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Abstract. We argue the usefulness of Gaifman graphs of first-order re-
lational structures as an exploratory data analysis tool. We illustrate our
approach with cases where the modular decompositions of these graphs
reveal interesting facts about the data. Then, we introduce generalized
notions of Gaifman graphs, enhanced with quantitative information, to
which we can apply more general, existing decomposition notions via 2-
structures; thus enlarging the analytical capabilities of the scheme. The
very essence of Gaifman graphs makes this approach immediately appro-
priate for the multirelational data framework.

1 Introduction

First-order (finite) relational structures (see e.g. [9]) are the conceptual essence
of the relational database model. Gaifman graphs are a well-known, quite natural
theoretical construction that can be applied to any relational structure [9]. They
have provided very interesting progress in the theory of these logical models.

Given a first-order relational structure, or relational database, with relations
(or tables) Ri, where the values in the tuples come from a fixed universe U ,
the corresponding Gaifman graph has the elements of U as vertices; and there
is an edge (x, y), for x 6= y, exactly when x and y appear together in some
tuple t ∈ Ri for some table Ri. That is, Gaifman graphs record co-occurrence
(or lack thereof) among every pair of universe items.

Hence, a clique in a Gaifman graph would group items that, pairwise, ap-
pear together somewhere in the relational structure: co-occurrence patterns; a
clique in its complement would reveal an incompatibility pattern. Of course,
finding maximal cliques is NP-complete; but there are less demanding ways
to study graphs that identify efficiently both sorts of patterns in a recursive
decomposition: namely, the modular decomposition and its generalization, the
decomposition of 2-structures.

This paper proposes to employ these decompositions as avenues for ex-
ploratory data analysis on relational data (whether single- or multi-relational):
by applying them on the Gaifman graph of a dataset, we can obtain valuable
information that would not be readily observable directly on the data.
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Modular decompositions suffice to treat stardard Gaifman graphs. However,
we extend the capabilities of our approach by generalizing, in very natural ways,
the notion of Gaifman graph so as to handle quantitative information (a must
in many data analysis applications). Hence, we develop our work using the more
general decomposition of 2-structures [4]: again a notion that has been very fruit-
fully developed in their theoretical form, and in a number of applications (such
as [8]), but not yet imported, to our knowledge, into data analysis frameworks.

2 Decomposing standard Gaifman graphs

As already mentioned, the basic notion of Gaifman graph is pretty simple: on
all items that appear along all the tuples of a single- or multi-relational dataset,
edges join pairs of items that appear together in some tuple.

Example 1. As a running example, let us consider a very small, single-relation
database on the universe {a, b, c, d, e}, with three attributes and three tuples:

t1: a b c
t2: a d e
t3: a c d

Then, the Gaifman graph is as shown in Figure 1 (left).

Fig. 1. A Gaifman graph, its natural completion, and a labeled variant.

2.1 2-structures and their decompositions

The very classical notion called “modular decomposition” [6] suffices to imple-
ment our approach on plain Gaifman graphs; this notion has been rediscovered



many times and described under several different names1. However, it is in-
sufficient to handle adequately the generalizations that we will propose below.
Therefore, we develop our approach directly on top of the more general notion
of 2-structures and their clans [4].

First, we describe some “cosmetics” on our Gaifman graphs: they will be seen
as a complete graph with two sorts of (nonreflexive) edges. One sort corresponds
to edges present in the graph (solid lines in our diagrams); the other corresponds
to absent (nonreflexive) edges (broken lines). We call this graph the “natural
completion” of the original graph. In our example, this process is illustrated in
Figure 1 (center).

Additionally, we can label each edge with its multiplicity, that is, the number
of tuples that contain the pair of items linked by the edge. The previous example
then becomes as in Figure 1 (right): pairs appear either zero times together
(dashed edges), once (black lines, labeled 1) or, in two cases, twice (gray lines,
labeled 2).

Now, in general terms, a 2-structure is simply the complete graph on some
universe U , plus an equivalence relation E among the edges. Figure 1 (right)
serves as an example, where there are three equivalence classes of edges: the
broken edges, the black edges, and the gray edges; of course, Figure 1 (center)
is also an example, with just two equivalence classes of edges. We will restrict
ourselves to undirected edges, and will employ the common, very graphical and
intuitive representation of coloring in the same way edges belonging to the same
equivalence class.

Observe that the type of the equivalence relation E is E ⊆ ((U×U)×(U×U))
because E tells us whether two arbitrary edges (x, y) and (u, v) are equivalent.

For a 2-structure given by the set of vertices U and the equivalence relation E
among the edges of the complete graph on U , we say that a subset C ⊆ U is a
clan, informally, if all the members of C are indistinguishable among them by
non-members. That is: whenever some x /∈ C “can distinguish” between y ∈ C
and z ∈ C, in the sense that the edge (x, y) is not equivalent to the edge (x, z),
then C is not a clan. Formally (see [4]):

Definition 1. Given U and an equivalence relation E ⊆ ((U × U) × (U × U))
on the edges of the complete graph on U , C ⊆ U is a clan when

∀x /∈ C ∀y ∈ C ∀z ∈ C ((x, y), (x, z)) ∈ E.

Note that different vertices outside the clan might see the clan differently:
for x /∈ C and x′ /∈ C, and y ∈ C, the edges (x, y) and (x′, y) may well be
nonequivalent. We only require that each fixed x does not distinguish between
the clan members.

Basic examples of clans are the so-called trivial clans: all the singletons {x}
for x ∈ U , as well as U itself, are vacuously clans. There may be other clans. For
instance, consider the natural completion of the Gaifman graph obtained from

1 See https://en.wikipedia.org/wiki/Modular_decomposition for some of the al-
ternative names that the concept has received.

https://en.wikipedia.org/wiki/Modular_decomposition


Example 1, depicted in Figure 1 (center). Edges are split into two equivalence
classes (existing or nonexisting edges in the original Gaifman graph). Then, one
can see that there would be exactly one nontrivial clan, formed by {b, c, d, e}:
all vertices not in the clan (that is, vertex a, the single one not in the clan) are
connected to each vertex inside the clan through edges of the same color, namely
solid black. Any other candidate turns out not to be a clan. For instance, any set
including a and b but excluding e is not a clan, as e “distinguishes” between a
and b; then, any set including b and e must include c and d, which can distinguish
between them. All in all, any clan including a and b ends up including all the
vertices, that is, becoming a trivial clan. Analogous reasoning applies if we start
by pairing a with other vertices.

On the other hand, it is not difficult to see that the labeled, colored version
of the Gaifman graph of Example 1, as depicted in Figure 1 (right), does not
have nontrivial clans. Equivalence is given by the same multiplicity label (that is,
edges drawn in the same “color”): the extra distinction between gray and black
edges allows for external vertices to distinguish between some vertices inside
every candidate proper subset. Further examples come later as clans are the key
tool for our proposal of a data analysis method.

2.2 Prime clans and tree decompositions

It is known [4] that certain clans, called prime clans, allow us to decompose a
2-structure into a tree-like form.

Definition 2. For a fixed universe U , we say that two subsets of U overlap if
neither is a subset of the other, but they are not disjoint. That is, for S ⊆ U
and T ⊆ U , they overlap if the three sets S ∩ T , S \ T , and T \ S are all three
nonempty. Then, prime clans are those clans that do not overlap any other clan.

Of course, trivial clans are also immediately prime clans. Thus, by definition,
any two sets in the family of prime clans are either disjoint, or a subset of one
another: they provide us with a so-called “decomposable set family” [11] that
can be pictured in a tree form, by displaying every prime clan (except U itself)
as a child of the smallest prime clan that properly contains it.

There are studies that report how these decompositions look like. Specifically,
at each node of the tree we have again a 2-structure, whose vertices correspond
to the clans that fall as children of the node. In the case of our constructions
out of Gaifman graphs, it is known that all the 2-structures that appear as
nodes of such a tree decomposition are of one of two well-defined sorts: either
“complete” (all edges are equivalent) or “primitive” (only having trivial clans).
This is due to our graphs being undirected, because 2-structures on directed
graphs may exhibit a third basic component in their tree decomposition (“linear”
2-structures). Further information on this topic appears in [4]. This reference
contains, as well, often far-from-trivial proofs of theorems that ensure that things
are as we have described.



Example 2. Continuing Example 1, the tree decomposition of the 2-structure
in Figure 1 (center) is displayed in Figure 2 (left). Boxes correspond to clans:
here, the topmost box corresponds to the trivial clan containing all the vertices
and, inside it, each dot corresponds to a prime subclan. All along the whole
decomposition, trivial clans are indicated by a link to the vertex they consist
of, represented with an elliptic node; nontrivial ones are linked instead to a new
box describing the internal structure of the clan, in terms of the prime clans it
has as proper subsets. Then, as a set, each clan is formed by all the elements in
the leaves of the subtree rooted at it.

A “brute-force”, exhaustive search attempt was employed in [13] to identify
all prime clans. A couple of published algorithms [10, 11] can be adapted for
implementing a system computing this sort of tree decompositions. However,
as we envision an analysis support system able to add Gaifman nodes in an
incremental manner, we have implemented a somewhat different, incremental
algorithm. Due to the space limit, the details of our algorithmic contributions
will be presented in a follow-up paper (or in an expanded version of this one),
together with some comparisons against other algorithms.

2.3 Limits to the visualization of complex clans

Our experimentation shows that, unsurprisingly, the visualization of large Gaif-
man graphs is unadvisable. Actually, sometimes the clans lead to large primitive
2-structures, whose mathematical study gets pretty complicated [5]. We set up
some relatively arbitrary limits, trying to get understandable diagrams. Let us
consider a more realistic example to explain them.

In Figure 2 (right) we display (a fragment of) the decomposition of the Gaif-
man graph of the well-known Zoo dataset from the UC Irvine repository [2]; it
contains 17 attributes of 100 animal species. We have preprocessed it slightly
so that the semantics of each item is clearly identifiable (e. g. predator False or
toothed True). We will return to this dataset below in Section 4.2.

For the time being, we just discuss the decomposition of its standard Gaifman
graph. The topmost node of this decomposition is, as always, the trivial clan with
the whole universe; in this case, it turns out to decompose as a set of many trivial
clans, set up in the form of a primitive 2-structure that we choose not to draw
complete; however, one nontrivial clan also appears: “mammal” and ‘milk True”
are indistinguishable from the perspective of all the other elements in the dataset.
That is, for every other piece of information, either it goes together with each
in some tuples (one such item could be “hair True”), or it does not go together
with any of them ever (for instance: “feathers True”).

In our diagrams, as we do here, clans containing more than a handful of
nontrivial clans are not drawn in detail: just the clan type label (“primitive” or
“complete”) is shown. Besides, if there are few nontrivial clans, but many trivial
ones, then the trivial clans are grouped in a single node labeled Others, sort of
a merge of them all. The reader must keep in mind that this particular node
actually represents together a number of unstructured items.



Fig. 2. Decompositions of the Gaifman graphs for Example 1 and for the Zoo dataset.

This approach of limiting the size of the substructures that become fully
spelled-out was taken also in [8], where also a “zooming” capability was intro-
duced (we may consider adding one such option to our system in the future).

2.4 Isolated vertex elision

As we move on, later, into quantitative generalizations of Gaifman graphs, one
case turns out to be common in our experiments. Whereas Gaifman graphs do
not have isolated vertices (except in limit, artificial cases such as relations with
a single attribute), in our generalizations this is no longer true: many datasets
will lead to 2-structures exhibiting many vertices that are endpoints only of
broken edges; that is, they are isolated vertices in the corresponding (generalized)
Gaifman graph. The set of those isolated vertices forms a sometimes quite large
clan that clutters the diagram but contributes nothing to the analysis beyond
“all these vertices are actually isolated”. We use again the label “Others” to
represent these items, all alike from the decomposition perspective, as a single
vertex, as indeed this is a particular case of the usage of the “Others” label as
per the previous Section 2.3.

3 Interpreting a decomposition of a Gaifman graph

We move on to explain another example of our analysis strategy. We present and
discuss the outcome of a tree decomposition of the Gaifman graph of a simple,
famous, and relatively small dataset often used for teaching introductory data
analysis courses. It comes from data of each of the passengers of the Titanic.
Among several existing variants of this dataset, some of them pretty complete,
we choose a reduced variant on which we illustrate the interpretation of our
decompositions. This variant we use keeps four attributes, one of them (age)
discretized. To describe the details of this dataset, we quote:



“The titanic dataset gives the values of four categorical attributes for each of
the 2201 people on board the Titanic when it struck an iceberg and sank. The
attributes are social class (first class, second class, third class, crewmember), age
(adult or child), sex, and whether or not the person survived.”

(http://www.cs.toronto.edu/~delve/data/titanic/desc.html)

(As indicated in that website, this variant of the data was originally compiled
by Dawson [1] and converted for use in the DELVE data analysis environment
by Radford Neal.)

The decomposition via its standard Gaifman graph is depicted in Figure 3.
Recall that broken edges represent pairs that never appear together in any tu-
ple, whereas solid edges are edges of the original Gaifman graph and thus join
universe elements that appear together in some tuple.

The clans for sex and survival are clear and intuitive: as they are different
possible values for the same attribute, they never appear together. On the other
hand, every possibility for these attributes does appear somewhere, as does every
possible pairing with all other items in the universe, so that the top node is a
complete 2-structure consisting on all solid edges.

Likewise, one might expect a clan with the four alternative values of traveling
class, namely, 1st, 2nd, 3rd or Crew. However, that clan only has actual passenger
classes. The value Crew migrates to the parent “ages” clan, where we find some
interesting fact: a small primitive 2-structure arising from the interaction of the
ages values and the Crew value, where of course being an adult is incompatible
with being a child, and both are compatible to all the traveling classes (the top
node in the middle clan); however, being in the crew is only compatible with
being an adult. This calls our attention to the fact that the crew included, of
course, no children, a fact that we might overlook in a non-systematic analysis.
That is: even if the traveling classes and the “Crew” label are employed as values
in the same column, the data tells us, through our decomposition procedure, that
they have different semantics!

4 Generalizations of Gaifman graphs

We move on to discuss tree decompositions based on generalized Gaifman graphs.
The aim is to keep track of quantitative information that the standard Gaifman
graph lacks. In our context, many ideas present themselves to complement Gaif-
man graphs and clan decompositions with quantitative considerations. For the
time being, we contemplate just some very simple cases: we let the number of
occurrences of each pair play a role.

4.1 Thresholded Gaifman graphs

Our first variant is as follows.

Definition 3. For a threshold k (a nonzero natural number) a thresholded Gaif-
man graph is a completion of a Gaifman graph in which each labeled edge is

http://www.cs.toronto.edu/~delve/data/titanic/desc.html


Fig. 3. Decomposing the standard Gaifman graph of the Titanic dataset.

classified according to its number of occurrences, as follows. We still have two
equivalence classes of edges. If the number in the label is above the threshold k,
the edge goes into one equivalence class (represented in our diagrams by a solid
line); whereas if the number of occurrences of the edge is less than or equal to
the threshold, then the edge belongs to the other equivalence class (and a broken
line is used to represent it).

Figure 4 provides an alternative analysis of the Titanic dataset described
before. There, we decompose a thresholded Gaifman graph, aiming at uncovering
very common co-occurrences, that is, high multiplicities. We set the threshold
rather arbitrarily at the quite high value of 1000 (out of 2201 tuples). We see
at work the effect of isolated vertex elision, as many attribute values to not
reach multiplicity 1000 with any other value: the elision process, as described
in Section 2.4, replaces all of them by a single node, playing the same role all
of them play, that is, broken lines among themselves and to all the surviving
values. The new decomposition is interesting in that it very clearly reflects the
Birkenhead Drill: “Women and children first”.

4.2 Quantitative Gaifman graphs

The linear colored Gaifman graph is a (completion of a) Gaifman graph in which
the equivalence classes of the edges are directly defined by the label, that is, the
number of occurrences. All pairs occurring once would lead to one class, those
occurring twice to another, and so on; up to some limit, beyond which we do
not keep the distinction. Figure 1 (right) corresponds to this case.

A natural variation is to have each color stand for some interval of values,
with linearly growing limits; the case just described would correspond to intervals
of width 1. Figure 5 shows one such case: we apply intervals of width 25 over



Fig. 4. Titanic dataset: thresholded Gaifman graph, at 1000, and its decomposition.

the Zoo dataset. Broken lines mark less than 25 occurrences, solid lines less than
50, and the gray line appearing inside one of the clans goes beyond that limit
because it gathers all birds and all fish and all insects into the oviparous clan.

Fig. 5. Decomposing the linear Gaifman graph of Zoo with 25 as interval width.

This notion can be combined naturally with the previous one: instead of
broken lines being simply the first interval, we can apply a different value as
threshold and leave as broken lines all occurrence multiplicities below it, and
then use the colors for the values at the threshold or above it, at linearly grow-
ing intervals of fixed width. Likewise, an upper threshold can be imposed. For
instance, on the Titanic data, we used colors by width 1 intervals up to an upper
threshold of 10: this approach is able to point out for us, with no particular user
guidance, the fact that the number of children among the first-class travelers was
surprisingly small: as it happened to Crew, the first-class node migrates from
the traveling-class clan to the age clan.



We expect usefulness also from the exponential colored Gaifman graph: while
similar in spirit to the intervals in linear graphs, here the interval width grows
exponentially: each equivalence class (or color) represents an exponentially grow-
ing interval of occurrence multiplicities. On one hand, this frees the user from
having to bet on a specific interval width. On the other, there are cases where the
Gaifman graph multiplicities turn out to be approximately Zipfian, and the ex-
ponential coloring is likely to be adequate. Again, as with the linear case, we can
also impose a user-defined threshold below which, or over which, the occurrences
are not considered different; then, one runs the exponential count between them.

Even though the black-and-white printed version of this paper will not show
it, we chose to provide an example of application of the exponential graph to
the (“people” table within the) UW-CSE dataset from the Relational Dataset
Repository (http://relational.fit.cvut.cz) at threshold 3. The items have
been renamed for better understanding; also, we have manually edited out a
small part of the diagram to fit the page size and to focus on the three different
colors in the pairs of equivalent items: these colors tell us that the amount of
Students (and thus NotProfessors) is largish (specifically 216), the quantity of
year zero cases clearly smaller (namely 138) and the amount of Professors even
smaller (62 in total).

Fig. 6. UW-CSE: part of the decomposition via the exponential Gaifman graph.

5 Discussion and subsequent work

We have described a data analysis approach based on the prime tree decom-
position of variations of the Gaifman graph of a dataset. We have illustrated
the process with some relatively successful cases. Technologically, we have re-
sorted to a relatively simple implementation in Python, https://github.com/
MelyPic/PrimeTreeDecomposition, relying on the standard graph module Net-
workX and on the graphical capabilities of the pydot interface to the Dot engine
of Graphviz [7]. We have not compared the available algorithms: there is no room
left for that study in this submission, and it will be the subject of forthcoming
write-ups.

http://relational.fit.cvut.cz
https://github.com/MelyPic/PrimeTreeDecomposition
https://github.com/MelyPic/PrimeTreeDecomposition


Many possibilities of further development remain. First and foremost, we
must discuss a clear limitation. Like in so many other exploratory data analysis
frameworks, for a given dataset we may not be lucky: it may happen that a
given selection of Gaifman graph, once decomposed, has no nontrivial clans, or
decomposes into just a few quite large primitive substructures that provide little
or no insight about the data. For one, the linear Gaifman graph of the well-known
toy dataset Weather (discussed e.g. in [14]) has only trivial clans and, if fully
displayed, leads to just a large box of colored spaghetti. Useful advice to choose
properly sorts of Gaifman graphs, thresholds, and interval widths remains to be
found. After all, parameter tuning is a black art in many data mining approaches.

One natural variant consists of combining the constraints defining clans with
those of standard frequent-set mining; we explored that avenue and, unfortu-
nately, in all our attempts, we never found a single case of nontrivial clans.

Also, we can run this sort of processes on multirelational datasets or, even,
directly on graphs. For the first case, our examples so far fall into the very
common and standard “single table” perspective. However, from their earliest
inception, Gaifman graphs were a multirelational concept by essence. Applying
tree decompositions of generalized Gaifman graphs to multirelational datasets
is, therefore, conceptually immediate, and indeed our example in 6 comes from a
well-known multirelational benchmark. However, there, we have not taken into
account the foreign key phenomenon: would it be appropriate to denormalize
before computing the Gaifman graph? If so, can one compute the graph directly,
efficiently, without actually denormalizing the data?

For the second case, graphs are, so to speak, their own Gaifman graph,
so we can simply apply the tree decomposition on the given graph. A couple
of extra possibilities naturally arise. For instance, we could decompose a 2-
structure where the equivalence classes come from the lengths of the shortest
paths between vertices, or from thresholding these lengths; or from the vertex-
or edge-connectivity (equivalently, min-cuts, by Menger’s theorem), again possi-
bly thresholded. Along this line, there may be interesting connections with the
topic known as “blockmodeling” in social networks, which uses a notion similar
to that of clan, although relaxed through allowing exceptions.

The multiplicity-based generalizations we have proposed are quite basic; more
sophisticate approaches to define the equivalence relation between edges might
be advantageous. In particular, we believe now that some advances might come
from the study of the applicability of unsupervised discretization methods [3].
Indeed, the actual multiplicities appearing as labels of the edges of the Gaifman
graph form a set of integers that is to be discretized in a number of intervals in an
unsupervised manner. A few existing algorithms for unsupervised discretization
can be applied to try and automatize parts of the transformation of the labeled
Gaifman graph into the starting 2-structure.

Besides the theoretical developments, improving the software tool is also a de-
sirable endeavor. Initially, we found the very notion of exploratory data analysis
via 2-structure decompositions of quantitative versions of Gaifman graphs risky
enough, and were not eager to compute very fast, nor in a very usable way by



other people, results that, in principle, were candidates to be fully useless. How-
ever, we found our initial results clearly sufficient to consider that this approach is
worth of further effort: we did design better algorithms than the ones initially em-
ployed [13], and we are confident that our tool will see considerable improvements
along several facets in the coming months: the exploration of alternative tree vi-
sualizations, the implementation of additional control like zooming, or the possi-
bility of importing the data directly from databases; this last extension is actually
crucial in order to try our methods on the usual multirelational benchmarks.
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