Skip to main content

A Hierarchical Harmonic Mixing Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11265))

Abstract

We present a hierarchical harmonic mixing method for assisting users in the process of music mashup creation. Our main contributions are metrics for computing the harmonic compatibility between musical audio tracks at small- and large-scale structural levels, which combine and reassess existing perceptual relatedness (i.e., chroma vector similarity and key affinity) and dissonance-based approaches. Underpinning our harmonic compatibility metrics are harmonic indicators from the perceptually-motivated Tonal Interval Space, which we adapt to describe musical audio. An interactive visualization shows hierarchical harmonic compatibility viewpoints across all tracks in a large musical audio collection. An evaluation of our harmonic mixing method shows our adaption of the Tonal Interval Space robustly describes harmonic attributes of musical instrument sounds irrespective of timbral differences and demonstrates that the harmonic compatibility metrics comply with the principles embodied in Western tonal harmony to a greater extent than previous approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Bark spectrum balances the resolution across the human hearing range in comparison to the typical power spectrum representation, namely increasing the resolution in the low frequency region. It is computed by warping a power spectrum to the 24 critical bands of the human auditory system [28].

  2. 2.

    We used the version 0.9 of IRCAM’s SOL database, retrieved at http://forumnet.ircam.fr/product/orchids-en/ in July, 2017 as the supporting database of the Orchids software.

  3. 3.

    Please refer to https://sites.google.com/site/tonalintervalspace/mixmash to listen to electronic and synthetic instrument sample examples from the NSynth database.

References

  1. Arthurs, Y., Beeston, A.V., Timmers, R.: Perception of isolated chords: Examining frequency of occurrence, instrumental timbre, acoustic descriptors and musical training. Psychol. Music 46(5), 662–681 (2018). https://doi.org/10.1177/0305735617720834

    Article  Google Scholar 

  2. Bernardes, G., Cocharro, D., Caetano, M., Guedes, C., Davies, M.: A multi-level tonal interval space for modelling pitch relatedness and musical consonance. J. New Music Res. 45(4), 281–294 (2016)

    Article  Google Scholar 

  3. Bernardes, G., Cocharro, D., Guedes, C., Davies, M.E.P.: Harmony generation driven by a perceptually motivated tonal interval space. ACM Comput. Entertain. 14(2), 6 (2016)

    Article  Google Scholar 

  4. Bernardes, G., Davies, M., Guedes, C.: Audio key estimation with adaptive mode bias. In: Proceedings of ICASSP, pp. 316–320 (2017)

    Google Scholar 

  5. Bidelman, G.M., Krishnan, A.: Brainstem correlates of behavioral and compositional preferences of musical harmony. Neuroreport 22, 212–216 (2011)

    Article  Google Scholar 

  6. Brent, W.: A timbre analysis and classification toolkit for pure data. In: Proceedings of ICMC, pp. 224–229 (2010)

    Google Scholar 

  7. Cook, N.: Harmony, Perspective, and Triadic Cognition. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  8. Davies, M., Stark, A., Gouyon, F., Goto, M.: Improvasher: a real-time mashup system for live musical input. In: Proceedings of NIME, pp. 541–544 (2014)

    Google Scholar 

  9. Davies, M.E.P., Hamel, P., Yoshii, K., Goto, M.: Automashupper: automatic creation of multi-song music mashups. IEEE Trans. ASLP 22(12), 1726–1737 (2014)

    Google Scholar 

  10. Engel, J., et al.: Neural audio synthesis of musical notes with WaveNet autoencoders. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1068–1077 (2017)

    Google Scholar 

  11. Euler, L.: Tentamen novae theoriae musicae. Broude (1968/1739)

    Google Scholar 

  12. Gebhardt, R., Davies, M., Seeber, B.: Psychoacoustic approaches for harmonic music mixing. Appl. Sci. 6(5), 123 (2016)

    Article  Google Scholar 

  13. Griffin, G., Kim, Y., Turnbull, D.: Beat-sync-mash-coder: A web application for real-time creation of beat-synchronous music mashups. In: Proceedings of ICASSP, pp. 437–440 (2010)

    Google Scholar 

  14. Huron, D.: Interval-class content in equally tempered pitch-class sets: common scales exhibit optimum tonal consonance. Music Percept. 11(3), 289–305 (1994)

    Article  Google Scholar 

  15. Hutchinson, W., Knopoff, L.: The acoustic component of western consonance. J. New Music Res. 7(1), 1–29 (1978)

    Google Scholar 

  16. Johnson-Laird, P.N., Kang, O.E., Leong, Y.C.: On musical dissonance. Music Percept. 30(1), 19–35 (2012)

    Article  Google Scholar 

  17. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychol. Rev. 89, 334–368 (1982)

    Article  Google Scholar 

  18. Lahdelma, I., Eerola, T.: Mild dissonance preferred over consonance in single chord perception. i-Perception (2016). https://doi.org/10.1177/2041669516655812

    Article  Google Scholar 

  19. Lee, C.L., Lin, Y.T., Yao, Z.R., Lee, F.Y., Wu, J.L.: Automatic mashup creation by considering both vertical and horizontal mashabilities. In: Proceedings of ISMIR, pp. 399–405 (2015)

    Google Scholar 

  20. Manovich, L.: The Language of New Media. MIT Press, Cambridge (2001)

    Google Scholar 

  21. Mixed in Key: Mashup 2 [software]. http://mashup.mixedinkey.com. Accessed 28 Mar 2017

  22. Native Instruments: Traktor pro 2 [software]. https://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/. Accessed on 1 Sep 2017

  23. Plazak, J., Huron, D., Williams, B.: Fixed average spectra of orchestral instrument tones. Empirical Musicol. Rev. 5(1), 10–17 (2010)

    Article  Google Scholar 

  24. Roads, C.: Microsound. MIT Press, Cambridge (2004)

    Google Scholar 

  25. Schwartz, D.A., Howe, C., Purves, D.: The statistical structure of human speech sounds predicts musical universals. J. Neurosci. 23(18), 7160–7168 (2003)

    Article  Google Scholar 

  26. Sha’ath, I.: Estimation of key in digital music recordings. Master’s thesis, Birkbeck College, University of London (2011)

    Google Scholar 

  27. Shiga, J.: Copy-and-persist: the logic of mash-up culture. Crit. Stud. Media Commun. 24(2), 93–114 (2007)

    Article  Google Scholar 

  28. Zwicker, E., Fastl, H.: Psychoacoustics-Facts and Models. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-540-68888-4

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by national funds through the FCT - Foundation for Science and Technology, I.P., under the project IF/01566/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Bernardes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernardes, G., Davies, M.E.P., Guedes, C. (2018). A Hierarchical Harmonic Mixing Method. In: Aramaki, M., Davies , M., Kronland-Martinet, R., Ystad, S. (eds) Music Technology with Swing. CMMR 2017. Lecture Notes in Computer Science(), vol 11265. Springer, Cham. https://doi.org/10.1007/978-3-030-01692-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01692-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01691-3

  • Online ISBN: 978-3-030-01692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics