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Abstract. Concatenative synthesis is a sample-based approach to sound creation 
used frequently in speech synthesis and, increasingly, in musical contexts. Unit 
selection, a key component, is the process by which sounds are chosen from the 
corpus of samples. Hidden Markov Models are often chosen for this task, but one 
common criticism is its singular path output which is considered too restrictive 
when variations are desired. In this paper, we propose considering the problem 
in terms of k-Best path solving for generating alternative lists of candidate 
solutions and summarise our implementations along with some examples. 
Keywords: Hidden Markov Models, Concatenative Synthesis, Artificial 
Intelligence, Musical Signal Processing 

1   Introduction 

Concatenative synthesis is a technique that generates new sounds by juxtaposing 
existing sounds from a large collection or "corpus". It was first applied in the area of 
speech synthesis [8], but has since been extended to musical and sound design tasks 
[23]. It is closely related to granular synthesis, but differs in the order of scale of the 
length of the sounds that are used. Granular synthesis typically operates on the 
microscale with “grains” of lengths 20-200 ms [17], whereas concatenative synthesis 
makes use of samples of unit lengths more musically related, such as a note or a phrase. 
An inherently Music Information Retrieval (MIR) geared approach, feature extraction 
of acoustic and musical descriptors (such as spectral, energy and timbral features) are 
essential for analysing and sorting existing sounds then concatenating them to create 
new ones according to some predefined strategy.  

The unit selection procedure of concatenative synthesis is the process by which the 
existing sounds are selected from the corpus and is typically based on feature analysis 
to match the characteristics of some target sound or specification. Many algorithms 
have been proposed for tackling unit selection, but one of the most well-known involves 
the application of Hidden Markov Models  (HMMs) and in particular Viterbi decoding 
[20] of state sequences to produce a stochastically optimal output sequence of 
concatenated sounds. As we will discuss in the forthcoming section, Viterbi decoding 
of HMMs has its limitations [20], chief of which is the fact that it outputs only the 
highest probable state sequence.  



 

In many objective problem applications (such as route finding in a network) this is 
sufficient and objectively defined, but in sound synthesis and particularly highly 
subjective musical and compositional tasks we would rather produce subsequent 
probabilistic sequences in order to explore and evaluate alternative possibilities. To this 
end, we present in this article methods for reformulating and extending the well-known 
Viterbi decoding algorithm to handle generating the k-best candidate sequences [21], 
and describe how this can then be used in a practical context of musical concatenative 
sound synthesis.  

2   Markov Models 

Markov chains are probabilistic state machines that satisfy the Markov property of 
memorylessness. They consist of a set of discrete states with each state having an 
associated probability weighting of moving to every other state in the system. At any 
point in discrete time, the probability of a future event is solely determined by the 
current state of the system without knowledge of past events. 
   A hidden markov model λ = (A, B, 𝜋) extends the concept of a Markov chain by 
considering the transition states as hidden [16]. The hidden states have a transition 
matrix A as before, but each hidden state also emits an observable symbol from a set of 
symbols that have a probability distribution encapsulated in an emission matrix B. 
Finally, to initiate the HMM there also exists the initial probability distribution 𝜋, which 
determines the probability of which state to commence.  

2.3   The Viterbi Algorithm 

The Viterbi algorithm solves the decoding problem in HMMs [16], namely, for a given 
observation sequence O = (O1, O2, O3, …, OT)  we wish to determine the highest probable 
hidden state sequence S = (S1, S2, S3, …, ST) that would produce O. 

A brute force solution applied to a set of T observations over N states would involve 
computing all the Cartesian products of the possibilities; NT computations involving 
exponential time complexity. Viterbi’s algorithm enables us to reduce this complexity 
to O(T*N2), using dynamic programming techniques. Rather than exhaustively 
computing all the possibilities, we maintain two data structures alpha (⍺) and phi (φ). 
At any point t in the observation sequence to be decoded, the maximum probability for 
emitting the observed symbol for each hidden state is stored, along with the index or 
argument of the maximum probable state that led there. To get the optimal state 
sequence we get the index of the final highest scoring hidden state and backtrack 
through the phi structure beginning with that index, returning the accumulated list. We 
can express this formally: 

 
  



1) Initialisation: t = 1  

𝛼#(𝑖) = 𝜋(𝐵((𝑂#)											1 ≤ 𝑖 ≤ 𝑁 
𝜙#(𝑖) = 0 

2) Recursion: t = 2, …, t=T  

𝛼1(𝑗) = 𝑚𝑎𝑥(67(𝛼18#(𝑖)𝐴(:)𝐵:(𝑂1)				1 ≤ 𝑗 ≤ 𝑁 
𝜙1(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥(67(𝛼18#(𝑖)𝐴(:)									1 ≤ 𝑖 ≤ 𝑁 

3) Termination: 

𝑝∗ = 𝑚𝑎𝑥(67(𝛼?(𝑖)) 
𝑆∗? = 𝑎𝑟𝑔𝑚𝑎𝑥(67(𝛼?(𝑖)) 

4) Backtracking: t=T-1, …, t=1 

𝑆∗1 = 𝜙1A#(𝑆∗1A#) 

 

2.4   HMMs in Musical Applications 

HMMs’ facility for pattern recognition has been exploited for computational musical 
tasks. Score following, for instance, tries to consolidate the position of a live 
performance of a musical piece with its score representation automatically [13]. Using 
Viterbi decoding, an alignment can be established by extracting features for the 
observed live performance, and comparing them against idealised features within the 
model to return the expected location of the performance within the score. 

HMMs also lend themselves quite naturally to the task of chord recognition [5, 14, 
22]. Papadopoulos and Peeters [14] demonstrate a method whereby they compare the 
Pitch Class Profile (PCP) representation of the signal corresponding to 24 possible 
chord labels (12 notes for major and minor) indicated by the emission matrix, coupled 
with the most probable chord sequence defined in the transition matrix, derived from 
prior musical knowledge or training on musical scores and transcriptions. 

Compared to Markov chains, HMMs have been exploited somewhat less in 
generative or compositional applications (apart from concatenative synthesis, which we 
will describe presently). Some methods however are summarised by Ferdández and 
Vico  [6] and by Nierhaus [9], with the latter making the observation that “when applied 
to algorithmic composition, HMMs are appropriate to add elements to an existing 
composition”.  
  



 

3   k-Best Decoding 

3.1   Parallel List Viterbi Decoder 

The Viterbi algorithm has proved a robust and reliable solution in many problem 
applications. As we emphasise in this article however, it only outputs the maximum 
probability path from the model. This has been observed by other researchers as being 
restrictive when wanting to explore alternative paths through the system[4, 20]. Rabiner 
and Juang also observe, in the context of dynamic time warping, that the single solution 
Viterbi is often too sensitive and it is desirable to produce a “multiplicity of reasonable 
candidate paths so that reliable decision processing can be performed” [15]. They 
outline a procedure for performing k-Best decoding using what they term the Parallel 
Algorithm, which can be summarised as follows.  

If the regular Viterbi (i.e. 1-Best) keeps track of the best scoring path leading to each 
state at time step t, we need to alter the algorithm and associated data structures to store 
the k best scoring paths that lead to that point. This necessitates expanding our alpha 
and phi matrices to contain T*N*K probabilities and indices. We require some sorting 
mechanism in order to compare every possible path leading to a particular state and 
discarding all but the top K scoring items. We also need to keep track of a ranking to 
determine the order in which multiple instances of the same path arrive at a state. 
Depending on the size of N this sorting process can be computationally complex. The 
solution then, is rather than performing the sorting procedure at the end of each iteration 
of state s ∈ N we keep track of all the path possibilities s in a suitable container such 
as a heap or priority queue.  

Curiously, very few implementations exist for k-Best decoding, so we have 
implemented and made available ourselves a version in Python1. The parallel approach 
is so-called because at each time T it is continuously updating all k paths concurrently 
up to that point. In contrast, Seshadri proposes a serial algorithm that computes the k 
best paths sequentially, one by one [21] which is also mentioned by Rabiner and Juang 
[15].  

3.1   k-Shortest Paths Graph Decoder 

A HMM can also be considered as a weighted directed acyclic graph or trellis graph 
(Figure 1). For a series of T discrete observations and n hidden states, the graph contains 
n*T nodes and n2*T edges connecting n nodes at t=i with n nodes at t=i+1. Edge 
weights correspond to the joint probability of the transition cost for each pair of nodes 
and the emission cost of the output symbol. 

Hence the Viterbi path can be solved using shortest path algorithms such as 
Dijkstra’s Algorithm [18]. Furthermore, there exists a number of algorithms for solving 
the k shortest paths and returning them as a list of the nodes ordered by cost. One of the 
most well-known algorithms for achieving this is Yen’s Algorithm [24]. It operates by 
first finding the 1-best path as normal using any conventional shortest path (like 

                                                             
1 https://github.com/carthach/kbestViterbi 



Dijkstra). It then iterates through each node of the best path to find spur nodes that yield 
further potential shortest path candidates to the sink.  

 
Fig. 1. Shortest Paths applied to the Wikipedia Viterbi Example2 

Luckily an implementation of Yen’s Algorithm exists in Python for the NetworkX 
graph library3, but to convert a HMM specification to an equivalent directed acyclic 
graph that can be solved identically to Viterbi we need to do the following. First create 
n*T nodes for step t of the trellis. Next create the necessary n2*T edges and calculate 
the appropriate edge weights as given by 𝐴(: ∗ 𝐵:(𝑂1). Add a start node (-1 in the figure) 
and create edges connecting to each of the nodes at t=0 with weights encapsulating the 
initial probabilities	𝜋(𝐵( 𝑂# .	Create an end node (6 in the figure) and connect it to all 
the nodes at t=T with a zero weighting. Before we can run the shortest path algorithm 
we must make one final change to the edge weights for it to work. HMMs are concerned 
with finding maximum likelihood of multiplications of joint probabilities whereas 
shortest path algorithms determine a path through a network with minimum 
summations of costs. To address this mismatch, we must convert to negative log-space, 
taking care to apply the inverse afterwards to report the correct probabilities. 

4   Applications in Concatenative Synthesis 

4.2   Unit Selection in Concatenative Synthesis 

In the context of matching a target sound or specification, unit selection solves the 
problem of determining what sounds to select from the corpus and the systematic 
structuring of the selected sounds for outputting logical concatenated sequences. Many 
unit selection schema have been proposed and there exists no standard or best method. 
However, some specific procedures have presented themselves repeatedly which we 
will summarise here: 

                                                             
2 https://en.wikipedia.org/wiki/Viterbi_algorithm 
3 https://networkx.github.io/ 



 

 
Linear Search At the most basic level a linear search criterion for unit selection simply 
computes the (dis)similarity of every unit in the target sequence with every possible 
unit in the corpus, according to some distance measure (e.g. weighted Euclidean). It is 
a conceptually simple and robust technique. For performance sake, we have applied the 
linear search method ourselves in developing a real-time system for concatenative 
synthesis of rhythms as described in [11]. The overlying problem with this approach is 
that it only considers the disparity between the target and the corpus unit, and neglects 
treating the continuity or context of consecutive units within the output sequence. 

 
Viterbi Decoding The Viterbi algorithm was first applied by Hunt for the purposes of 
speech synthesis by performing unit selection of speech phonemes samples from a prior 
corpus [8]. It was then adopted for musical purposes by Diemo Schwarz in his 
Caterpillar System [20]. By representing a unit selection system as a HMM, we can not 
only consider the disparity between the target and corpus unit (encoded in the emission 
matrix) but also the “best fit” of continuity between two consecutive units in the output 
sequence as determined by the transition matrix of the hidden states (Figure 2).   

 

 
 

Fig. 2. Diagrammatic depiction of the relationship between target units, corpus units and their 
associated costs 

 
As with shortest path problems, unit selection requires finding the minimisation of a set 
of weights or costs [8], namely the target cost Ct between target and corpus units and 
the concatenation cost Cc between the consecutive concatenated units [20], rather than 
the maximisation of probabilities. A linear combination is performed with weights wt 
and wc  to give the total cost Ci.. The constituent costs themselves are derived by 
computing the dissimilarity between the feature vectors of the associated units using a 
suitable distance metric, such as weighted Euclidean as is evident in Equation 1. 
 

𝐶( = 𝑤1𝐶(1 + 𝑤1𝐶(F 

𝐶(1 = 𝑤G(𝑡(
1 − 𝑢(G)K

L

GM#

 

𝐶(F = 𝑤G(𝑢(
1 − 𝑢(8#G)K

L

GM#

 

(1) 

 
  



One of the motivations for working with more complex unit selection schemes like 
HMMs is that we can specify what we consider important for target cost computation 
separately from the concatenation cost computation by weighting accordingly or even 
choosing completely different features sets. For example, in speech synthesis we might 
choose features and weightings for the target cost that prioritise matching of length and 
linguistic context versus more prosodic configurations for the concatenation cost that 
encourage stability of energy and pitch. 

Constraint Satisfaction Schwarz notes, however, that the HMM approach can be quite 
rigid for musical purposes because it produces one single optimised sequence without 
the ability to manipulate the individual units. To address these limitations, he 
reformulates the task into a constraint-satisfaction problem, which offers more 
flexibility for interaction. A constraint-satisfaction problem models a problem as a set 
of variables and values, and a set of constraints that allows us to identify which 
combinations of variables and values are violations of those constraints, thus allowing 
us to quickly reduce large portions of the search space [9].  

Zils and Pachet first introduced constraint satisfaction for concatenative synthesis in 
what they describe as musical mosaicking - or, to use their portmanteau - musaicing 
[25]. They define two categories of constraints: segment and sequence constraints. 
Segment constraints control aspects of individual units (much like the target cost in a 
HMM-like system) based on their descriptor values. Sequence constraints apply 
globally and affect aspects of time, continuity, and overall distributions of units. The 
constraints can be applied manually by the user or learned by modeling a target. The 
musically tailored “adaptive search” algorithm performs a heuristic search to minimise 
the total global cost generated by the constraint problem. One immediate advantage of 
this approach over the HMM is the ability to run the algorithm several times to generate 
alternative sequences, whereas the Viterbi process always outputs the most optimal 
solution.  

4.3 A k-Best Concatenative Synthesis System 

Onset Detection and Segmentation The first stage in building a concatenative music 
system generally involves gathering a database of sounds to select from during the 
synthesis procedure. This database can be manually assembled but in many musical 
cases the starting point is some user-provided audio that may range in length from 
individual notes to phrases to complete audio tracks. In cases where the sounds destined 
for the sound palette exceed note or unit length, the audio needs to be separated into its 
constituent units using segmentation of note events analysed by onset detection, beat 
detection or just uniform frame lengths. For our purposes, we use onset detection of 
note events based on the difference of high frequency content between successive 
framewise spectra. Onset detection is a large topic of continuous study, and we would 
encourage the reader to examine the excellent review of methods summarised in [1]. 

 
  



 

Feature Extraction In order to effectively describe our audio content and produce 
meaningful similarity measures between constituent units both in the target sequence 
and the corpus of segmented units we need to choose a suitable set of descriptors. 
Selecting appropriate features is a trade-off between choosing the richest set capable of 
succinctly describing the signal, on the one hand, and the expense of storage and 
computational complexity, on the other.  

In any case, there are a number of standard features that occur across many systems, 
including our own that are worth describing briefly here. We use our in-house Essentia 
[3] library for all our musical content analysis. 

 
• Loudness: a suitable energy descriptor is essential for ensuring appropriate 

matching of dynamics. Essentia’s descriptor is defined by Steven’s power law, 
namely the signal’s energy raised to 0.67. 

• MFCCs (Mel Frequency Cepstrum Coefficient): a multidimensional, compact 
representation of the magnitude spectrum, frequently used to make 
comparisons of the timbre of signals. 

• f0: the fundamental frequency of the signal in question, extremely useful in 
tracking the predominant melody of monophonic recordings. 

 
Unit Selection and Concatenation Extracted features for the target units and corpus 
units are stored in two matrices in T and C. Next, we need to compute the distance 
matrices A = T * C and E = C * C that will serve as our emission and transition matrices 
respectively. Beforehand, however, it is important to perform any normalisation or 
standardisation and weighting of individual features as required. 

Now we can perform unit selection for any required k paths by performing the k-
Best decoding function as described in Section 3.1 incorporating the changes required 
for handling costs versus probabilities extrapolated in the previous section. This 
function returns a multidimensional array of k*N indices corresponding of length N. 
These indices reference individual sound units within our corpus. To produce the final 
audio representation, we simply concatenate the floating-point samples uniformly back 
to back, but there’s no reason why they can’t be overlapped and crossfaded at their 
boundaries for further smoothing as in [19]. For those interested in exploring the code 
it is available as a Python library on Github4. 

4   Analysis 

The goal of this article is to introduce the algorithmic concepts behind k-Best decoding 
and a rigorous evaluation is outside the scope of this publication. Conducting such 
stringent surveys like we have done for previous systems [10] is always challenging, 
especially considering the lack of ground truth for concatenative synthesis and creative 
systems in general. We do, however, briefly give a glimpse of the behaviour of the 
algorithms in terms of performance, correctness and acoustic output here.  
  

                                                             
4 https://github.com/carthach/PyConcat 



4.1 Algorithm Performance 

To compare the running times of the two implemented algorithms we took a small 
recording of the 8 notes of the C major scale being performing on a piano and re-
synthesised it with itself. Figure 3 shows side by side of the running times for both 
algorithms based on the number of paths returned. Our implementation of the Parallel 
Decoder outperforms the NetworkX Graph approach considerably. This is mostly due 
the added layer of complexity of expanding the Hidden Markov Model to a fully 
connected directed acyclic graph. Others have noted however that NetworkX, on 
account of being implemented purely in Python, performs slower than other compiled 
graph libraries such as graph-tool or igraph.  

It will be worth benchmarking against these implementations or reimplementing 
completely in C/C++. In any case, it is worth bearing in mind the real culprit in these 
applications: audio signal processing. The segmentation and analysis of the units took 
0.926248 second for all runs. 

 
Fig. 3. Running Time Comparisons for both Algorithms 

4.1 Equivalence and Correctness 

Figure 4 shows the optimal sequence generated for regular Viterbi decoding and 
sequences 1 ≤ k ≤ 5 for the Parallel Decoder and Graph Decoder respectively. The 
single straight line indicates that using the chosen acoustic features and weightings, the 
baseline Viterbi decoder correctly reassembles its own input. The Parallel and Graph 
decoders both correctly return this sequence as the first optimal path also (obscured by 
the subsequent paths in the diagram). Looking at the other returned paths, we see very 
slight deviations of only one unit per path (k is very small relative to the total possible 
paths). The possible paths, and their ordering, are identical for both algorithms. 

 



 

 
Fig. 4. Equivalency of Unit Selection Algorithms 

4.2 Pitch and Timbre Preservation 

To study the HMM’s acoustical output, we selected energy, fundamental frequency (f0) 
and MFCC features, and chose a weighting scheme that gave preference to the f0 in the 
target cost while giving preference to the MFCCs in the concatenation cost.  This allows 
us to focus on the specific ability of the target cost in preserving the pitch between each 
onset in the target sample and the selected units from the corpus, while the 
concatenation cost attempts to preserve a continuous and coherent evolution of timbre 
from a variety of timbres in the corpus. We used the same piano scale sample as a target 
but this time using a corpus of samples from a completely different set of instruments. 
From a collection of orchestral samples provided freely by the London Philharmonia5 
610 violin, viola, clarinet and trumpet samples were gathered with notes ranging from 
MIDI A3 to G7.  

.  
Fig. 5. Plots of Fundamental Frequencies 

                                                             
5 http://www.philharmonia.co.uk/explore/sound_samples 



 
As we can see from Figure 5, and after some median filtering to remove spurious 

spikes, the steady states of each pitch match for generated path 1 and generated path 10 
taken as examples. 

Scrutinising MFCC plots is always a bit difficult to decipher, but while it is clear 
that the MFCC overall profile of the target (Figure 6) contrasts with the targets we can 
see the eight notes of the sequence reproduced and the difference in attacks that are also 
present in the plots of the fundamental frequencies. Again, notice lower values of k 
produce very similar results when the size of the corpus is large, differing only by a 
couple of units. 

s  
Fig. 6. MFCCs of Sequences 

6   Conclusions 

In this article, we described the use of the Viterbi decoding algorithm for unit selection 
of corpus samples in concatenative sound synthesis. One of the main criticisms of 
Viterbi decoding particularly in musical applications is the fact that it only outputs the 
single most optimal sequence. Consequently, we explained and implemented two 
methods for decoding the k best state sequences in a HMM using Parallel matrix 
decoding and k shortest paths by reformulating the problem with a graph. We then 
described how they can be integrated in a practical system for concatenative synthesis. 

There are three directions of future work we can identify. Firstly, is the improvement 
of performance of the algorithm by exploring optimisation techniques and re-
implementing in a compiled language. Secondly, as the results have shown, for large 
sized corpora there is quite low variance in lower values of k. One possible remedy for 
this is to choose a “stride” factor that skips every n items when gathering the k highest 
scoring paths at each state, thereby increasing novelty. Finally, an extensive evaluation 
of the system, preferably with listening surveys, is an important next stage for this 
research.  
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