
k-Best Hidden Markov Model Decoding
for Unit Selection in Concatenative Sound Synthesis

Cárthach Ó Nuanáin, Sergi Jordà and Perfecto Herrera

Music Technology Group
Universitat Pompeu Fabra

Barcelona
carthach.onuanain@upf.edu

Abstract. Concatenative synthesis is a sample-based approach to sound creation
used frequently in speech synthesis and, increasingly, in musical contexts. Unit
selection, a key component, is the process by which sounds are chosen from the
corpus of samples. Hidden Markov Models are often chosen for this task, but one
common criticism is its singular path output which is considered too restrictive
when variations are desired. In this paper, we propose considering the problem
in terms of k-Best path solving for generating alternative lists of candidate
solutions and summarise our implementations along with some examples.
Keywords: Hidden Markov Models, Concatenative Synthesis, Artificial
Intelligence, Musical Signal Processing

1 Introduction

Concatenative synthesis is a technique that generates new sounds by juxtaposing
existing sounds from a large collection or "corpus". It was first applied in the area of
speech synthesis [8], but has since been extended to musical and sound design tasks
[23]. It is closely related to granular synthesis, but differs in the order of scale of the
length of the sounds that are used. Granular synthesis typically operates on the
microscale with “grains” of lengths 20-200 ms [17], whereas concatenative synthesis
makes use of samples of unit lengths more musically related, such as a note or a phrase.
An inherently Music Information Retrieval (MIR) geared approach, feature extraction
of acoustic and musical descriptors (such as spectral, energy and timbral features) are
essential for analysing and sorting existing sounds then concatenating them to create
new ones according to some predefined strategy.

The unit selection procedure of concatenative synthesis is the process by which the
existing sounds are selected from the corpus and is typically based on feature analysis
to match the characteristics of some target sound or specification. Many algorithms
have been proposed for tackling unit selection, but one of the most well-known involves
the application of Hidden Markov Models (HMMs) and in particular Viterbi decoding
[20] of state sequences to produce a stochastically optimal output sequence of
concatenated sounds. As we will discuss in the forthcoming section, Viterbi decoding
of HMMs has its limitations [20], chief of which is the fact that it outputs only the
highest probable state sequence.

In many objective problem applications (such as route finding in a network) this is
sufficient and objectively defined, but in sound synthesis and particularly highly
subjective musical and compositional tasks we would rather produce subsequent
probabilistic sequences in order to explore and evaluate alternative possibilities. To this
end, we present in this article methods for reformulating and extending the well-known
Viterbi decoding algorithm to handle generating the k-best candidate sequences [21],
and describe how this can then be used in a practical context of musical concatenative
sound synthesis.

2 Markov Models

Markov chains are probabilistic state machines that satisfy the Markov property of
memorylessness. They consist of a set of discrete states with each state having an
associated probability weighting of moving to every other state in the system. At any
point in discrete time, the probability of a future event is solely determined by the
current state of the system without knowledge of past events.
 A hidden markov model λ = (A, B, 𝜋) extends the concept of a Markov chain by
considering the transition states as hidden [16]. The hidden states have a transition
matrix A as before, but each hidden state also emits an observable symbol from a set of
symbols that have a probability distribution encapsulated in an emission matrix B.
Finally, to initiate the HMM there also exists the initial probability distribution 𝜋, which
determines the probability of which state to commence.

2.3 The Viterbi Algorithm

The Viterbi algorithm solves the decoding problem in HMMs [16], namely, for a given
observation sequence O = (O1, O2, O3, …, OT) we wish to determine the highest probable
hidden state sequence S = (S1, S2, S3, …, ST) that would produce O.

A brute force solution applied to a set of T observations over N states would involve
computing all the Cartesian products of the possibilities; NT computations involving
exponential time complexity. Viterbi’s algorithm enables us to reduce this complexity
to O(T*N2), using dynamic programming techniques. Rather than exhaustively
computing all the possibilities, we maintain two data structures alpha (⍺) and phi (φ).
At any point t in the observation sequence to be decoded, the maximum probability for
emitting the observed symbol for each hidden state is stored, along with the index or
argument of the maximum probable state that led there. To get the optimal state
sequence we get the index of the final highest scoring hidden state and backtrack
through the phi structure beginning with that index, returning the accumulated list. We
can express this formally:

1) Initialisation: t = 1

𝛼#(𝑖) = 𝜋(𝐵((𝑂#)											1 ≤ 𝑖 ≤ 𝑁
𝜙#(𝑖) = 0

2) Recursion: t = 2, …, t=T

𝛼1(𝑗) = 𝑚𝑎𝑥(67(𝛼18#(𝑖)𝐴(:)𝐵:(𝑂1)				1 ≤ 𝑗 ≤ 𝑁
𝜙1(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥(67(𝛼18#(𝑖)𝐴(:)									1 ≤ 𝑖 ≤ 𝑁

3) Termination:

𝑝∗ = 𝑚𝑎𝑥(67(𝛼?(𝑖))
𝑆∗? = 𝑎𝑟𝑔𝑚𝑎𝑥(67(𝛼?(𝑖))

4) Backtracking: t=T-1, …, t=1

𝑆∗1 = 𝜙1A#(𝑆∗1A#)

2.4 HMMs in Musical Applications

HMMs’ facility for pattern recognition has been exploited for computational musical
tasks. Score following, for instance, tries to consolidate the position of a live
performance of a musical piece with its score representation automatically [13]. Using
Viterbi decoding, an alignment can be established by extracting features for the
observed live performance, and comparing them against idealised features within the
model to return the expected location of the performance within the score.

HMMs also lend themselves quite naturally to the task of chord recognition [5, 14,
22]. Papadopoulos and Peeters [14] demonstrate a method whereby they compare the
Pitch Class Profile (PCP) representation of the signal corresponding to 24 possible
chord labels (12 notes for major and minor) indicated by the emission matrix, coupled
with the most probable chord sequence defined in the transition matrix, derived from
prior musical knowledge or training on musical scores and transcriptions.

Compared to Markov chains, HMMs have been exploited somewhat less in
generative or compositional applications (apart from concatenative synthesis, which we
will describe presently). Some methods however are summarised by Ferdández and
Vico [6] and by Nierhaus [9], with the latter making the observation that “when applied
to algorithmic composition, HMMs are appropriate to add elements to an existing
composition”.

3 k-Best Decoding

3.1 Parallel List Viterbi Decoder

The Viterbi algorithm has proved a robust and reliable solution in many problem
applications. As we emphasise in this article however, it only outputs the maximum
probability path from the model. This has been observed by other researchers as being
restrictive when wanting to explore alternative paths through the system[4, 20]. Rabiner
and Juang also observe, in the context of dynamic time warping, that the single solution
Viterbi is often too sensitive and it is desirable to produce a “multiplicity of reasonable
candidate paths so that reliable decision processing can be performed” [15]. They
outline a procedure for performing k-Best decoding using what they term the Parallel
Algorithm, which can be summarised as follows.

If the regular Viterbi (i.e. 1-Best) keeps track of the best scoring path leading to each
state at time step t, we need to alter the algorithm and associated data structures to store
the k best scoring paths that lead to that point. This necessitates expanding our alpha
and phi matrices to contain T*N*K probabilities and indices. We require some sorting
mechanism in order to compare every possible path leading to a particular state and
discarding all but the top K scoring items. We also need to keep track of a ranking to
determine the order in which multiple instances of the same path arrive at a state.
Depending on the size of N this sorting process can be computationally complex. The
solution then, is rather than performing the sorting procedure at the end of each iteration
of state s ∈ N we keep track of all the path possibilities s in a suitable container such
as a heap or priority queue.

Curiously, very few implementations exist for k-Best decoding, so we have
implemented and made available ourselves a version in Python1. The parallel approach
is so-called because at each time T it is continuously updating all k paths concurrently
up to that point. In contrast, Seshadri proposes a serial algorithm that computes the k
best paths sequentially, one by one [21] which is also mentioned by Rabiner and Juang
[15].

3.1 k-Shortest Paths Graph Decoder

A HMM can also be considered as a weighted directed acyclic graph or trellis graph
(Figure 1). For a series of T discrete observations and n hidden states, the graph contains
n*T nodes and n2*T edges connecting n nodes at t=i with n nodes at t=i+1. Edge
weights correspond to the joint probability of the transition cost for each pair of nodes
and the emission cost of the output symbol.

Hence the Viterbi path can be solved using shortest path algorithms such as
Dijkstra’s Algorithm [18]. Furthermore, there exists a number of algorithms for solving
the k shortest paths and returning them as a list of the nodes ordered by cost. One of the
most well-known algorithms for achieving this is Yen’s Algorithm [24]. It operates by
first finding the 1-best path as normal using any conventional shortest path (like

1 https://github.com/carthach/kbestViterbi

Dijkstra). It then iterates through each node of the best path to find spur nodes that yield
further potential shortest path candidates to the sink.

Fig. 1. Shortest Paths applied to the Wikipedia Viterbi Example2

Luckily an implementation of Yen’s Algorithm exists in Python for the NetworkX
graph library3, but to convert a HMM specification to an equivalent directed acyclic
graph that can be solved identically to Viterbi we need to do the following. First create
n*T nodes for step t of the trellis. Next create the necessary n2*T edges and calculate
the appropriate edge weights as given by 𝐴(: ∗ 𝐵:(𝑂1). Add a start node (-1 in the figure)
and create edges connecting to each of the nodes at t=0 with weights encapsulating the
initial probabilities	𝜋(𝐵(𝑂# .	Create an end node (6 in the figure) and connect it to all
the nodes at t=T with a zero weighting. Before we can run the shortest path algorithm
we must make one final change to the edge weights for it to work. HMMs are concerned
with finding maximum likelihood of multiplications of joint probabilities whereas
shortest path algorithms determine a path through a network with minimum
summations of costs. To address this mismatch, we must convert to negative log-space,
taking care to apply the inverse afterwards to report the correct probabilities.

4 Applications in Concatenative Synthesis

4.2 Unit Selection in Concatenative Synthesis

In the context of matching a target sound or specification, unit selection solves the
problem of determining what sounds to select from the corpus and the systematic
structuring of the selected sounds for outputting logical concatenated sequences. Many
unit selection schema have been proposed and there exists no standard or best method.
However, some specific procedures have presented themselves repeatedly which we
will summarise here:

2 https://en.wikipedia.org/wiki/Viterbi_algorithm
3 https://networkx.github.io/

Linear Search At the most basic level a linear search criterion for unit selection simply
computes the (dis)similarity of every unit in the target sequence with every possible
unit in the corpus, according to some distance measure (e.g. weighted Euclidean). It is
a conceptually simple and robust technique. For performance sake, we have applied the
linear search method ourselves in developing a real-time system for concatenative
synthesis of rhythms as described in [11]. The overlying problem with this approach is
that it only considers the disparity between the target and the corpus unit, and neglects
treating the continuity or context of consecutive units within the output sequence.

Viterbi Decoding The Viterbi algorithm was first applied by Hunt for the purposes of
speech synthesis by performing unit selection of speech phonemes samples from a prior
corpus [8]. It was then adopted for musical purposes by Diemo Schwarz in his
Caterpillar System [20]. By representing a unit selection system as a HMM, we can not
only consider the disparity between the target and corpus unit (encoded in the emission
matrix) but also the “best fit” of continuity between two consecutive units in the output
sequence as determined by the transition matrix of the hidden states (Figure 2).

Fig. 2. Diagrammatic depiction of the relationship between target units, corpus units and their
associated costs

As with shortest path problems, unit selection requires finding the minimisation of a set
of weights or costs [8], namely the target cost Ct between target and corpus units and
the concatenation cost Cc between the consecutive concatenated units [20], rather than
the maximisation of probabilities. A linear combination is performed with weights wt
and wc to give the total cost Ci.. The constituent costs themselves are derived by
computing the dissimilarity between the feature vectors of the associated units using a
suitable distance metric, such as weighted Euclidean as is evident in Equation 1.

𝐶(= 𝑤1𝐶(1 + 𝑤1𝐶(F

𝐶(1 = 𝑤G(𝑡(
1 − 𝑢(G)K

L

GM#

𝐶(F = 𝑤G(𝑢(
1 − 𝑢(8#G)K

L

GM#

(1)

One of the motivations for working with more complex unit selection schemes like
HMMs is that we can specify what we consider important for target cost computation
separately from the concatenation cost computation by weighting accordingly or even
choosing completely different features sets. For example, in speech synthesis we might
choose features and weightings for the target cost that prioritise matching of length and
linguistic context versus more prosodic configurations for the concatenation cost that
encourage stability of energy and pitch.

Constraint Satisfaction Schwarz notes, however, that the HMM approach can be quite
rigid for musical purposes because it produces one single optimised sequence without
the ability to manipulate the individual units. To address these limitations, he
reformulates the task into a constraint-satisfaction problem, which offers more
flexibility for interaction. A constraint-satisfaction problem models a problem as a set
of variables and values, and a set of constraints that allows us to identify which
combinations of variables and values are violations of those constraints, thus allowing
us to quickly reduce large portions of the search space [9].

Zils and Pachet first introduced constraint satisfaction for concatenative synthesis in
what they describe as musical mosaicking - or, to use their portmanteau - musaicing
[25]. They define two categories of constraints: segment and sequence constraints.
Segment constraints control aspects of individual units (much like the target cost in a
HMM-like system) based on their descriptor values. Sequence constraints apply
globally and affect aspects of time, continuity, and overall distributions of units. The
constraints can be applied manually by the user or learned by modeling a target. The
musically tailored “adaptive search” algorithm performs a heuristic search to minimise
the total global cost generated by the constraint problem. One immediate advantage of
this approach over the HMM is the ability to run the algorithm several times to generate
alternative sequences, whereas the Viterbi process always outputs the most optimal
solution.

4.3 A k-Best Concatenative Synthesis System

Onset Detection and Segmentation The first stage in building a concatenative music
system generally involves gathering a database of sounds to select from during the
synthesis procedure. This database can be manually assembled but in many musical
cases the starting point is some user-provided audio that may range in length from
individual notes to phrases to complete audio tracks. In cases where the sounds destined
for the sound palette exceed note or unit length, the audio needs to be separated into its
constituent units using segmentation of note events analysed by onset detection, beat
detection or just uniform frame lengths. For our purposes, we use onset detection of
note events based on the difference of high frequency content between successive
framewise spectra. Onset detection is a large topic of continuous study, and we would
encourage the reader to examine the excellent review of methods summarised in [1].

Feature Extraction In order to effectively describe our audio content and produce
meaningful similarity measures between constituent units both in the target sequence
and the corpus of segmented units we need to choose a suitable set of descriptors.
Selecting appropriate features is a trade-off between choosing the richest set capable of
succinctly describing the signal, on the one hand, and the expense of storage and
computational complexity, on the other.

In any case, there are a number of standard features that occur across many systems,
including our own that are worth describing briefly here. We use our in-house Essentia
[3] library for all our musical content analysis.

• Loudness: a suitable energy descriptor is essential for ensuring appropriate

matching of dynamics. Essentia’s descriptor is defined by Steven’s power law,
namely the signal’s energy raised to 0.67.

• MFCCs (Mel Frequency Cepstrum Coefficient): a multidimensional, compact
representation of the magnitude spectrum, frequently used to make
comparisons of the timbre of signals.

• f0: the fundamental frequency of the signal in question, extremely useful in
tracking the predominant melody of monophonic recordings.

Unit Selection and Concatenation Extracted features for the target units and corpus
units are stored in two matrices in T and C. Next, we need to compute the distance
matrices A = T * C and E = C * C that will serve as our emission and transition matrices
respectively. Beforehand, however, it is important to perform any normalisation or
standardisation and weighting of individual features as required.

Now we can perform unit selection for any required k paths by performing the k-
Best decoding function as described in Section 3.1 incorporating the changes required
for handling costs versus probabilities extrapolated in the previous section. This
function returns a multidimensional array of k*N indices corresponding of length N.
These indices reference individual sound units within our corpus. To produce the final
audio representation, we simply concatenate the floating-point samples uniformly back
to back, but there’s no reason why they can’t be overlapped and crossfaded at their
boundaries for further smoothing as in [19]. For those interested in exploring the code
it is available as a Python library on Github4.

4 Analysis

The goal of this article is to introduce the algorithmic concepts behind k-Best decoding
and a rigorous evaluation is outside the scope of this publication. Conducting such
stringent surveys like we have done for previous systems [10] is always challenging,
especially considering the lack of ground truth for concatenative synthesis and creative
systems in general. We do, however, briefly give a glimpse of the behaviour of the
algorithms in terms of performance, correctness and acoustic output here.

4 https://github.com/carthach/PyConcat

4.1 Algorithm Performance

To compare the running times of the two implemented algorithms we took a small
recording of the 8 notes of the C major scale being performing on a piano and re-
synthesised it with itself. Figure 3 shows side by side of the running times for both
algorithms based on the number of paths returned. Our implementation of the Parallel
Decoder outperforms the NetworkX Graph approach considerably. This is mostly due
the added layer of complexity of expanding the Hidden Markov Model to a fully
connected directed acyclic graph. Others have noted however that NetworkX, on
account of being implemented purely in Python, performs slower than other compiled
graph libraries such as graph-tool or igraph.

It will be worth benchmarking against these implementations or reimplementing
completely in C/C++. In any case, it is worth bearing in mind the real culprit in these
applications: audio signal processing. The segmentation and analysis of the units took
0.926248 second for all runs.

Fig. 3. Running Time Comparisons for both Algorithms

4.1 Equivalence and Correctness

Figure 4 shows the optimal sequence generated for regular Viterbi decoding and
sequences 1 ≤ k ≤ 5 for the Parallel Decoder and Graph Decoder respectively. The
single straight line indicates that using the chosen acoustic features and weightings, the
baseline Viterbi decoder correctly reassembles its own input. The Parallel and Graph
decoders both correctly return this sequence as the first optimal path also (obscured by
the subsequent paths in the diagram). Looking at the other returned paths, we see very
slight deviations of only one unit per path (k is very small relative to the total possible
paths). The possible paths, and their ordering, are identical for both algorithms.

Fig. 4. Equivalency of Unit Selection Algorithms

4.2 Pitch and Timbre Preservation

To study the HMM’s acoustical output, we selected energy, fundamental frequency (f0)
and MFCC features, and chose a weighting scheme that gave preference to the f0 in the
target cost while giving preference to the MFCCs in the concatenation cost. This allows
us to focus on the specific ability of the target cost in preserving the pitch between each
onset in the target sample and the selected units from the corpus, while the
concatenation cost attempts to preserve a continuous and coherent evolution of timbre
from a variety of timbres in the corpus. We used the same piano scale sample as a target
but this time using a corpus of samples from a completely different set of instruments.
From a collection of orchestral samples provided freely by the London Philharmonia5
610 violin, viola, clarinet and trumpet samples were gathered with notes ranging from
MIDI A3 to G7.

.
Fig. 5. Plots of Fundamental Frequencies

5 http://www.philharmonia.co.uk/explore/sound_samples

As we can see from Figure 5, and after some median filtering to remove spurious

spikes, the steady states of each pitch match for generated path 1 and generated path 10
taken as examples.

Scrutinising MFCC plots is always a bit difficult to decipher, but while it is clear
that the MFCC overall profile of the target (Figure 6) contrasts with the targets we can
see the eight notes of the sequence reproduced and the difference in attacks that are also
present in the plots of the fundamental frequencies. Again, notice lower values of k
produce very similar results when the size of the corpus is large, differing only by a
couple of units.

s
Fig. 6. MFCCs of Sequences

6 Conclusions

In this article, we described the use of the Viterbi decoding algorithm for unit selection
of corpus samples in concatenative sound synthesis. One of the main criticisms of
Viterbi decoding particularly in musical applications is the fact that it only outputs the
single most optimal sequence. Consequently, we explained and implemented two
methods for decoding the k best state sequences in a HMM using Parallel matrix
decoding and k shortest paths by reformulating the problem with a graph. We then
described how they can be integrated in a practical system for concatenative synthesis.

There are three directions of future work we can identify. Firstly, is the improvement
of performance of the algorithm by exploring optimisation techniques and re-
implementing in a compiled language. Secondly, as the results have shown, for large
sized corpora there is quite low variance in lower values of k. One possible remedy for
this is to choose a “stride” factor that skips every n items when gathering the k highest
scoring paths at each state, thereby increasing novelty. Finally, an extensive evaluation
of the system, preferably with listening surveys, is an important next stage for this
research.

Acknowledgments. This research has been partially supported by the EU-funded
GiantSteps project (FP7-ICT-2013-10 Grant agreement nr 610591).

References

1. Bello, J., Daudet, L.: A tutorial on onset detection in music signals. IEEE Trans. Audio.
Speech. Lang. Processing. 13, 5, 1035–1047 (2005).

2. Bird, S. et al.: NLTK : The natural language toolkit NLTK : The Natural Language Toolkit.
Proc. COLING/ACL Interact. Present. Sess. March, 69–72 (2016).

3. Bogdanov, D. et al.: ESSENTIA: an Audio Analysis Library for Music Information
Retrieval. Int. Soc. Music Inf. Retr. Conf. (ISMIR 2013). 493–498 (2013).

4. Brown, D.G., Golod, D.: Decoding HMMs using the k best paths: algorithms and
applications. BMC Bioinformatics. 11 Suppl 1, S28 (2010).

5. Cho, T. et al.: Exploring Common Variations in State of the Art Chord Recognition Systems.
Sound Music Comput. 1, January, 11–22 (2010).

6. Fernández, J.D., Vico, F.: Ai methods in algorithmic composition: A comprehensive survey.
J. Artif. Intell. Res. 48, 513–582 (2013).

7. Guéguen, L.: Sarment: Python modules for HMM analysis and partitioning of sequences.
Bioinformatics. 21, 16, 3427–3428 (2005).

8. Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system using a
large speech database. 1996 IEEE Int. Conf. Acoust. Speech, Signal Process. Conf. Proc. 1,
373–376 (1996).

9. Nierhaus, G.: Algorithmic composition: Paradigms of automated music generation. (2009).
10. Ó Nuanáin, C. et al.: An Evaluation Framework and Case Study for Rhythmic Concatenative

Synthesis. In: Proc. 17th International Society for Music Information Retrieval Conference.
, New York, USA (2016).

11. Ó Nuanáin, C. et al.: An Interactive Software Instrument for Real-time Rhythmic
Concatenative Synthesis. In: New Interfaces for Musical Expression. , Brisbane, Australia
(2016).

12. Ó Nuanáin, C. et al.: Towards User-Tailored Creative Applications of Concatenative
Synthesis in Electronic Dance Music. In: MUME 2016 - The Fourth International Workshop
on Musical Metacreation. , Paris, France (2016).

13. Orio, N. et al.: Score following: State of the art and new developments. Proc. Conf. New
Interfaces Music. Expr. 36–41 (2003).

14. Papadopoulos, H., Peeters, G.: Large-scale study of chord estimation algorithms based on
chroma representation and HMM. CBMI’2007 - 2007 Int. Work. Content-Based Multimed.
Indexing, Proc. 53–60 (2007).

15. Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition, (1993).
16. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition, (1989).
17. Roads, C.: Microsound. (2004).
18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (2nd Edition). (2002).
19. Schwarz, D.: Concatenative Sound Synthesis: The Early Years. J. New Music Res. 35, 1, 3–

22 (2006).
20. Schwarz, D.: The Caterpillar System for Data-Driven Concateantive Sound Synthesis. In:

Proceedings of the 6th Int. Conference on Digital Audio Effects (DAFx-03). pp. 1–6 (2003).
21. Seshadri, N., Sundberg, C.-E.W.: List Viterbi decoding algorithms with applications. IEEE

Trans. Commun. 42, 2/3/4, 313–323 (1994).
22. Sheh, A., Ellis, D.P.W.: Chord segmentation and recognition using EM-trained hidden

markov models. Proc. Int. Conf. Music Inf. Retr. 185–191 (2003).
23. Sturm, B.L.: Adaptive Concatenative Sound Synthesis and Its Application to Micromontage

Composition. Comput. Music J. 30, 4, 46–66 (2006).
24. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Manage. Sci. 17, 11, 712–

716 (1971).
25. Zils, A., Pachet, F.: Musical mosaicing. Digit. Audio Effects. 1–6 (2001).

