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Abstract. Domain Name System (DNS) domains became Internet-level
identifiers for entities (like companies, organizations, or individuals) host-
ing services and sharing resources over the Internet. Domains can specify
a set of security policies (such as, email and trust security policies) that
should be followed by clients while accessing the resources or services
represented by them. Unfortunately, in the current Internet, the policy
specification and enforcement are dispersed, non-comprehensive, inse-
cure, and difficult to manage.
In this paper, we present a comprehensive and secure metapolicy frame-
work for enhancing the domain expressiveness on the Internet. The pro-
posed framework allows the domain owners to specify, manage, and pub-
lish their domain-level security policies over the existing DNS infrastruc-
ture. The framework also utilizes the existing trust infrastructures (i.e.,
TLS and DNSSEC) for providing security. By reusing the existing infras-
tructures, our framework requires minimal changes and requirements for
adoption. We also discuss the initial results of the measurements per-
formed to evaluate what fraction of the current Internet can get benefits
from deploying our framework. Moreover, overheads of deploying the
proposed framework have been quantified and discussed.
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1 Introduction

Domain names are a de facto standard way to identify computers, networks, ser-
vices and other resources on the Internet. Domain security policies provide a way
through which domain owners can specify the restrictions or rules that should
be followed while accessing the computers, services or the resources represented
by their domain names.

Currently, most of the domain security policies are either specified individ-
ually and published using the DNS infrastructure (e.g., SPF [10], DKIM [3],
DMARC [13] — see subsection 2.3), or are specified at the domain web servers
and communicated to policy agents 1 via dedicated HTTP headers (e.g., HSTS [7]

1 A policy agent is a software component that processes and enforces policies. It can
be implemented within a user agent (such as a browser) or within a server software
that supports a given policy.
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or HPKP [5] — see subsection 2.3). Finally, the obtained security policies are
enforced by policy agents.

In some cases, the enforcement of security policies is not automated and
requires user’s involvement (i.e., users are making policy decisions). One ex-
ample of such a case is accepting or denying a secure connection to a domain
that presented an expired certificate. However, most of the security policies are
standardized and governed by software vendors and Internet communities, and
domains cannot influence this process and have to just follow these standards
for specification of their security policies.

The current mechanisms of security policy specification and enforcement are
unsatisfactory and the future Internet requires a higher level of domain expres-
siveness for the following reasons.

1. Users are not proficient enough to make security decisions when a policy
agent requires that [4]. In the previous studies, it was observed that most
of the users do not even notice the browser security indicators (like pad-
lock icons), or they ignore warnings displayed to them by browsers and just
clickthrough [4,12].

2. For scalability reasons, software vendors and the Internet community can
only introduce global and generic policies without focusing on domain-specific
policies. Obviously, global policies might not fit all domains as domains have
different resources, services, and business models. One concrete example is a
non-security-critical website (like a news or an informational website) that
mostly displays a read-only content to its visitors and makes profits on ads.
In such a case, the website may want to relax its security policies and display
the content (and ads) to visitors, even if some security properties are not met
(e.g., the website’s certificate is expired). On the other hand, an e-banking
website may need a stricter security policy that must generate an error and
does not let its users interact with the website in a case of certificate er-
rors. Domains are usually more aware of their security requirements and
therefore they are the right candidates for policymakers. Unfortunately, the
current policy specifications barely consider domain-specific requirements as
of today.

3. Another consequence of policies implemented by software vendors is that
these policies may be inconsistently enforced by different software imple-
mentations, especially, when a policy specification leaves some choices to
developers. For instance, if browsers do not implement policy enforcement
uniformly, it may cause a situation where users can switch from one browser
to another in order to overcome a generated policy error (actually, such a
behavior has been observed in the past). Hence any new framework of secu-
rity policy specification could benefit from providing a way through which
security policies can be specified and managed by domains with a relatively
less involvement of software vendors, user agents, or even the users.

4. Downgrade attacks, like stripping of policy headers, is another problem. Pol-
icy headers can be manipulated by a Man-in-the-Middle (MITM) adversary,
or at client-ends via modified implementation (like malicious browser exten-



sions). Such a stripping of headers may lead to downgrade attacks, as an
adversary can pretend to a client that the contacted domain does not deploy
the given enhancement or policy. Third party extensions such as Modify head-
ers for Google Chrome [11] can be used to modify or strip off HTTP headers
making it easier to compromise the security policies at the application layer
itself. Downgrade attacks (arising from backward compatibility [20]) can be
possible if an exploitable backward compatibility is provided by the user
agents.

5. Already a set of security policies is getting expressed via domains (see sub-
section 2.3). Hence, the Internet security may get benefited if domains can
easily express and manage more security policies in future.

For a better expressiveness of domain level security policies, we propose a
metapolicy framework through which domains can specify and manage a com-
prehensive set of their security policies. The proposed framework leverages the
DNS infrastructure for publishing and accessing metapolicies, and the trust in-
frastructures of TLS or DNSSEC to provide the necessary layer of security.

2 Background

2.1 Domain Name System

Domain Name System (DNS) [15] is a decentralized and hierarchical system
which stores information about domains. Different types of information are
stored in different resource records. Some of the DNS resource record types
include A record that points a domain to an IPv4 address, CNAME record that
points one domain to another domain, TXT record for storing human-readable
textual information, or MX records for point to domain’s mail exchangers. DNS
is mostly known for resolution of domain names to IP addresses, however cur-
rently, the DNS is getting utilized for storage of email policies, information on
domain certificates, and other domain related information. Publishing policies
over DNS has an inherent benefit. As most of the times a DNS resolution pre-
cedes the communication with a domain, it is easy for the initiating party to
fetch security policies prior to the connection. This also removes the need for
communication with any other party (only DNS servers are contacted).

DNS Security Extensions (DNSSEC) [14] is an extension of DNS which pro-
vides security to the DNS records by adding cryptographic signatures on top of
it. For each DNS zone a zone signing key (ZSK) pair and ZSK’s private key is
used to sign the DNS records (the corresponding signatures are stored in special
RRSIG resource records). The ZSK public key is stored in the DNSKEY record.
The DNSKEY record is also signed with the private key of another key pair known
as Key Signing Keys (KSK). The chain of trust is followed till the root. This
addition of signature on top of DNS records help in verifying the origin of the
DNS records and in identifying if the records have been tempered during the
transit via a MITM attack.



2.2 Transport Layer Security

Transport Layer Security (TLS) is a key protocol that provides confidentiality
and data integrity on the Internet. The TLS handshake protocol is the initial
phase of the TLS, and it provides a way through which the clients and the servers
can verify each other identity via X.509 digital certificates [9] issued to them by
trusted certification authorities (CAs).

X.509 public-key infrastructure (PKI) certificates are issued to domains (such
as google.com) by trusted intermediate CAs (such as Google Internet Authority
G3) forming trust chains. The certificate contains the details of the domain’s
identity and the domain’s TLS certificate’s public key. The information in the
certificate is trusted as a trusted CA has signed it asserting its correctness. X.509
certificates are either signed by other intermediate CAs or the root CA and then
a root CA (such as GlobalSign) may have a self-signed X.509 certificate that
is stored by clients. The chain of trust can be verified till root CA to identify
if the certificate issued to the domain is valid. Usually, only servers have their
certificates (i.e., clients’ identities are not verified by servers).

As communicating parties can verify their identifies, the TLS handshake
protocol allows them to securely exchange secret session keys. The session key is
then used for the encryption of data over a communication session between the
clients and the servers.

2.3 Security Policies

Email and the TLS PKI are two key areas in which domains are currently ex-
pressing their security policies. Email policies are one of the oldest policies that
rely upon the DNS infrastructure.

The Sender Policy Framework (SPF) [10] helps the receiving email server
to identify whether the host from which the email has been originated is an
authorized entity to send an email to the domain’s owner. Spam and phishing
emails can be filtered using this email policy. To deploy this policy the domain
needs to add a TXT record in its DNS zone file, specifying authorized addresses
(that can send emails on behalf of the domain).

DomainKeys Identified Mail (DKIM) [3] helps in verifying the authenticity
of a given email. A domain supporting DKIM digitally signs the outgoing emails
using a private key. The domain publishes the corresponding public key in the
DKIM-specific DNS TXT records. A receiving email server accesses the public
key from the DNS records of the email’s originating domain. This public key is
used to verify the digital signature of the email. DKIM aims to ensure that the
email has not been modified in the transit and is signed by the correct outbound
email server authorized to send email for that domain.

Domain Message Authentication Reporting and Conformance (DMARC) [13]
is a policy system that allows domain owners to specify whether SPF or DKIM
or both should be used while sending the emails for that domain and what the
receiving email servers should do in the case of policy failures.



DNS-based Authentication of Named Entities (DANE) [8] is a TLS PKI
policy system that provides a way to authenticate TLS entities without a CA.
DANE introduces new TLSA records, that are published over DNS and signed
are via DNSSEC. TLSA records provide domains a way through which they can
specify which CAs can issue a valid TLS certificate for a domain and which TLS
certificate to use for a specific service. If a browser supporting DANE get a TLS
certificate for a domain which is not from the domain specified CA list, then
it can display a warning to the user mentioning that the connection with the
domain is insecure.

Certification Authority Authorization (CAA) [6] provides a mechanism by
which domains can specify (over DNS) which CAs can issue certificates for them
and their subdomains. It is required for a CA to retrieve a CAA record for a
particular domain and follow the rules and restrictions before issuing a certificate
for that domain.

Some policies are defined using HTTP headers, instead of employing the
DNS infrastructure. For instance, HTTP Strict Transport Security (HSTS) [7]
allows web operators to mandate access to their websites on HTTPS connections.
Whenever a browser accesses a website for the very first time the website replies
back with an HSTS header that specifies that the subsequent connections should
be conducted over HTTPS. The browser caches this information and connects
the website only via HTTPS even if the user types a URL with HTTP specified.
Around 4.37% of the domains enforce HSTS and there has been an increase of
around 69% in its usage in Q2 2017 [16].

Similarly, HTTP Public Key Pinning (HPKP) [5] is a policy mechanism that
allows domains to express their keys or keys of their CAs using HTTP headers.
Around 0.71% of domains on an average are expected to have enforced HPKP.
There has been an increase of 42% in the use of HPKP in Q2 2017 [16]. However,
browser vendors decided to obsolete HPKP due to operational issues [12].

The deployment of the presented policies was recently analyzed by Szala-
chowski and Perrig [19], and Amann et al. [2].

3 Requirements and Challenges

In the current Internet, there is no comprehensive and secure framework through
which the security policies can be easily defined, managed, stored, and published
by domain owners. We identify a set of requirements that such a security policy
framework should follow to enhance the domain expressiveness on the Internet.
These include:

1. Easy Management: The new policy specification framework or protocol
must make it easy for domains to specify, manage, and publish various se-
curity policies at one place with a sufficient level of security from known
threats.

2. Security: The protocol must provide security for policies, i.e., policy agents
can verify their authenticity (i.e., that a given policy was indeed produced
by the corresponding domain).



3. Deployability: The protocol must be easy to deploy, manage, and use.
Moreover, policies should be disseminated and secured using the existing
infrastructures to minimize operational and deployment costs.

4. Recoverability: The protocol should not end up in an unrecoverable state.
It must provide suitable recovery mechanisms in the case of a policy miscon-
figuration.

5. Adaptability: The protocol must be adaptable in the sense that it can coex-
ist with the currently deployed mechanisms without needing major changes.

6. Availability: Policies should be highly available and publicly accessible.

4 A High-level Overview

To fulfill the above requirements we propose a comprehensive and secure metapol-
icy framework for specification and management of domain security policies. The
framework allows the domains to specify, manage all the existing domain-level
security policies as a metapolicy. Metapolicies are published in DNS and are
secured using the existing TLS or DNSSEC PKI infrastructure.

Trust Infrastructure 
(TLS/DNSSEC PKI)

Metapolicy 

Header

Policies


Signature

Certificate

DNS Infrastructure 
3) Encapsulation  
    and Publishing

Domain’s 
Owner

Domain’s 
Server

Client

1) Metapolicy  
    Specification

2) Metapolicy  
    Authentication

4) Metapolicy  
    Lookup

5) Metapolicy Validation
6) Connection Establishment and Metapolicy Enforcement

Fig. 1. A high-level overview of the metapolicy framework.

A high-level abstract overview of the proposed metapolicy framework is given
in Figure 1 and the sequential workflow is described as follows.



1. Metapolicy Specification: The domain-level policies are specified by the
domain owners using the policy specification format of the metapolicy frame-
work (details of the metapolicy format is given section 5).

2. Metapolicy Authentication: The metapolicy is then signed using the
domain’s X.509 certificate private key or DNSSEC key. Since the domain’s
TLS certificate (or the DNSSEC key) can be verified, the domain binding
with the metapolicy can be verified too.

3. Encapsulation and Publishing: Finally the signed metapolicy gets pub-
lished in the DNS. To this end, the metapolicy has to be encoded as resource
records. Publishing metapolicy in the DNS decreases the infrastructure cost
and latency.

4. Metapolicy Lookup: Policies can then be queried by policy agents when-
ever a domain is going to be visited by a user (i.e., when a DNS resolution
for a domain takes place).

5. Metapolicy Validation: The metapolicy’s signature is verified using the
domain’s TLS certificate public key or the DNSSEC public key. All informa-
tion required to validate the metapolicy is published as its part.

6. Connection Establishment and Metapolicy Enforcement: Once the
metapolicy is verified the content of the metapolicy (individual security poli-
cies) are extracted and the specifications are enforced by the policy agents
during the access to the domain’s services and resources.

5 Details of the Framework

In the proposed framework all the domain security policies are included within
a single metapolicy. Every metapolicy consists of:

– Header: This section contains metadata about the metapolicy.

– Policies: This section contains the actual content of the various security
policies which are specified by the domain owner.

– Signature: This section contains a signature created using the domain’s
TLS certificate key or DNSSEC key over the metapolicy header and the
policies section.

– Certificate: This section contains the domain’s TLS certificate chain which
is necessary to verify the authenticity of the created signature (i.e., whether
the metapolicy was signed by the correct domain). When the metapolicy is
signed with the DNSSEC key this field is empty, as the DNSSEC key of the
domain can be obtained through the DNSKEY record.

The Header section contains the basic metadata about the metapolicy. In
particular, it includes the following:

– Domain name on which the metapolicy is applicable. This is stored as a
string.



– Version number of the metapolicy. The version increments when the metapol-
icy changes and an update happens. The version is represented as an integer.
For example, a value of 1 in Version will represent the first version of the
metapolicy.

– Valid From, Valid To dates in the mm/dd/yyyy format to specify the time
period in which the metapolicy is considered as valid. Time is expressed in
the UTC standard.

– Parts specify the number of DNS TXT records (see below) that needs to be
downloaded to get the contents of the complete metapolicy. If the complete
metapolicy can be wrapped up in 512 bytes the value of Parts is set to 1
else it will always be greater than 1 and will correspond to the number of
TXT records needed to store the complete metapolicy. This field is required
to encapsulate and decapsulate metapolicies over DNS protocol.

– Subdomains section lists the subdomains which will also follow the speci-
fied policies. Hence inheritance is provided as the information of whether
the subdomains will follow the domain policies can also be specified in the
metapolicy. This section can store subdomain names as a comma-separated
list (it can be also a wildcard domain).

The Policies section contains the actual content of domain security policies.
Each policy has to specify these fields in the domain’s metapolicy:

– ID specifies a unique RFC number of a specific security policy.

– Specification section contains the actual content of a policy.

– Fail section instruct the clients about what they should do if a policy failure
happens (an error in a policy specification or an error during its enforce-
ment). The failing function can be either hard, soft, or ignore instructing
the policy agent, that if a policy failure happens, the client should either
immediately terminate the connection (hard), or soft-fail (soft) and show a
warning to the user, or just ignore this policy failure and proceed normally.
Domains can also instruct clients to do error reporting to a set of email
addresses in case of failures.

The Signature section stores the signature computed over the metapolicy
Header and Policies sections. The key used for signing the metapolicy corre-
sponds to the private key(s) of the domain’s TLS certificate or domain’s DNSSEC
key.

The last section of the metapolicy is the Certificate section that stores
the domain’s X.509 certificate chain (i.e., domains certificate and certificates
of intermediate CAs). This certificate chain is used by the policy agents for
validation of the domain’s TLS certificate and the signature of the metapolicy.
The storage of all the certificates (required to establish the chain of trust) in the
domain’s metapolicy avoids the extra efforts of locating and downloading these
certificates by the policy agents. When the metapolicy is authenticated with the
DNSSEC key this section is empty.



Finally, the complete metapolicy is published via DNS. To do so, it has
to be encapsulated into DNS resource records. A natural resource record type
to store an arbitrary information is TXT. However, as shown by Szalachowski
and Perrig [19] to transmit resource records reliably, they should not exceed
512 bytes. Therefore, if the total size of the metapolicy exceeds 512 bytes the
metapolicy record is stored in parts up to 512 bytes each. The first part is pub-
lished at metapolicy.<domain name> and the policy agents learn the number
of parts by accessing the value of the Parts field from the metapolicy header
(located in the first part). Other parts of a metapolicy are accessed by querying
<part number>. metapolicy.<domain name> (e.g., 2. metapolicy.fb.com).

An example policy is shown in Figure 2.

Header:

Domain: a.com

Version: 1

Valid From: 12/09/2016 UTC

Valid To: 12/09/2018 UTC

Parts: 1

Subdomains: example.a.com, verbal.a.com

Policies:

Id: 7288

Specification: v=spf1 a include:aspmx.googlemail.com ~all

Fail: hard, report@a.com

Id: 6376

Specification:v=DKIM1; k=rsa; p=TAMAfMA0GCSqGSIb3DQLOGE...

Fail: soft, report@a.com

Signature: 9243152cd53fe3d1...

Certificate: MIIEBDCCAuygAwIBAgIDAjJ...

Fig. 2. An example of the metapolicy.

5.1 Metapolicy Lifetime

Creation A domain creates its metapolicy by specifying the security policies in
the format specified in Figure 2. The domain then digitally signs the metapolicy
with the private key(s) associated with its X.509 TLS certificate or with its
DNSSEC private key. Finally, the signed metapolicy is published in the DNS as
a series of TXT records.



Querying and enforcing meta policies Whenever a policy agent receives a
request to connect to a domain it obtains the domain’s metapolicy (if not cached)
from the DNS TXT records of that domain. However, if the metapolicy for a
domain has already been cached by the policy agent only the first DNS TXT record
gets downloaded. The cached metapolicy is utilized and the complete metapolicy
from the DNS does not get downloaded if the version of the metapolicy in the
DNS is not higher than the version of the cached metapolicy.

Integrity and authenticity of the metapolicy content are guaranteed by the
digital signature. To validate a metapolicy the policy agent must verify the
Signature with the public key available from the domain’s TLS certificate or
DNSSEC. The client must also verify the domain’s TLS certificate by validating
the trust chain. If the signature verification succeeds the content of the specific
security policies (identified by their ID) are fetched and enforced by the policy
agent. Policy failures are handled and reported depending on the failing scenario
specified (Fail).

A pseudocode that describes querying and enforcing of metapolicies is given
in algorithm 1.

Updates and Recovery An update happens when at least one of the metapol-
icy section needs to be updated. The changes can be modifications of critical
parameters (like adding or removing of security policies); update of the Valid

From and Valid To field etc... In all cases, the metapolicy Version needs to be
updated and a new signature must be calculated and placed in the Signature

field of the metapolicy.

In the case when a cached metapolicy expires (i.e., the current date is greater
than Valid To) the policy agent will fetch a new metapolicy published by the
domain in the DNS. If by any chance the domain has not published a new
metapolicy (a metapolicy with higher Version) the policy agent will use the
cached metapolicy and report it to the domain. Because the policy agent queries
the metapolicy header during each DNS query (i.e., each connection), it will
download the newly published metapolicy once it finds that the Version number
of the metapolicy in DNS is higher than that of the one stored in its local cache.

If the private key of the domain’s TLS certificate or DNSSEC gets compro-
mised or lost the last metapolicy published by the domain will still remain valid.
This is because the policy agents can still verify the metapolicy using the do-
main’s public key which will hold true until the TLS certificate corresponding to
the compromised key gets revoked or a new DNSSEC key pair is generated and
published. The certificate revocation does not affect the metapolicy framework
because the policy agents who have already cached an old metapolicy will not
be verifying the chain of trust again and whenever they find a higher version of
metapolicy published in the DNS they will use the new chain of trust to vali-
date the domain’s new TLS certificate or DNSSEC key which is used to sign the
metapolicy. Also, the metapolicy framework does not get affected when some
of the intermediate CAs (in the domain’s TLS certificate chain of trust) go out
of business for the same reason. However, whenever a new TLS certificate is



Algorithm 1: Querying and Enforcing Metapolicy

MDomain: Domain’s metapolicy
SPolicy: Metapolicy’s signature
DNSTXT: DNS TXT records storing the domain’s metapolicy.
DNSTXT Part 1: The first part of the metapolicy’s DNS TXT record containing
the metapolicy’s header information.

MDomain(Cache): Client cached version of Domain’s metapolicy specifications.
Cache: Client’s/Server’s local storage to store the metapolicy.
Policy: Stores the content of a security policy.
Return: Stores the execution status of the metapolicy querying and enforcement
operations.

ID: ID represents the RFC number of a specific security policy.
Cached(X) : Checks if the metapolicy for domain X is cached in the client’s local
storage.

FetchContent(X) : Fetches the content of a security policy identified by ID X.
Verify(X) : Verify if the signature (SPolicy) of the metapolicy (represented by
X) is valid using the domain’s TLS Certificate or DNSSEC key.

Delete(X) : Deletes the contents of the metapolicy X from the client’s cache.
Enforce(X ): Enforce the specifications of policy X and return the execution
status as either success or failure (soft, hard, ignore).

if Cached(MDomain) then
MDomain ← DNSTXT Part 1

if MDomain(Cache) → Version is equal to MDomain → Version then
Policy ← FetchContent(ID) (From Cache)
Return ← Enforce(Policy)

else
Delete(MDomain(Cache))
MDomain ← DNSTXT

if Verify(SPolicy) == Success then
Policy ← FetchContent(ID)
Cache ← MDomain

Return ← Enforce(Policy)
else

Return ← hard

end

end

else
MDomain ← DNSTXT

if Verify(SPolicy) == Success then
Policy ← FetchContent(ID)
Cache ← MDomain

Return ← Enforce(Policy)
else

Return ← hard

end

end



introduced the domain must remove the old certificate from the Certificate

section and add the new certificate belonging to the new chain of trust. If with
that change a domain’s private/public keypair was changed, the domain must
also update the old signature in the Signature section.

6 Analysis

6.1 Security Analysis

We assume that the first connection to the DNS is not under attack because
if that is the case then a MITM adversary could just censor all subsequent
communication and clients would never reach a metapolicy. We also assume
that the user’s system and the policy agent are trusted and that the system is
free from host-based malware. Study of the effects of malware on the security of
the proposal is currently out of the scope of the current research work.

With the above assumptions the metapolicy framework can be compromised
when: (1) the policy agents or user does a wrong decision in case of policy failures,
or (2) when the key used to sign the metapolicy gets compromised or used PKI
is compromised.

For the first case, as all the information resides within the metapolicy and is
specified by the domain owners; the policy agents or the users are not involved
in decision making during policy failures. Hence attacks arising from user’s bad
decision making or from provisions of backward compatibility cannot happen if
the domain does not specify to take a user input or want the policy agents to
fallback during a policy failure. The possibility of downgrade attacks also gets
reduced with the use of our metapolicy framework because the policy agents can
cache the metapolicy records.

An adversary able to compromise a domain’s private key, or able to obtain a
malicious certificate on behalf of the domain can create a malicious metapolicy.
In such a case, the domain owner can initiate the recovery mechanisms, revoking
the malicious public key and establishing a new metapolicy.

6.2 Deployability

As the proposed scheme uses the TLS or DNSSEC key(s) for signing the metapol-
icy, all the domains supporting DNSSEC or TLS can deploy the proposed metapol-
icy framework. To find out how many domains can possibly deploy our scheme
we conducted an experiment over a dataset of 120K top websites received from
the Alexa top 1 million domains list [1]. We used the tls-scan library [17] to
obtain these statistics. From our experiments, we identified that around 77.8%

websites support TLS and 2.6% of the websites supports DNSSEC. Hence, a
large fraction of websites can implement the metapolicy framework even today.

We also measured the percentage of domains which may get benefited via
metapolicy framework. To calculate the same we conducted an experiment to
obtain the number of websites that today implement a security policy that can



be expressed by our metapolicy framework. The host command of Linux was
used to fetch the records of various email and TLS policies from DNS. The
outcomes of the experiment are given in Table 1. The obtained results indicate
that majority of domains (around 76.3%) sets at least one security policy today.

Table 1. Number of websites supporting various domain policies

Policy Supporting Percentage
Websites

SPF 68213 56.00%
DKIM 56704 46.60%

DMARC 11973 9.80%
DNSSEC 3217 2.60%

CAA 1213 0.99%
DANE 34 0.03%

Table 2. Number of domains supporting multiple security policies

# of Policies # of Domains Percentage # of Policies # of Domains Percentage

At least 1 92801 76.30% 1 53057 43.62%
At least 2 39744 32.67% 2 31755 26.24%
At least 3 7989 6.50% 3 7233 5.94%
At least 4 756 0.62% 4 699 0.57%
At least 5 57 0.05% 5 50 0.04%
At least 6 7 0.01% 6 7 0.01%

6.3 Overheads

Metapolicy Size Size of a TLS certificate chain is a dominant factor in the
overall size of a given metapolicy. To find out how big this overhead is we con-
ducted an experiment. During this experiment, we downloaded all certificate
chains which are required for domain’s TLS certificate validation for a domain
set. We used the openssl tool for this purpose. The experiment was performed
on the Alexa top 13k websites. We found that the average size of the of a cer-
tificate chain needed for a domain’s TLS certificate validation is around 4.75
KB. Thus on average, a metapolicy protected with a TLS certificate will have
to contain 4.75 KB for a certificate chain. (Note that policy agents do not have
to store certificates of validated policies.)



To calculate the size of an average metapolicy we did an analysis of the results
obtained in subsection 6.2. As shown in Table 2, around 33% of websites deploy
at least two or more policies. With the results from Table 1 we can assume that on
average policies implemented by domains will be either a SPF, DKIM or DMARC
policy. We used this analysis to identify the size of an average metapolicy record.
We created multiple metapolicy records with these three policies specified in
it and stored domain’s TLS certificate chain and a computed signature. We
calculated the average size of metapolicy to be around 5.4 KB. Thus, on average,
a metapolicy would require about 11 TXT records to be encoded.

Latency Another overhead is the additional time needed for fetching a metapol-
icy. To calculate this overhead we performed an experiment sending DNS queries
to calculate the time needed for fetching a single DNS TXT record. We identi-
fied that accessing it takes around 20 ms on an average, on a system having a
network download speed of 13 Mbps. In the same setting obtaining additional
10 records, even sequentially (what is the worst case), increases the latency by
200 ms (for the records queried in parallel that should be around only 20 ms).
Hence, the proposed metapolicy framework introduces an acceptable overhead
on top of a normal DNS query for a metapolicy. However, once the metapolicy is
cached only the first 512 bytes of the metapolicy (the first part) gets downloaded
by the policy agents.

Computational overhead To identify the overheads of the certificate valida-
tion process (that will happen when the metapolicy’s signature will be verified at
the client) we used the OpenSSL library and the certificate chains obtained in the
previous experiment. In our tests, we identified that it takes 4 ms on an average
for the certificate chain and signature validation process. Hence the metapolicy
verification introduces an acceptable overhead to a standard connection estab-
lishment.

7 Implementation

To implement a prototype of the proposed metapolicy framework, we used the
Bind open source DNS server implementation. We configured a Bind to serve as
a private DNS server. It ran under Ubuntu 16.04 equipped with Intel (R) Core
(TM) i7-7600U CPU (2.8 GHz) with 8 GB of RAM. We created and published
(in TXT records) an example metapolicy. We also prototyped a policy agent able
to fetch and process metapolicies. Our experiments confirm the feasibility of our
framework and deployability even with currently existing tools and libraries.

8 Related work

Despite important of the topic, there has been a little work in the area of domain
expressiveness over the Internet. In particular, we are not aware of any work



which directly fits into our line of research work described in this paper. One
example of domain expressiveness system is DMARC [13]. It is is a policy system
that allows domain owners to manage their email security policies (SPF and
DKIM, specifically). DMARC, similarly to our system, uses DNS for publishing
its policies. However, the scheme does not provide any security and has limited
functionality.

Another related system is PoliCert [18] which enhances the security of the
existing TLS PKI infrastructure by allowing domain owners to decide and define
policies that govern the usage of their TLS certificates. The authors introduced
the concept of subject certificate policies that provide domains a way to specify
trusted CAs, their update criteria, error handling and private key loss mech-
anisms. To take care of a single CA compromise they introduced the concept
of multiple signature certificates that allows multiple CAs to sign a certificate.
PoliCert relies on verifiable public logs, thus it needs to introduce a new infras-
tructure.

9 Conclusions

In this paper, we presented a metapolicy framework for enhancing the domain
expressiveness on the Internet. Our proposal provides domains a mechanism to
define and manage domain related security policies themselves. All the metapoli-
cies related to a domain and which the domains want to enforce can be mentioned
in a metapolicy which is signed by the domain’s private key corresponding to the
domain’s TLS certificate or DNSSEC key. The metapolicy is published as a series
of DNS TXT records in the domain’s DNS zone. Therefore, no new infrastructure
is required, and our scheme can be deployed today.

The framework makes it easy for domains to manage the policy themselves. It
also reduces the chances of a downgrade attack due to incorrect choices which can
be made by a user or its user agent, because a fail-over mechanism as specified
in the metapolicy has to be followed and neither the software or the user decides
the fate of a policy failure. It also provides a simple way of management and
specification of policies including the HTTPS related security policies likes HSTS
or HPKP or Email related security policies including SPF, Sender ID, DMARC,
DKIM or other security policies including the DANE or CAA. In future, we
believe that more security policies can be expressed by domains through our
proposed metapolicy framework.
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