
Local Storage on Steroids: Abusing Web
Browsers for Hidden Content Storage and

Distribution

Juan D. Parra Rodriguez and Joachim Posegga

University of Passau, Innstraße 43, Passau, Germany
{dp,jp}@sec.uni-passau.de

Abstract. Analysing security assumptions taken for the WebRTC and
postMessage APIs led us to find a novel attack abusing the browsers’
persistent storage capabilities. The presented attack can be executed
without the website’s visitor knowledge, and it requires neither browser
vulnerabilities nor additional software on the browser’s side. To exemplify
this, we study how can an attacker use browsers to create a network for
persistent storage and distribution of arbitrary data.
In our proof of concept, the total storage of the network, and therefore
the space used within each browser, grows linearly with the number of
origins delivering the malicious JavaScript code. Further, data transfers
between browsers are not restricted by the Same Origin Policy, which
allows for a unified cross-origin browser network, regardless of the origin
from which the script executing the functionality is loaded from.
In the course of our work, we assess the feasibility of a real-life deploy-
ment of the network by running experiments using Linux containers and
browser automation tools. Moreover, we show how security mechanisms
against third-party tracking, cross-site scripting and click-jacking can
diminish the attack’s impact, or even prevent it.1

Keywords: Web Security ·WebRTC · postMessage · Browser Security·
Content Security Policy

1 Introduction

So far, the Web security community has invested significant efforts to research
the impact of single API calls introduced by HTML5 standards on the client side.
For instance, Lekies et. al. described how using local storage for content caching
results in script injection, and how to prevent it [25]. Also, in the case of the
postMessage API, which allows two windows to have cross-origin communication
within the browser, Hanna et. al. illustrated how the lack of origin2 validation

1 This is an author-prepared version of the paper published here: https://doi.org/
10.1007/978-3-030-01704-0_19

2 two JavaScript execution contexts have the same origin only if they have the same
IP or fully qualified hostname, and if they use the same protocol and port.

2 Juan D. Parra and Joachim Posegga

leads to execution of undesired functionality in real life Web sites [20]. Last but
not least, Provos et. al. detected that the dynamic creation of zero pixel frames
through scripts is a common attack vector used for drive-by downloads [35].

In spite of the significant efforts invested to secure each API, undesired con-
sequences arising from client-side API combinations remain uncharted. So, we
explore two particular aspects of browser APIs. On the one hand, we show that
using the postMessage API, local storage, and the dynamic creation of Iframes
leads to a transparent3 increase of the total storage available for a website in
the visitor’s browser, i.e. beyond the storage quota. On the other hand, we show
how WebRTC data channels aggravate the situation by allowing cross-origin
data transfers among browsers. Thus, the combination of both factors comprises
a novel attack vector in which the visitor’s browser is coerced, not only to store
data permanently but also to transmit such data directly to other browsers with-
out the user’s knowledge. This kind of attack could be catalogued as a browser
resource abuse problem, which is orthogonal to more known Web attacks, e.g.
cross-site scripting, since it does not pertain to the user’s data or session.

The presented attack has two interesting properties. First, the attack relieves
the server from the responsibility (and performance overhead) associated with
hosting and distributing the content. This is a direct consequence of storing the
content in browsers and transferring it over direct browser-to-browser links. Sec-
ond, an attacker keeps the site’s visitor oblivious to the malicious behaviour, i.e.
storage and distribution of unknown content, since no warnings or messages are
presented to the user. This lack of awareness on the user’s side is particularly
concerning when data stored in his/her browser is used for illegal purposes. An-
other concerning aspect is the use of computational resources in detriment of the
user, e.g higher electricity costs and decreasing lifespan of a computing system,
without his consent. This kind of abuse has lead to a court settlement between
the state of New Jersey and a company doing Bitcoin mining on browsers to
monetize Web sites [22].

Our contributions can be summarized as follows: 1) we describe a novel
attack whereby the persistent storage and networking capabilities of the browser
are abused for the attacker’s benefit, yet without requiring any additional soft-
ware or vulnerability exploitation on the client’s browser or operating system.
2) we enumerate the security assumptions from the browser APIs (postMes-
sage, Iframe creation and WebRTC) which led to the browser abuse vector. 3)
We implement a proof of concept browser network which has long-term storage
capabilities, and transfers data over peer-to-peer links between browsers, and by-
passes the Same Origin Policy, without making the user aware of its existence.
4) We evaluate the proof of concept through a set of experiments by automating
real-life browsers in a controlled environment while modifying the number of
visitors, the time between visits, and the visitor return rate 4. 5) From a more
constructive perspective, we discuss how existing security measures, taken by
the browser’s user or Web developers, can prevent the attack.

3 the mechanism described here does not require the user’s consent
4 number of visitors who returned to the website in a given period of time

Abusing Web Browsers for Hidden Content Storage and Distribution 3

This paper is organized as follows. We describe our attack in Section 2.
Section 3 and 4 describe the proof of concept implementation and its evaluation.
Afterwards, we present a discussion of countermeasures in Section 5 followed by
related work in Section 6. Lastly, we present our conclusions in Section 7.

2 The Attack

This section clarifies the attacker model, the benefits for the attacker, as well
as the technical details exploited; however, this section is written under the
assumption that users have not deployed any security mechanisms in the browser
or on their sites, e.g. CSP policies. Throughout this paper, we will refer to the
attacker model presented here. Later on, Section 5 presents countermeasures
available today.

2.1 Attacker Model

We assume an attacker slightly less powerful than the Web attacker formalized
by Akhawe et al.[5]. A Web attacker can execute JavaScript code in the victim’s
browser according to the browser’s policies. Also, the attacker can host malicious
servers which do not need to comply with Web standards. Moreover, a Web
attacker can obtain valid domain names and certificates for his servers.

In our attacker model, the attacker is capable of executing a script abusing
the browser’s storage, i.e. Abusive Script, when a website is intentionally
opened by a visitor, i.e. Intended Site. This can be achieved through an
advertisement network, or script injection techniques. Further, the JavaScript
context where the Abusive Script is executed, as well as its origin, are totally
irrelevant for the attack. To increase the browser’s storage without the user’s
knowledge, the attacker needs to host an Abusive Script in several origins. This
can be easily achieved by using free domains; also, if the attacker owns a domain
already, he could generate many sub-domains or use several ports in one domain
to deliver the script 5. The final storage space available for the attacker will be
the number of origins hosting his script multiplied by the storage quota imposed
by the browser. Nonetheless, unlike the Intended Site, the Abusive Script does
not need to be intentionally opened by the user.

To communicate data between browsers, the attacker needs access to a server
to negotiate browser-to-browser connections. Notably, this server only intervenes
during the connection session establishment, but it is not used to transfer data
between browsers. The attacker creating the network is slightly weaker than a
Web attacker because all servers comply with Web standards, and the script
context where the attacker’s code is loaded is irrelevant for the attack.

2.2 Attack Details

For the sake of clarity, Figure 1 depicts the attack where three different browsers
opened Intended Sites including Abusive Scripts in different ways. First of all,

5 All are separate Origins According to RFC 6454

4 Juan D. Parra and Joachim Posegga

the figure shows Intended Sites including Abusive Scripts from two different
origins, i.e. Origin1 and Origin2. Further, cross-site scripting injection (Browser
3) would allow the Abusive Script to access the JavaScript execution context of
the Intended Site. On the contrary, Intended Sites are shown in Browser 1 and
2 load the Abusive Script in a different context, e.g. inside an Iframe. The latter
occurs when the Abusive Script is present in an advertisement and is therefore
isolated from the Intended Site context due to the Same Origin Policy. Now,
we mention how to achieve the Abusive Script’s execution, the irrelevance of
the Same Origin Policy for the attack, how to increase the browser quota, the
browser-to-browser channels, and summarize the complete attack.

Abusive Script Execution Although script injection through additional soft-
ware is possible, we analyse techniques without requiring browser plug-ins, vul-
nerability exploitation or additional software on the client’s side.

An attacker can deliver the Abusive Script through an advertisement net-
work. This has been demonstrated by Grossman et. al. [19] and has been used
to do crypto-mining without the visitors’ knowledge [40]. Although in this case,
the Abusive Script would be included inside an Iframe in the Intended Site, as
seen in Browser 1 and 2 in Figure 1, this does not interfere with the attack. Fur-
ther, it does not matter whether the advertising executing the Abusive Script is
delivered through legitimate advertising networks or advertising injectors [41].

Scripts can also be included in sites by either leveraging forgotten inclusions,
or by modifying popular libraries or CMS Widgets. Nikiforakis et al. [32] showed
a number ways allowing to execute malicious code, e.g. using stale IPs or domains
that are still included but forgotten. Particularly, the authors found out that 56
domains used in the 47 top Alexa Web sites were available for registration at the
time. Also, thousands of sites were affected after by two Content Management
System plugins performing crypto-mining without the user’s knowledge [12, 28].

Last but not least, cross-site scripting is a particularly promising way to
infect Web sites, given that by 2013 more than 6000 unique vulnerabilities were
found across the Alexa top 500 Web sites (9.6% of the analysed sites) [26].

Irrelevance of the Same Origin Policy The attacker’s goal is to execute the
Abusive Script and abuse the local storage space and networking capabilities of
the browser; hence, accessing the DOM or the JavaScript context of the Intended
Site is not a prerequisite for the attacker. Thus, as it can be seen in Figure 1, the
Same Origin Policy isolation between the Intended Site and the Abusive Script
is not hindering the attacker.

Data can be sent to browsers which loaded the Abusive Script from any
origin. Thus, cross-origin communication is allowed, not only among different
Intended Sites but also between different Abusive Script origins too. This is
possible because according to the security architecture proposed6 for WebRTC
dataChannels [36], enforcing the Same Origin Policy between browser-to-browser

6 This is a IETF-draft which means this is still work in progress.

Abusing Web Browsers for Hidden Content Storage and Distribution 5

Intended Site

Abusive Script

Browser 1 Browser 2

Intended Site with
Abusive Script

Browser 3

: Same Origin
Policy isolation

: WebRTC data
transmission

Origin 1

Origin 1

Intended Site

Abusive Script

Origin 2

Fig. 1. Attack’s Overview

Peer and File Python
Index

Signal Server (PeerJs)

Origin (i)

1. Download
main.js

3. Register Overlay
Peer and Files

4. Async Index
updates

5'. Signal peer

6'. Transfer
Content

Bob

Alice

Origins (1,2...n)

2. load n iframes

6'. Transfer
Content

Charlie

5'. Signal peer

: WebSocket

: WebRTC data channel

: HTTP/Ajax

A
syn

c In
d

ex
u

p
d

ates

Fig. 2. Proof of Concept Diagram

channels does not provide any additional security. This design decision was based
on two reasons: data channels do not inject code into other origins, and data
can always be forwarded through the severs. Although these two statements are
true, enabling cross-origin communication over peer-to-peer links is problem-
atic because the direct channel empowers the developer to move data from one
browser to another without the user’s knowledge regardless of the origin from
which the code was loaded from. What is worse, this happens without burdening
the server with the data transfer. The latter is of utmost importance for the scal-
ability of the attack since, although data could be relayed through a server, this
would impose a heavy toll on the performance of the server, therefore making
the proposed attack less attractive.

Increasing the Local Storage Limit From the local storage perspective, a
5 MB quota is enforced per origin, unless the user opts-in to increase it for a
particular origin. The quota prevents a single origin from abusing the browser’s
local storage. From this point of view, letting a script create an Iframe is not
problematic because, unless the Iframe and the parent window share the same
origin7, data loaded inside the Iframe (and its JavaScript execution context) is
out of reach of the script creating it due to the Same Origin Policy. Although
this separation of script contexts is helpful for data isolation, it can be misused
to increase the local storage used on the browser.

7 windows can also set their origin to be a super origin, i.e. mysite.company.com can
set its origin as company.com to share the same origin with other pages.

6 Juan D. Parra and Joachim Posegga

The technique used to bypass the quota enforcement for a particular website
uses Iframes with different origins to store data in their local storage, i.e. Stor-
age Iframes. Given that each Storage Iframe has a different origin, each one of
them has 5 MB of local storage. A Similar approach has been used to show how
information can be placed within the user’s browser by Feross [9, 1]. So far, this
technique allows an attacker to store information in several Iframes, but how to
access such information as one centralized database is not yet solved.

An attacker can solve this problem by using the PostMessage API to com-
municate data from several Storage Iframes controlled by him. According to the
postMessage specification[30], the assumptions dictate that, as long as develop-
ers validate the origin of the messages exchanged and their proper encoding,
no vulnerabilities can be exploited. The rationale behind these validations is to
prevent Web sites from acting on commands sent by malicious windows and to
avoid script injection. Unfortunately, as this fails to consider two origins col-
luding against the browser, the Abusive Script obtains a quota equivalent to
the number of Storage Iframes spawned by it multiplied by the browser storage
quota. In other words, postMessages are used as an asynchronous intra-browser
messaging system to exchange control commands and data between the Storage
Iframe and the Abusive Script, shown as “broker” in each browser in Figure 3.

Inter-Browser Cross-Origin Communication Inter-browser communica-
tion is paramount if the attacker wants to instruct browsers to share data
with each other. This functionality relies on the WebRTC dataChannels [31]
which requires an initial negotiation phase. Such initialization phase is solved
by the implementation of the Interactive Connectivity Establishment protocol
(ICE) [23]. In particular cases, when browsers are behind a router with Network
Address Translation (NAT), a server providing Session Traversal Utilities for
NAT (STUN) [38] allows them to discover their public IP address and port. In
most cases a short intervention of a STUN server is enough to enable browsers
to communicate with each other directly. The previous protocols are covered by
a server accessible by the attacker, as mentioned in Section 2.1. Nevertheless,
in some cases, it may be impossible to establish a direct connection between
two peers who are behind two different NAT routers. Then, an additional relay
server implementing the Traversal Using Relay NAT protocol (TURN) [27] is
needed for the communication.

Putting it All Together In order to put together an attack in which data
stored in a browser is available across the whole cross-origin browser network,
the attacker needs to extend the increase of the Local Storage use with browser-
to-browser connectivity. As a result, each Storage Iframe hosts an overlay peer,
i.e. a WebRTC enabled frame. Also, the Storage IFrame needs to receive con-
trol commands, through postMessage API, not only to share data from Local
Storage but also to connect to other peers, retrieve and send data from them,
etc. Figure 3 reflects an example in which two browsers visit one origin each,

Abusing Web Browsers for Hidden Content Storage and Distribution 7

Browser 1

Abusive script: Origin 1

Storage Iframe: Origin 1

Storage Iframe: Origin 2

Storage Iframe: Origin 3

broker

Abusive script: Origin 2

Storage Iframe: Origin 1

Storage Iframe: Origin 2

Storage Iframe: Origin 3

broker

Browser 2

: postMessage API

: Local storage

: WebRTC Peer

: Content

: WebRTC

Site Visited by the UserSite Visited by the User

Fig. 3. Attack Schematics

where the Abusive Script is hosted. Further, this figure shows the Storage Iframe
hosted on three different origins, i.e. Origin1, Origin2, Origin3.

3 Proof of Concept

We have built a proof of concept where every browser opening a website con-
taining an Abusive Script replicates files present in a unified browser network.
In our implementation there is no central server hosting the files; instead, every
browser can register files in the network and they will be automatically repli-
cated by other browsers. Further, every browser spawns several storage frames,
i.e. 10 Origins equivalent to 50 MB in our case, and attempts to replicate as
many files as possible. The replication process stops when every file in the net-
work is replicated locally, or when there is no space left in any Storage Iframe.
Also, content transfers happen over browser-to-browser WebRTC connections.

Although the mapping between peers and files in the network could have been
distributed across the browser network, e.g. using a Distributed Hash Table [14],
this neither strengthens nor weakens our argumentation on the security issues
raised by the attack. Likewise, our prototypical implementation requires files to
have at most 5 MB when they are encoded in base 64. Also, we have tested our
implementation with Chrome 43.0.2357.81, and Firefox 38.0.

Based on Figure 2, the remainder of this section describes the components
and the message exchange in our proof of concept. The components are:

Abusive Script : Our “broker” uses the postMessage API adopting a hier-
archical approach where the Abusive Script commands each Storage Iframe to
execute actions, e.g. retrieve a file from another peer, and receives callbacks with
the status of the task. This provisions the Abusive Script with an overview of
files stored locally, and ensures files are replicated at most once per browser.

Signalling Server : We used a local installation of the PeerJS Server. This
open-source server, in combination with the Peer client library, provides a high-
level API allowing to send signals to peers in the network and to establish We-
bRTC channels among them.

Peer and File Index : this is a Python server used to track which files are
stored in which peer as well as which peers are currently in the overlay network.

8 Juan D. Parra and Joachim Posegga

Whenever a browser joins the network a WebSocket is opened to this server. We
used WebSockets to receive and broadcast notifications from and to the peers
when the index has changed, etc. Also, when a WebSocket connection is closed
the server can safely assume that a given browser (and all its Overlay Peers) left
the network. Also, for visualization purposes, this server offers a simple HTML
page to upload files to a Storage Iframe, retrieve files from other browsers, and
query an updated index of peers and files.

The message exchange between the different components mentioned before
is depicted by Figure 2. In this set-up, we show how Bob and Charlie have already
joined the network; thus, they are already registered in the Peer and File Index,
and they already stored locally some files required by the peers in Alice’s browser.

The first step corresponds to when Alice opens an Intended Site containing an
Abusive Script. The second step takes place when the Abusive Script generates n
different invisible Storage Iframes, where n is the number of origins serving the
code. The registration of the Storage Iframe as a peer in the network is shown in
the third step. At this point, in the fourth step, the Abusive Script will command
each Storage Iframe to download files from several peers. Once a Storage Iframe,
inside Alice’s browser, receives a command from the Abusive Script requiring
the acquisition of a file from a specific peer, it will start the transfer between
browsers. This process starts when Alice’s browser uses the PeerJS implementa-
tion to negotiate the connection details to establish the WebRTC channel with
the specific Iframe in Bob’s and Charlie’s browsers 8. Once the signalling process
succeeds, a direct connection between Alice and Bob, and another one between
Alice and Charlie can be established, so the content can be transferred directly.
Once Alice receives a new file, her browser will communicate this to the Peer
and File Index server. Also, arrows labelled as Async index updates in Figure 2
show the WebSockets asynchronous full-duplex updates between peers and the
index server.

Each Abusive Script follows a simple replication approach. When there is
space in a Storage Iframe, the Abusive Script instructs a Storage Iframe to
replicate the file with the least amount replications in the network that has not
been stored in the browser. This guarantees that when nodes leave and files are
being less replicated, they are copied to other nodes before they perish.

4 Evaluation

We do not pretend to cover an extensive performance evaluation of the proof of
concept. Instead, we merely want to establish a set of conditions under which
the attack works and argue for its plausibility in a real-world deployment. Thus,
there are two concerns that we need to address. First of all, the browser network
should keep files available in spite of the high churn produced by browsers joining
and leaving the Intended Site. Also, network overhead imposed on servers, e.g.
the signalling server, should be negligible compared to the network use on the

8 Steps 5 and 6 are denoted with an apostrophe to represent that they are executed
in parallel

Abusing Web Browsers for Hidden Content Storage and Distribution 9

browser’s side. This would guarantee that the network can scale without requir-
ing high computational resources from the attacker. To this end, we collect log
files and network traffic from several experiments. The main goal is to calculate
how long is a file available in the network during an experiment run and also to
assess the network load on the servers and browsers forming the browser net-
work. Moreover, every component was restarted between experiments to ensure
that sequential runs do not interfere with each other.

4.1 Set-up

We have used Docker [15] Linux containers to ensure that tests have exactly the
same initial state (docker image). As shown by Figure 4, we used docker contain-
ers to execute the so-called selenium controller. The controller is a custom-made
multi-threaded Java application providing a REST API. This application re-
ceives commands, including actions such as open a website, close the window, or
wait a certain time before the next instruction, through HTTP. These actions
are executed on a Chromium browser inside the docker instance through a Se-
lenium driver [39]. To run a headless Chromium browser, we used Xvfb as an X
server to simulate a terminal without using hardware for it.

Having a generic selenium client proved to be very useful to execute several
tests without re-building the containers for every test case. In addition to the
containers for the selenium controller, an apache2 (hosting the Intended Site,
the Abusive Script, and the Storage Frames), a Peer and Index server, as well
as a PeerJS server were run in separate containers, in the same host machine.

On the bottom of Figure 4, the orchestrator represents a Python program
sending actions to every selenium controller used for the experiment. This is
a multi-threaded Python application implementing an HTTP server to receive
callbacks from the selenium controllers, once they have finished a task. The Or-
chestrator implements the waiting times between browser visits and specifies
which Chromium profile should be used for the browser session to be opened
from the selenium controller. Specifying a certain profile empowers the Orches-
trator to ensure that elements stored in the local storage for the given profile
are available in the browser session executed by Selenium. For example, if the
orchestrator wants to simulate a visitor that comes for the first time to a website,
a clean profile without any cookies, local storage items, or any other previous in-
formation is used. Conversely, loading a Selenium session with a specific profile,
which has already been used by a browser session which visited the network’s
site, would contain all the stored files in local storage and is therefore used to
represent a returning visitor. The profiles are represented as folders in the case of
Chromium and Chrome. Moreover, the host machine used was a Lenovo T430S
with 16 GB RAM memory and an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz
processor with Ubuntu 12.04 LTS.

10 Juan D. Parra and Joachim Posegga

Selenium-controller

Chromium-1

Orchestrator

Instr-1

Docker-container

: HTTP
: File read

Selenium-controller

Chromium-1

Docker-container

Selenium-controller

Chromium-2

Docker-container

Instr-2 Instr-3

Fig. 4. Overall Measurement Set-up for 3 browsers

4.2 Browsers’ Behaviour

A selenium controller has the possibility to do one-time visits, or a returning
visit depending on the profile used, see Section 4.1. Therefore, we generate in-
structions to simulate returning and non-returning visits. We divide the set of
browsers into two sets accordingly. In this way, a returning controller will always
return with its previous state during the whole experiment. On the contrary, a
selenium controller doing visits equivalent to a one-time visit also returns to the
Web site following the same pattern, but it loads a fresh profile every time. Since
the latter kind of selenium controller represents a one-time, or “non-returning”
visitor, it is also called non-returning selenium controller (or browser) from now
on. For each returning or non-returning selenium controller, the process to gen-
erate the visit length, i.e. time in which the browser keeps the Intended Site
open, and the time between visits, i.e. time until the browser comes back, is
generated using a random number generator, see Figure 5. Thus, the time of the
experiment is filled with sequences of visits followed by waiting times between
visits. The visit length is depicted in the grey-shaded areas for each browser,
while the time between visits is represented by white sections.

Experiment Duration

...

Returning Browsers

One-time Visit Browsers

...

browser 0:

browser i:

browser i+1:

browser n:

...
...

Visits of
Returning
Visitor

Visits of
One-time
Visitor

Fig. 5. Visits Simulation

4.3 Measurements

Figure 6 shows the data sources required for our evaluation in grey-shaded boxes.
The data sources were: a network (tcpdump) capture including all the traffic

Abusing Web Browsers for Hidden Content Storage and Distribution 11

during the experiment, and the log files where the peer and index server counts
the number of replications per file, i.e. a simple array.

The content hosted by the network is comprised of 33 pictures with an average
size of 1 MB each, i.e. a total of 33 MB. This size ensures that 33 MB can be
stored in one browser (using up to 50MB of Local Storage) once they have been
encoded in base 64. Although exploring how the network reacts when not all
files can be stored in one browser would be interesting, we omit this analysis
because the performance of the browser network is not our primary goal.

The visit length for every visit in the experiments has been randomly gen-
erated in a range from 30 to 50 seconds using NumPy [33] random generator.
We consider this number to be conservative since there are marketing reports
showing average sessions across countries higher than 50 seconds for every kind
of website category [13]. Further, research has reported Web sessions to have a
mean value of 74 minutes [7]; also, it is known that certain pages such as Face-
book, have users with sessions ranging from a few to several tens of minutes [8].
The duration of every experiment is 5 minutes.

As mentioned in Section 4.1, returning visits are achieved by instructing a
selenium controller to load a Chromium profile containing information from a
previous visit. Moreover, to have files in the browser network, each selenium
controller acting as a returning client has a profile containing its initial state.
Therein lie all the files to be replicated in the browser network. This profile is
copied to the docker instance at the beginning of every experiment in order to
keep a consistent initial state across the different runs of the tests. Browsers
acting as first visitors don’t use these profiles and have no information in local
storage, cookies, or browsing cache.

We vary two parameters during our experiments, namely the time between
visits, and the number of selenium controllers returning to the website, i.e. using
a Chrome profile containing data from their previous visits. Further, the time
between visits is generated randomly within the ranges [10-40], [110-140] and
[210-240] seconds. Note that even though we use returning browsers with rela-
tively short periods of time, a single browser return can represent a different user
but with the same local storage state; or in other words, there is no one-to-one
mapping between real users and browsers. The number of returning selenium
controllers has also been modified to be 3, 5 and 7 out of 10 browsers for each
set of experiments, which yields a 30, 50 and 70% visitor return rate.

In the upcoming sections, we focus on the two critical aspects under evalu-
ation: the file availability of the network, and the network load imposed on the
browsers and servers.

File Availability The analysis of the index file, generated by the Peer and
File Index server consisted on verifying the timestamps and state of the index
to calculate the percentage of the time for the experiment run in which each file
was available. Then, the average value and standard deviation for the array of
percentages was calculated using Python NumPy [33].

12 Juan D. Parra and Joachim Posegga

Orchestrator
: Network

PeerJS Server Web Server

Peer and File Index

File Index Log
Selenium controller

Traffic capture

docker0

Host OS: Docker

Fig. 6. Data Collection Set-Up

 0

 20

 40

 60

 80

 100

10-40 110-140 210-240M
ea

n
P

er
ce

nt
ag

e
of

 A
va

ila
bi

lit
y

(%
)

Time between Visits (seconds)

Attack with Visits Ranging from 30-50 seconds

7 Browsers Returning
5 Browsers Returning
3 Browsers returning

Standard Deviation

Fig. 7. Attack Evaluation with visit lengths be-
tween 30-50 sec (5 min. experiments)

As shown in Figure 7, the availability is strongly influenced by the time
between visits; on the contrary, it is noticeable that the percentage of returning
visits impacts to a lesser extent. With the shortest time between visits (10-
40 seconds), the mean availability for the files is 95.7%, 93.2%, and 87.8% for
70%, 50% and 30% of return rate respectively; furthermore, in all the cases the
standard deviation lies between 3.0% and 3.1%.

We can safely conclude that when 3 out of 10 browsers are controlled by the
returning selenium controller, there is a 30% visitor return rate. This can be
directly extrapolated to visitor return rate calculated for Web sites per month,
or per day without any loss of generality. Moreover, considering that a recent
marketing report [13] states that return visitor rates commonly lie between 25
and 52%, achieving a visitor rate of 30% for an Intended Site is realistic from
the returning visitor perspective.

Further, regarding the comeback rate our browser network has two advan-
tages. The first advantage in favour of the attacker is that he does not need
to ensure a high return rate for every Origin used by the network, e.g. Origins
used to store the Storage Iframes. As long as an Intended Site is visited, the
Abusive Script will spawn invisible frames which can point to any domain with-
out the user’s knowledge. The second advantage is that, although a 30% return
visitor ratio is feasible to achieve, the requirements for the browser network are
less restrictive. The attacker could place the Abusive Script in several Intended
Sites, such that whenever they are visited, they spawn n Storage Frames owned
by the attacker. Since the Same Origin Policy is not affecting our network, the
browser will always join the same network, i.e. returning to it, in spite of visiting
a different Intended Site, or even when the Abusive Script is from a different
Origin. Therefore, the return rate required for the attack is not that of a single
Intended Site, but rather the return rate of all the Intended Sites serving the
Abusive Scripts combined.

Given that we have already covered the visit length and the visitor return
rate, it is key to assess whether the concurrent sessions opened by browsers dur-

Abusing Web Browsers for Hidden Content Storage and Distribution 13

ing our experiment is feasible in real-world Web sites. To this end, we do an
approximate estimation of this based on average values. First of all, we calcu-
late the average number of visits per browser as the duration of the experiment
divided by the sum of the average time of a visit and the average waiting time
between visits. This yields a total of 8.75 visits per browser with the shortest
wait between visits (10-40 seconds). Thus, it follows that for 10 browsers, we
have 87.5 visits every 5 minutes (the length of the experiment). Assuming a uni-
form distribution of visits and using the pigeonhole principle this value could be
extrapolated to 176.400 visitors per week. This number seems to be acceptable,
given that currently the top 500th site according to Alexa’s ranking [6] has 78
Million visits per month, and research has shown that even several years ago
more than 20% of typical commercial sites had more than 10.000 browser clients
concurrently connected, and from 4 to 10% of randomly selected sites would be
able to host more than 1000 concurrent nodes [7].

Like with the previous observation, placing the Abusive Script in several
origins allows the attacker to increase the number of visitors to the browser
network since it is not covered by the Same Origin Policy. This increases the
chances of the applicability of the attack.

To summarize, we can extrapolate the effectiveness of the presented attack
when the following assumptions are met. First of all, every file can be stored in
one browser, i.e. the attacker has deployed JavaScript code in sufficient domains.
Second, the attacker is capable of placing Abusive Script in at least one domain
achieving a return rate of at least 30% for all domains combined. Third, Web
sites’ visitors have sessions in the range between 30 and 50 seconds.

Network Analysis Raw network traffic has been collected from every experi-
ment. The raw capture file, containing all the bytes exchanged between entities
of the browser network, was processed after the experiment has finished by a
Python script using the dpkt [16] package to count the bytes aggregated by
source and destination IP. We use this information to analyse properties of the
browser network. For readability reasons, the information is not shown on a
per-entity basis, but instead we focus on interaction between three groups of
entities: the group of returning browsers, the group of browsers executing the
one-time visits, and the group of servers including the index and peer server, the
Web server, and the PeerJs server. The nature of the network analysis requires
representing the network traffic for each experiment run individually. Due to the
similarity between network captures, we chose one experiment to analyse the
traffic, i.e. time between visits in [10-40] with 5 selenium controllers returning.
In Figure 8 we depict the average amount of data (in MB) transmitted between
the group represented by the row of the matrix to the group represented by
the column of the matrix; also, darker colours represent less amount of data.
Based on this, it is observed that browsers executed by selenium clients send a
very small amount of data to servers. It is also clear that browsers exchange the
highest amount of data in the browser network, as expected. Another interesting
fact is that returning browsers send more data to non-returning browsers than

14 Juan D. Parra and Joachim Posegga

returning browsers, this happens because non-returning browsers have a clean
local storage every time they join, and therefore attempt to replicate files con-
stantly. Due to HTTP Headers, static content must not be retrieved again (when
it has not changed). This is clearly observable because returning browsers send
and receive fewer data to/from servers in comparison to browsers controlled by
non-returning selenium controllers. Last but not least, returning browsers send
a considerable amount of bytes to non-returning browsers, which is not recipro-
cal. Figure 8 shows that non-returning browsers receive 23.39 (18.9 + 4.49) MB
from returning and non-returning browsers on average. Moreover, non-returning
browsers deliver 6.97 (2.48 + 4.49) MB to returning and non-returning browsers
in average. Nonetheless, the fact that they deliver almost 5 (out of 6.97) MB to
other non-returning browsers, is a sign of their contribution towards keeping files
replicated.

returning selenium non-returning selenium servers

returning selenium 15.57 18.90 0.13

non-returning selenium 2.48 4.49 0.22

servers 0.55 1.17 0.00

Fig. 8. Average data (in MB) transmitted with 5 returning selenium controllers - time
between visits in [10-40] seconds

5 Countermeasures

In this section, we cover how security-aware Web developers and browser’s users
can employ third-party tracking protection and Content Security Policy (CSP)
directives available today to thwart the attack. Also, the countermeasure dis-
cussion is continued by analysing relevant proposals for CSP that would help
against the attack but have not been adopted yet.

Third-Party Tracking: Previous research has shown that Internet users are
constantly under surveillance when sites include third-party functionality on the
Web [17]. Thus, browser vendors let users prevent third-party sites from tracking
them [18, 11], i.e. use cookies or any other permanent storage mechanism. This
implies that users can prevent the Abusive Script in Figure 1 to use their local
storage because it is a third-party site included by the Intended Site.

CSP: The Content Security Policy (CSP) specification is a tool for developers
and Web masters to restrict functionality and limit privileges of resources loaded
from their sites, through headers in the HTTP response. Restrictions include,
but are not limited to whitelisting sources from which content or scripts can
be loaded, which resources can execute scripts, or whether their environment
should be sandboxed. It must be noted, that CSP is not meant to supersede
proper output encoding and input validation, but it offers a second line of defense
implemented by browsers when a Web application has been compromised.

Abusing Web Browsers for Hidden Content Storage and Distribution 15

CSP contains a sandbox directive offering the same functionality offered by
the HTML5 attribute under the same name for Iframes [43]. Both mechanisms
would ensure that an Iframe cannot execute JavaScript unless the allow-scripts
used. And even if the allow-scripts keyword is used, sandboxed Iframes are
assigned to a random origin making all same-origin checks fail, which in turn
does not allow them to use Local Storage or cookies.

To prevent click-jacking, a developer can use the CSP frame-ancestors key-
word to ensure that a particular site can only be embedded in resources loaded
from a list of origins. If a security-aware Web master specifies a restrictive list
of frame ancestors for his site, this would prevent an attacker who has com-
promised the site from including this particular site as a Storage Frame in the
Abusive Script. In more practical terms, this means that an attacker injecting
the Storage Frame code in Origin1 depicted in Figure 1, cannot include Origin1
in his Abusive Frame due to the frame ancestors list. However, if an attacker
would host the Storage Frame on his own server, the attack would still work.

The script-src CSP directive specifies which scripts can be executed from
a particular site. Thus, with a restrictive policy allowing to include only secure
scripts, which cannot be compromised by the attacker, it becomes impossible
for the attacker to execute his Abusive Script or the Storage Frame function-
ality. In practice, this mechanism has faced several challenges, i.e. it has been
already shown that 94% of all policies deployed with CSP can be bypassed due
to unsafe exceptions [44]; however, the authors also proposed a new keyword, i.e.
strict-dynamic which is part of the current CSP draft, to ease the definition
of CSP script source policies.

Pending CSP Proposals: Now we cover CSP extensions limiting the stud-
ied attack which have been proposed but are either not implemented, or have
been discussed but are not included in CSP yet.

Hanna et. al have shown that developers tend to forget place proper origin
validations when there are scripts collaborating and exchanging messages over
the PostMessage API [20]. In 2011, one of the authors proposed to address this
issue by providing a declarative way to specify which sites can interact with
other origins (whitelist) as part of CSP, and this has been discussed over the
Web security standardization mailing list already [3]. Recently (5 years after the
initial discussion), a new issue has been created to decide where and how enforce-
ment on PostMessages would be meaningful for existent Web applications [4].
Although this discussion revolves around CSP3, PostMessage API enforcement
has not been included yet. If a Web master or developer would be able to spec-
ify with which origins can a Web application interact with using PostMessages,
the mechanisms to increase the Local Storage limit could be hindered from dis-
tributing and serving all the content over the broker shown in Figure 3.

Early warnings pointing out that WebRTC can be used for data exfiltra-
tion are visible as an issue for CSP created in 2014 [42, 46]. Later, certain sites
started abusing the WebRTC API to transfer data without the user’s knowledge
or control. Thus, there is a new thread for discussion on the latest CSP specifi-
cation [24], still open, but created 2 years after the initial issue. If users would

16 Juan D. Parra and Joachim Posegga

be able to restrict with which origins can a site communicate using WebRTC
data channels, the cross-origin feature provided by the invisible DataStore would
be removed from the attack. However, this feature is not part of the CSP3 [45]
draft.

6 Related Work

Using Local Storage to store information on the client without the user’s knowl-
edge has been introduced by Bogaard et. al [10]. Their work focused on placing a
single file on a Web server and distributing pieces of this file to several browsers.
Then, the Web developer would deploy a different application to retrieve the
content to the server again. The attack studied shares the motivation to keep
the user uninformed, but it neither builds a browser network nor circumvents
Local Storage quotas through PostMessages. From the storage abuse perspec-
tive, Feross discovered that a single website could instruct Local Storage to
store data in many subdomains. This lead to abuse the users’ disk, filling it
until the browser crashes or the whole disk is occupied [9, 1]. This relates to our
quota bypass mechanism as both rely on using different origins to increase the
quota. However, we have enhanced this approach to make the data accessible to
the Abusive Script, by implementing letting several origins collaborate through
an asynchronous message channel, the broker shown in Figure 3 implemented
through the postMessage API. There have been previous browser networks using
WebRTC to deliver static content. For example, PeerCDN [21] is a WebRTC-
based Content Distribution Network (CDN) using the visitor’s browser to share
the website’s static HTML content with other browsers. Owners of the company
claim to achieve a 90% bandwidth reduction for the server hosting the site. Zhang
et. al implemented another browser-based CDN called Maygh [47]. Maygh relies
not only on WebRTC, but also on Real Time Media Flow Protocol (RTMFP),
i.e. a closed source protocol accessible from Flash plug-ins. The authors exam-
ined the performance and the applicability of the CDN network by conducting
experiments where simulated browsers would visit the website using the CDN.
They conclude a reduction of 75% on bandwidth use on the operator of the
website’s side. Further, to avoid abusing the clients, the CDN network ensures
that users do not upload more than 10 MB to the CDN. From a slightly different
perspective, there is research work to transmit video streams between browsers
using WebRTC [29, 34, 37] to ease the burden imposed on servers hosting the
video streams. And there is a tool designed to implement a similar protocol to
Torrent within browsers called WebTorrent [2].

Although these three approaches execute JavaScript code to distribute con-
tent, there are important differences between the previously mentioned approaches
and ours. First of all, content and the video distribution networks do not use the
browsers as a storage system to put and retrieve information unrelated to what
they are consuming. Instead, these approaches replicate the content matching
what is being rendered to the visitor of the website. Also, these content distribu-
tion networks, do not collude against the user bypassing the storage restriction

Abusing Web Browsers for Hidden Content Storage and Distribution 17

as the attack described here does. Also, they do not leverage data channels across
different origins, which is part of the attack presented.

7 Conclusion

Cross-window and browser-to-browser communication channels provided by the
postMessage API WebRTC, respectively, bring more flexibility to Web develop-
ers; however, adding new communication channels to an already highly complex
security model is problematic. Specifically, we show that despite extensive re-
search on new APIs added to the browser [20, 25], there are combinations of
browser APIs posing threats to browsers. An attacker serving malicious code,
e.g. through an advertisement network, can access persistent storage mechanisms
in browsers beyond the intended quota per site. Furthermore, circumventing the
local storage enforcement can be combined with coercing the visitor’s browser to
communicate stored data through browser-to-browser links, even when the site’s
origins of sites loaded by browsers differ. Thus, an attacker can create a browser
network for data storage and distribution in a hidden manner. As discussed in
Section 2.1, the attacker requires neither access to the DOM nor access to the
JavaScript execution context of the compromised website, i.e. Intended Site.

The attack we presented has several key differences with respect to “com-
mon” Web attack scenarios. On the one hand, the attacker abuses the resources
available to the browser instead of targeting a Web application, e.g. to compro-
mise the user’s credentials. On the other hand, the attack presented here goes
beyond a single misbehaving script. Instead, several colluding scripts are loaded
by the initial Abusive script. This goes against some of the typical assumptions
of the current Web security model and is visible in three dimensions: Iframe
isolation, cross-window communication, and cross-browser communication. The
issue with Iframes pertains to the local storage origin-based isolation, which
is useful for data access control but enables the storage quota explosion. For
cross-window communication, the PostMessage assumes that a window should
protect itself against other rogue windows sending malicious messages. This fails
to consider two malicious windows cooperating to abuse the browser (instead of
attacking the window receiving messages). A similar principle applies to cross-
browser communication. Although it seems that browser-to-browser channels
do not pose a threat to the user as they cannot steal information from other
JavaScript contexts, they can be used to create an overlay network of browsers
to host potentially malicious information. Aside from saving computation re-
sources, an attacker can force browsers to store information used for criminal
activities, while avoiding the risk associated with hosting and distributing the
information himself. In other words, an attacker can complicate forensic analysis
greatly by distributing his malicious information across browsers, yet being able
to retrieve it when needed.

Although resource abuse cases have not been included in the security model,
we also show how mechanisms initially intended against click-jacking, third-party
tracking and cross-site scripting can be used to prevent the attack. With this

18 Juan D. Parra and Joachim Posegga

paper, we expect to raise awareness about resource abuse through browsers to
ensure that existing countermeasures stay in place.

Acknowledgements

This research has been supported by the EU under the H2020 AGILE (Adaptive
Gateways for dIverse muLtiple Environments), grant agreement number H2020-
688088.

References

1. Aboukhadijeh, F.: The Joys of HTML5: Introducing the new HTML5 Hard Disk
Filler API. www.filldisk.com/, accessed: 2018-04-15

2. Aboukhadijeh, F.: Webtorrent. https://github.com/feross/webtorrent (2014),
accessed: 2018-04-15

3. Akhawe, D.: CSP and PostMessage. https://lists.w3.org/Archives/Public/

public-web-security/2011Dec/0020.html, accessed: 2018-04-15
4. Akhawe, D.: do we want a directive to control postMessage explicit channels

outbound? . https://lists.w3.org/Archives/Public/public-web-security/

2011Dec/0020.html, accessed: 2018-04-15
5. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a Formal Foun-

dation of Web Security. In: Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium. pp. 290–304. CSF ’10, IEEE Computer Society, Wash-
ington, DC, USA (2010). https://doi.org/10.1109/CSF.2010.27

6. Alexa Traffic Ranking and visitor statistics for 7 years. http://www.rank2traffic.
com/, accessed: 2018-04-15

7. Antonatos, S., Akritidis, P., Lam, V.T., Anagnostakis, K.G.: Puppetnets: Misusing
Web Browsers As a Distributed Attack Infrastructure. ACM Trans. Inf. Syst. Secur.
12(2) (2008)

8. Athanasopoulos, E., Makridakis, A., Antonatos, S., Antoniades, D., Ioannidis, S.,
Anagnostakis, K.G., Markatos, E.P.: Antisocial Networks: Turning a Social Net-
work into a Botnet. In: Proceedings of the 11th International Conference on Infor-
mation Security. pp. 146–160. ISC ’08, Springer-Verlag, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85886-7 10

9. Web Code Weakness allows Data Dump on PCs. http://www.bbc.com/news/

technology-21628622 (2008), accessed: 2018-04-15
10. Bogaard, D., Johnson, D., Parody, R.: Browser web storage vulnerability investi-

gation html5 localstorage object. In: Proceedings of the International Conference
on Security and Management. pp. 1–7 (07 2012)

11. Clear, enable, and manage cookies in Chrome. https://support.google.com/

chrome/answer/95647, accessed: 2018-04-15
12. Cimpanu, C.: Cryptojacking Script Found in Live Help Widget, Impacts

Around 1,500 Sites. https://www.bleepingcomputer.com/news/security/

cryptojacking-script-found-in-live-help-widget-impacts-around-1-500-

sites/, accessed: 2017-11-25
13. Clicktale: Web-Aanalytics Benchmark Q2 2013. https://research.clicktale.

com/web_analytics_benchmarks.html, accessed: 2018-04-15

Abusing Web Browsers for Hidden Content Storage and Distribution 19

14. Dias, D.: WebRTC Explorer. https://github.com/diasdavid/webrtc-explorer,
accessed: 2018-04-15

15. Docker. https://www.docker.com/, accessed: 2018-04-15
16. Dpkt package. https://pypi.python.org/pypi/dpkt, accessed: 2018-04-15
17. Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J., Narayanan,

A., Felten, E.W.: Cookies that give you away: The surveillance implications of
web tracking. In: Proceedings of the 24th International Conference on World
Wide Web. pp. 289–299. WWW ’15, International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, Switzerland (2015).
https://doi.org/10.1145/2736277.2741679

18. Disable third-party cookies in Firefox to stop some types of track-
ing by advertisers. https://support.mozilla.org/en-US/kb/disable-third-

party-cookies, accessed: 2018-04-15
19. Grossman, J., Johansen, M.: Million Browser Botnet. https://www.blackhat.com/

us-13/briefings.html, accessed: 2018-01-15
20. Hanna, S., Shin, E.C.R., Akhawe, D., Boehm, A., Saxena, P., Song, D.: The em-

peror’s new APIs: On the (in) secure usage of new client-side primitives. In: Work-
shop on Web 2.0 Security and Privacy (W2SP) (2010)

21. Hiesey, J., Aboukhadijeh, F., Rajah, A.: PeerCDN. https://peercdn.com/ (2013),
accessed: 2018-04-15

22. Hoffman, J.J.: New Jersey Division of Consumer Affairs Obtains Settlement with
Developer of Bitcoin-Mining Software Found to Have Accessed New Jersey Com-
puters Without Users’ Knowledge or Consent. http://www.njconsumeraffairs.
gov/News/Pages/05262015.aspx, accessed: 2018-04-15

23. J., R.: Rfc5245: Interactive connectivity establishment (ice): A protocol for net-
work address translator (nat) traversal for offer/answer protocols. RFC 5245 (April
2010), https://tools.ietf.org/html/rfc5245, accessed: 2018-04-15

24. Kesteren, A.v.: WebRTC RTCDataChannel can be used for exfiltration. https:
//github.com/w3c/webappsec-csp/issues/92, accessed: 2018-04-15

25. Lekies, S., Johns, M.: Lightweight Integrity Protection for Web Storage-driven
Content Caching. In: Workshop on Web 2.0 Security and Privacy (W2SP) (2012)

26. Lekies, S., Stock, B., Johns, M.: 25 million flows later: Large-scale detection of dom-
based xss. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. pp. 1193–1204. CCS ’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2508859.2516703

27. Mahy, R., P., M.: Rfc5766: Traversal using relays around nat (turn): Relay ex-
tensions to session traversal utilities for nat(stun). RFC 5766, IETF (April 2010),
https://tools.ietf.org/html/rfc5766

28. Maunder, M.: Wordpress plugin banned for crypto mining. https://www.

wordfence.com/blog/2017/11/wordpress-plugin-banned-crypto-mining/, ac-
cessed: 2018-01-15

29. Meyn, A.J.R., Nurminen, J.K., Probst, C.W.: Browser to Browser Media Streaming
with HTML5. Master’s thesis, Aalto University (2012), https://aaltodoc.aalto.
fi/handle/123456789/6094

30. Mozilla Developer Network(MDN) - Window.postMessage(). https://developer.
mozilla.org/en-US/docs/Web/API/Window/postMessage (April 2015), accessed:
2018-04-15

31. Narayanan, A., Jennings, C., Bergkvist, A., Burnett: WebRTC 1.0: Real-
time Communication Between Browsers. W3C working draft, W3C (Sep 2013),
http://www.w3.org/TR/2013/WD-webrtc-20130910/

20 Juan D. Parra and Joachim Posegga

32. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You are what you include: Large-scale evaluation of
remote javascript inclusions. In: Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security. pp. 736–747. CCS ’12, ACM, New York, NY,
USA (2012). https://doi.org/10.1145/2382196.2382274

33. NumPy. http://www.numpy.org/, accessed: 2018-04-15
34. Nurminen, J., Meyn, A., Jalonen, E., Raivio, Y., Garcia Marrero, R.: P2p me-

dia streaming with html5 and webrtc. In: Computer Communications Work-
shops (INFOCOM WKSHPS) 2013 IEEE Conference on. pp. 63–64 (April 2013).
https://doi.org/10.1109/INFCOMW.2013.6970739

35. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point
to us. In: Proceedings of the 17th Conference on Security Symposium. pp. 1–15.
SS’08, USENIX Association, Berkeley, CA, USA (2008)

36. Rescorla, E.: ietf-draft: WebRTC Security Architecture. https://tools.ietf.

org/html/draft-ietf-rtcweb-security-arch-11 (March 2015), accessed: 2018-
04-15

37. Rhinow, F. and Veloso, P.P. and Puyelo, C. and Barrett, S. and Nuallain,
E.O.: P2P live video streaming in WebRTC. In: Computer Applications and In-
formation Systems (WCCAIS), 2014 World Congress on. pp. 1–6 (Jan 2014).
https://doi.org/10.1109/WCCAIS.2014.6916588

38. Rosenberg, J., Mahy, R., Matthews, P., D., W.: Rfc5389: Session traversal utilities
for nat (stun). RFC 5389, RFC Editor (October 2008), https://tools.ietf.org/
html/rfc5389

39. SeleniumHQ: Browser Automation. http://www.seleniumhq.org/, accessed: 2018-
04-15

40. Telegraph, T.: YouTube shuts down hidden cryptojacking adverts .
http://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-

hidden-crypto-jacking-adverts/, accessed: 2018-01-15
41. Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N., Kapravelos, A., Mccoy,

D., Nappa, A., Paxson, V., Pearce, P., Provos, N., Rajab, M.A.: Ad injection at
scale: Assessing deceptive advertisement modifications. In: Proceedings of the 2015
IEEE Symposium on Security and Privacy. pp. 151–167. SP ’15, IEEE Computer
Society, Washington, DC, USA (2015). https://doi.org/10.1109/SP.2015.17

42. Thomson, M.: CSP for WebRTC. https://lists.w3.org/Archives/Public/

public-webappsec/2014Aug/0162.html, accessed: 2018-04-15
43. W3CScools: HTML Iframe sandbox Attribute. https://www.w3schools.com/

tags/att_iframe_sandbox.asp, accessed: 2018-04-15
44. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: CSP Is Dead, Long Live

CSP! On the Insecurity of Whitelists and the Future of Content Security Policy.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1376–1387. CCS ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2976749.2978363

45. West, M.: Content Security Policy Level 3. https://www.w3.org/TR/2016/WD-

CSP3-20160913/, accessed: 2018-04-15
46. West, M.: WebRTC via ’connect-src’? https://www.w3.org/2011/webappsec/

track/issues/67, accessed: 2018-04-15
47. Zhang, L., Zhou, F., Mislove, A., Sundaram, R.: Maygh: Building a cdn from

client web browsers. In: Proceedings of the 8th ACM European Conference on
Computer Systems. pp. 281–294. EuroSys ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2465351.2465379

