Skip to main content

Lazy Fully Probabilistic Design: Application Potential

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10767))

Abstract

The article addresses a lazy learning approach to fully probabilistic decision making when a decision maker (human or artificial) uses incomplete knowledge of environment and faces high computational limitations. The resulting lazy Fully Probabilistic Design (FPD) selects a decision strategy that moves a probabilistic description of the closed decision loop to a pre-specified ideal description. The lazy FPD uses currently observed data to find past closed-loop similar to the actual ideal model. The optimal decision rule of the closest model is then used in the current step. The effectiveness and capability of the proposed approach are manifested through example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kárný, M., et al. (eds.): Optimized Bayesian Dynamic Advising: Theory and algorithms. Springer, London (2006). https://doi.org/10.1007/1-84628-254-3

  2. Kárný, M.: Towards fully probabilistic control design. Automatica 32(12), 1719–1722 (1996)

    Article  MathSciNet  Google Scholar 

  3. Savage, L.J.: The Foundations of Statistics, pp. 188–190. Wiley, NY (1954)

    MATH  Google Scholar 

  4. Bellman, R.: Adaptive Control Processes. Princeton Press, NJ (1961)

    Book  Google Scholar 

  5. Roll, J., Nazin, A., Ljung, L.: Nonlinear system identification via direct weight optimization. Automatica 41(3), 475–490 (2005)

    Article  MathSciNet  Google Scholar 

  6. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. vol. 703. Wiley (2007)

    Google Scholar 

  7. Aha, D.W.: Artif. Intell. Rev. Special Issue Lazy Learn. 11, 1–5 (1997)

    Google Scholar 

  8. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Google Scholar 

  9. Bitanti, S., Picci, G.: Identification, adaptation, learning. NATO ASI Series F on Computer and Systems Sciences (1996)

    Google Scholar 

  10. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal of Big Data 3(1), 9 (2016)

    Article  Google Scholar 

  11. Klenk, M., Aha, D.W., Molineaux, M.: The case for case-based transfer learning. AI Mag. 32(1), 54 (2011)

    Article  Google Scholar 

  12. Kullback, S., Leibler, R.A.: On information and sufficiency. The Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  13. Peterka, V.: Bayesian approach to system identification. Trends Progress Syst. Ident. 1, 239–304 (1981)

    Article  MathSciNet  Google Scholar 

  14. Kulhavy, R., Kárný, M.: Tracking of slowly varying parameters by directional forgetting. In: Proceedings of the 9th IFAC World Congress, vol. 10, pp. 78–83 (1984)

    Article  Google Scholar 

  15. Adachi, S., Hashimoto, S., Miyamori, G., Tan, A.: Autonomous flight control for a large-scale unmanned helicopter. IEEJ Trans. Ind. Appl. 121(12), 1278–1283 (2001)

    Article  Google Scholar 

  16. Gil, I.A., Barrientos, A., Del Cerro, J.: Attitude control of a minihelicopter in hover using different types of control. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia 29(3) (2006)

    Google Scholar 

  17. Ambrosino, G., Celentano, G., Garofalo, F.: Decentralized PD controllers for tracking control of uncertain multivariable systems. IFAC Proc. Vol. 18(5), 1907–1911 (1985)

    Article  Google Scholar 

  18. Hou, Z.S., Wang, Z.: From model-based control to data-driven control: Survey, classification and perspective. Inf. Sci. 235(Suppl. C), 3–35 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kárný, M., Guy, T.V.: Preference elicitation in fully probabilistic design of decision strategies. In: Proceedings of the 49th IEEE Conference on Decision and Control (2010)

    Google Scholar 

  20. Braziunas, D., Boutilier, C.: Preference elicitation and generalized additive utility (nectar paper). In: Proceedings of the 21st National Conference on AI (AAAI-2006), Boston, MA (2006)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Miroslav Kárný for valuable discussions and comments. The research has been partially supported by the Czech Science Foundation, project GA16-09848S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Fakhimi Derakhshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guy, T.V., Derakhshan, S.F., Štěch, J. (2018). Lazy Fully Probabilistic Design: Application Potential. In: Belardinelli, F., Argente, E. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2017 2017. Lecture Notes in Computer Science(), vol 10767. Springer, Cham. https://doi.org/10.1007/978-3-030-01713-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01713-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01712-5

  • Online ISBN: 978-3-030-01713-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics