colony discrimination model for corporate bankruptcy prediction. Enterprise Information systems, 1–28.

    Google Scholar 

  16. Schwaerzel, R., & Bylander, T. (2006). Predicting currency exchange rates by genetic programming with trigonometric functions and high-order statistics. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation—GECCO’06 (p. 955). New York, New York, USA: ACM Press.

    Google Scholar 

  17. Mendes, L., Godinho, P., & Dias, J. (2012). A forex trading system based on a genetic algorithm. Journal of Heuristics, 18, 627–656.

    Article  Google Scholar 

  18. Hirabayashi, A., Aranha, C., & Iba, H. (2009). Optimization of the trading rule in foreign exchange using genetic algorithm. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary ComputationGECCO’09 (p. 1529). New York, USA: ACM Press.

    Google Scholar 

  19. Shafransky, Y. M., & Doudkin, A. A. (2006). An optimization algorithm for the clearing of interbank payments. European Journal of Operational Research, 171, 743–749.

    Article  Google Scholar 

  20. Güntzer, M. M., Jungnickel, D., & Leclerc, M. (1998). Efficient algorithms for the clearing of interbank payments. European Journal of Operational Research, 106, 212–219.

    Article  Google Scholar 

  21. Ekinci, Y., Lu, J.-C., & Duman, E. (2015). Optimization of ATM cash replenishment with group-demand forecasts. Expert Systems with Applications, 42, 3480–3490.

    Article  Google Scholar 

  22. Ágoston, K. C., Benedek, G., & Gilányi, Z. (2016). Pareto improvement and joint cash management optimisation for banks and cash-in-transit firms. European Journal of Operational Research, 254, 1074–1082.

    Article  Google Scholar 

  23. Krishna, G. J., & Ravi, V. (2016). Evolutionary computing applied to customer relationship management: A survey. Engineering Applications of Artificial Intelligence, 56, 30–59.

    Article  Google Scholar 

  24. Niu, B., Fan, Y., Xiao, H., & Xue, B. (2012). Bacterial foraging based approaches to portfolio optimization with liquidity risk. Neurocomputing, 98, 90–100.

    Article  Google Scholar 

  25. Liagkouras, K., & Metaxiotis, K. (2014). A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41, 6274–6290.

    Article  Google Scholar 

  26. García, S., Quintana, D., Galván, I. M., & Isasi, P. (2012). Time-stamped resampling for robust evolutionary portfolio optimization. Expert Systems with Applications, 39, 10722–10730.

    Article  Google Scholar 

  27. Chen, Y., Mabu, S., & Hirasawa, K. (2010). A model of portfolio optimization using time adapting genetic network programming. Computers & Operations Research, 37, 1697–1707.

    Article  Google Scholar 

  28. Chen, Y., Ohkawa, E., Mabu, S., et al. (2009). A portfolio optimization model using genetic network programming with control nodes. Expert Systems with Applications, 36, 10735–10745.

    Article  Google Scholar 

  29. Chen, Y., Mabu, S., & Hirasawa, K. (2011). Genetic relation algorithm with guided mutation for the large-scale portfolio optimization. Expert Systems with Applications, 38, 3353–3363.

    Article  Google Scholar 

  30. Skolpadungket, P., Dahal, K., & Harnpornchai, N. (2007). Portfolio optimization using multi-objective genetic algorithms. In 2007 IEEE Congress Evolutionary Computation (pp. 516–523). IEEE.

    Google Scholar 

  31. Soam, V., Palafox, L., & Iba, H. (2012). Multi-objective portfolio optimization & rebalancing using genetic algorithms with local search. In 2012 IEEE Congress Evolutionary Computation (pp. 1–7). IEEE.

    Google Scholar 

  32. Kim, M.-J., & Kang, D.-K. (2012). Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Systems with Applications, 39, 9308–9314.

    Article  Google Scholar 

  33. Alfaro-Cid, E., Sharman, K., & Esparcia-Alcázar, A. I. (2007). A genetic programming approach for bankruptcy prediction using a highly unbalanced database. In Application evolutionary computing (pp. 169–178). Berlin, Heidelberg: Springer.

    Google Scholar 

  34. Marinakis, Y., Marinaki, M., Doumpos, M., & Zopounidis, C. (2009). Ant colony and particle swarm optimization for financial classification problems. Expert Systems with Applications, 36, 10604–10611.

    Article  Google Scholar 

  35. Shie, F. S., Chen, M.-Y., & Liu, Y.-S. (2012). Prediction of corporate financial distress: An application of the America banking industry. Neural Computing and Applications, 21, 1687–1696.

    Article  Google Scholar 

  36. Wilson, G., & Banzhaf, W. (2010). Interday foreign exchange trading using linear genetic programming. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation—GECCO’10 (p. 1139). New York, USA: ACM Press.

    Google Scholar 

  37. Kim, H., & Hur, S. (2009). Effect of foreign exchange management on firm performance using genetic algorithm and VaR. Expert Systems with Applications, 36, 8134–8142.

    Article  Google Scholar 

  38. Chen, Y., & Zhang, G. (2013). Exchange rates determination based on genetic algorithms using mendel’s principles: Investigation and estimation under uncertainty. Information Fusion, 14, 327–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadlamani Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishna, G.J., Ravi, V. (2019). Evolutionary Computing Applied to Solve Some Operational Issues in Banks. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics