Skip to main content

Towards the Evaluation of End-to-End Resilience Through External Consistency

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11161))

Abstract

Contemporary systems are built from complex arrangements of interoperating components implementing functional and other non-functional concerns that are necessary to ensure continuing service delivery. One of these concerns—resilience—relies on components that implement a variety of mechanisms, such as access controls, adaptability and redundancy. How these mechanisms interoperate with each other and the systems’ functional components to provide resilience is considered in this paper. External consistency, defined as the extent to which data in the system corresponds to its real-world value, provides a natural interpretation for the definition of resilience. A model of resilience is developed that can be used to trace how the functional and non-functional components in a system contribute to the determination of our confidence in the external consistency of the data that they process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alsberg, P.A., Day, J.D.: A principle for resilient sharing of distributed resources. In: Proceedings of the 2nd International Conference on Software Engineering, ICSE 1976, pp. 562–570. IEEE Computer Society Press, Los Alamitos (1976). http://dl.acm.org/citation.cfm?id=800253.807732

  2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks, vol. 35. ACM (2001)

    Google Scholar 

  3. Arghandeh, R., von Meier, A., Mehrmanesh, L., Mili, L.: On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 58, 1060–1069 (2016)

    Article  Google Scholar 

  4. Bourget, E., Cuppens, F., Cuppens-Boulahia, N., Dubus, S., Foley, S.N., Laarouchi, Y.: Probabilistic event graph to model safety and security for diagnosis purposes. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 38–47. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-95729-6_3

    Chapter  Google Scholar 

  5. Clark, D.D.: Control point analysis. TRPC (2012). https://doi.org/10.2139/ssrn.2032124

  6. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer security policies. In: 1987 IEEE Symposium on Security and Privacy, p. 184. IEEE (1987). http://ieeexplore.ieee.org/abstract/document/6234890/

  7. Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36(1–2), 85–121 (1985). https://doi.org/10.1016/0020-0255(85)90027-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Foley, S.N.: A non-functional approach to system integrity. IEEE J. Sel. Areas Commun. 21(1) (2003)

    Article  Google Scholar 

  9. Foley, S.N.: Security risk management using internal controls. In: Proceedings of the First ACM Workshop on Information Security Governance, pp. 59–64. ACM (2009)

    Google Scholar 

  10. Foley, S.N., Mac Adams, W., O’Sullivan, B.: Aggregating trust using triangular norms in the keynote trust management system. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 100–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22444-7_7

    Chapter  Google Scholar 

  11. Francis, R., Bekera, B.: A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Sys. Saf. 121, 90–103 (2014)

    Article  Google Scholar 

  12. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4(1), 1–23 (1973)

    Article  Google Scholar 

  13. Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP International Conference on Dependable Systems and Networks, pp. G8–G9. Citeseer (2008)

    Google Scholar 

  14. Liu, D.: Resilient cluster formation for sensor networks. In: 27th International Conference on Distributed Computing Systems (ICDCS 2007), p. 40. IEEE (2007)

    Google Scholar 

  15. Lucia, W., Sinopoli, B., Franze, G.: A set-theoretic approach for secure and resilient control of cyber-physical systems subject to false data injection attacks. In: Science of Security for Cyber-Physical Systems Workshop (SOSCYPS), pp. 1–5. IEEE (2016)

    Google Scholar 

  16. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vulnerability prediction models. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security, HotSoS 2015, pp. 4:1–4:9. ACM, New York (2015). http://doi.acm.org/10.1145/2746194.2746198

  17. Piètre-Cambacédès, L., Bouissou, M.: Attack and defense modeling with BDMP. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 86–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14706-7_7

    Chapter  Google Scholar 

  18. Ryan, P.Y.A.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 1–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2_1

    Chapter  Google Scholar 

  19. Schweizer, B., Sklar, A.: Probabilistic metric spaces (1983)

    Google Scholar 

  20. Sterbenz, J.P., et al.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54(8), 1245–1265 (2010). http://www.sciencedirect.com/science/article/pii/S1389128610000824, Resilient and Survivable Networks

  21. Vugrin, E.D., Warren, D.E., Ehlen, M.A.: A resilience assessment framework for infrastructure and economic systems: quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 30(3), 280–290 (2011)

    Article  Google Scholar 

  22. Werner, E.E., Bierman, J.M., French, F.E.: The Children of Kauai: A Longitudinal Study from the Prenatal Period to Age Ten. University of Hawaii Press, Honolulu (1971)

    Google Scholar 

  23. Williams, J.G., La Padula, L.J.: Automated support for external consistency. In: Proceedings of Computer Security Foundations Workshop VI, pp. 71–81. IEEE (1993). http://ieeexplore.ieee.org/abstract/document/246637/

Download references

Acknowledgements

This work was supported the Cyber CNI Chair of Institute Mines-Télécom which is held by IMT Atlantique and supported by Airbus Defence and Space, Amossys, BNP Parisbas, EDF, Orange, La Poste, Nokia, Société Générale and the Regional Council of Brittany; it has been acknowledged by the French Centre of Excellence in Cybersecurity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Clédel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clédel, T. et al. (2018). Towards the Evaluation of End-to-End Resilience Through External Consistency. In: Castiglione, A., Pop, F., Ficco, M., Palmieri, F. (eds) Cyberspace Safety and Security. CSS 2018. Lecture Notes in Computer Science(), vol 11161. Springer, Cham. https://doi.org/10.1007/978-3-030-01689-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01689-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01688-3

  • Online ISBN: 978-3-030-01689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics