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Abstract. Gradient Boosting is a popular ensemble method that com-
bines linearly diverse and weak hypotheses to build a strong classifier.
In this work, we propose a new Online Non-Linear gradient Boosting
(ONLB) algorithm where we suggest to jointly learn different combina-
tions of the same set of weak classifiers in order to learn the idiosyncrasies
of the target concept. To expand the expressiveness of the final model, our
method leverages the non linear complementarity of these combinations.
We perform an experimental study showing that ONLB (i) outperforms
most recent online boosting methods in both terms of convergence rate
and accuracy and (ii) learns diverse and useful new latent spaces.

1 Introduction

Ensemble learning aims at combining diverse hypotheses to generate a strong
classifier and has been shown to be very effective in many real life applications.
Several categories of ensemble methods have been proposed in the literature, like
bagging (e.g. random forest [1]), stacking [2], cascade generalization [3], boost-
ing [4], etc. Those state of the art methods essentially differ by the way they
generate diversity and combine the base hypotheses. In this paper, we focus on
gradient boosting [5] which - unlike many other machine learning methods - per-
forms an optimization in the function space rather than in the parameter space.
This opens the door to the use of any loss function expanding the spectrum
of applications that can be covered by this method. Moreover, the popularity
of gradient boosting has been increased by recent implementations showing the
scalability of the method even with billions of examples [6,7].

Despite these advantages, real world applications such as fraud detection,
click prediction or face recognition are often subject to uninterrupted data flow
which is completely ignored in the batch gradient boosting setting. This brings
up a major concern: How to train models over always increasing volumes of data
that need more memory and more storage? While big data centers can partially
solve the problem, training the model from scratch each time new instances
arrive remains unrealistic.
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To overcome this problem, online boosting has received much attention dur-
ing the past few years [8,9,10,11,12,13,14]. In these methods, the boosted model
is updated after seing each example. While they can process efficiently large
amount of data, their practical limitations include: (i) an edge assumption usu-
ally made on the asymptotic accuracy (i.e. the edge over random guessing) of
the weak learners making some approaches hard to tune, (ii) the absence of a
weighting scheme of the weak learners that depends on their performance and
(iii) for some of them a lack of adaptiveness (despite the fact that it was a strong
point of Adaboost [4]).

Moreover, all the previous online methods face another issue: they usually
perform a linear combination over a finite number of learned hypotheses which
may limit the expressiveness of the final model to reach complex target concepts.
While the batch setting would allow us to add step by step new hypotheses and
capture the complexity of the underlying problem, an online algorithm keeps
the same set of weak learners all along the process. This remark prompted us to
investigate the way to develop a non linear gradient boosting algorithm with
an enhanced expressiveness. To the best of our knowledge, there is only one
work specific to non-linear boosting [15] but only usable in a batch setting. This
is why the main contribution of this paper takes the form of a new algorithm,
called ONLB - for Online Non Linear gradient Boosting. Inspired from previous
research in domain adaptation [16], boosted-multi-task learning [17] and boost-
ing in concept drift [18], ONLB resorts to the same set of boosted weak learners,
projects their outputs in different latent spaces and takes advantage of their
complementarity to learn non linearly the idiosyncrasies of the underlying con-
cept. ONLB is illustrated in Fig. 1. At first glance, it looks similar to boosted
neural networks, as done in [19,20], where the embedding layer is learned with
boosting in order to infer more diversity. However, our method aims at learning
the weak hypotheses iteratively, the next weak learner trying to minimize the
error made by the network restricted to the previous hypotheses (see the solid
lines in Fig. 1). The other main difference comes from the back-propagation that
is performed at each step only on the parameters related to the weak learner
subject to an update (see the red lines in Fig. 1). Thanks to the non-linear func-
tion brought by the last layer to combine the different representation output,
ONLB converges much faster than the other state of the art online boosting
algorithms.

The paper is organized as follows: Section 2 is devoted to the presentation of
the related work. Our new non-linear online gradient boosting algorithm ONLB
is presented in Section 3. Section 4 is dedicated to a large experimental compar-
ison with the state of the art methods. We conclude the paper in Section 5.

2 Related work

Online boosting methods have been developed soon after their batch counter-
part. The first one introduced in [8] uses a resampling method based on a Poisson
distribution and was applied in computer vision by [9] for feature selection. The-
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Fig.1: Graphical representation of our Online Non-Linear gradient Boosting
method: the first top layer corresponds to the learned weak classifiers; the sec-
ond layer represents different linear combinations of their outputs; the bottom
layer proceeds a non linear transformation of those combinations. The thickest
lines show the needed activated path to learn a given classifier (here hs). The
red lines show the update performed only on the parameters concerned by this
weak learner. The dashed lines are not taken into account at this iteration.

oretical justifications were developed later in [10] where they notably discuss
the number of weak learners needed in an online boosting framework. This is
indeed a major concern since having too many of them could lead to predic-
tions dominated by redundant weak learners that perform poorly. On the other
hand, too few weak learners could make the boosting process itself irrelevant,
as the goal is still to improve upon the performance of a simple base learner.
More recently, [11] extends this previous work to propose an optimal version of
boosting in terms of the number of weak learners for classification. An adapta-
tion of this framework to multi-class online boosting was proposed in [12]. While
these methods come with a solid theory, the assumption usually made on the
asymptotic accuracy (i.e. the edge over random guessing) of the weak learners
leads to two main practical limitations. The first one is the undeniable difficulty
to estimate this edge without prior knowledge on the task at hand. The second
comes from the fact that the edge of each weak learner might be very different
depending on their own performance. And it turns out that the latter is never
taken into consideration and might impact the overall performance of boosting.

Online gradient boosting was introduced by [21] allowing one to use more
general loss functions but without any theoretical guarantees. Later, [13] and its
extension to non smooth losses [14], propose online gradient boosting algorithms
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with theoretical justifications. These are the closest approaches to ours but they
do not weight the weak learners based on their own performance. Moreover, the
linear aspect of these methods limit strongly their expressiveness.

Another series of related works is the use of boosting in neural network
methods. Recently, neural networks were used with incremental boosting [19] to
train a specific layer. In [20], the authors reused [13] to optimize and increase
the diversity of their embedding layer. Our work is related in the sense that we
boost a layer to build a new feature space. However, we do not aim at learning
a general neural network. This layer is rather used to make connections between
our different weak learners. This is why our back-propagation procedure differs
by focusing only on the parameters of the weak learner to be optimize at each
step.

Apart from online boosting methods, our work is also related to non-linear
boosting. However, as far as we know, only [15] tackled this topic by proposing
a non-linear boosting projection method where, at each iteration of boosting,
they build a new neural network only with the examples misclassified during the
previous round. They finally take the new feature space induced by the hidden
layer and feed it as the input space for the next learner. Nonetheless, it is very
expensive and unsuitable to online learning.

3 Online Non-Linear gradient Boosting

In this study, we consider a binary supervised online learning setting where at
each time step t = 1,2, ..., T one receives a labeled example (x4, y:) € X x{—1,1}
where X is a feature space. In this setting, the learner makes a prediction f(xy),
the true label y; is then revealed and it suffers a loss £(f(x¢), yt)-

Boosting aims at combining different weak hypotheses. In batch gradient
boosting, weak learners are learned sequentially while in the online setting, they
are not allowed to see all examples at once. Thus, it is not possible to simply add
new models iteratively in the combination as in batch boosting. In fact, online
boosting maintains a sequence of N weak online learning algorithms A;, ..., Ay
such that each weak learner h; is updated by A; in an online fashion. Note that
every A; considers hypotheses from a given restricted hypothesis class H. The
final model corresponds to a weighted linear combination of the N weak learners:

N
Fla) = 3 aihi(a), )

where a; stands for the weight of the weak learner h;.

We now present our Online Non-Linear gradient Boosting, ONLB. As shown
in Fig. 1, our method maintains P different representations that correspond to
different combinations of the IV learned weak learners, projecting their outputs
into different latent spaces. Every representation p is updated right after a weak
learner is learned. The outputs given by the p representations are then merged
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together to build a strong classifier, F'(x). To capture non linearities during this
process, we propose to pass the output of each representation p into a non linear
function £,. We define the prediction of our model F(z) as follows:

P N
F(a) =" o, (Y abhi(a)). (2)
p=1 =1

where of are the weights projecting the outputs of the weak learner h; in the la-
tent space p and of the weight of this representation. Eq (2) illustrates clearly the
difference with linear boosting formulation of Eq (1). We denote by Fy, the classi-

fier restricted to the first k weak learners: Fj(x) = 25:1 aPL, ( Zle alh; (:U))

Our method aims thus at combining the same set of classifiers into different
latent spaces. A key point here relies in making these classifiers diverse while
still being relevant in the final decision. To achieve this goal, we update every
weak learner h; to decrease the error of the already learned models in F;_; such
that:

T P i—1
h; = argminy, Z ﬁc( Z apﬁp( Z afhi(xe) + h(.’Et)) , yt), (3)
t=1 p=1 k=1

where {.(F(x),y) is a classification loss. In other words, we look for a learner
h; that improves over the learned combination, F;_;.

In gradient boosting [5], one way to learn the next weak learner is to ap-
proximate the negative gradient (residuals) of F;_; by minimizing the square
loss between these residuals and the weak learner predictions. We define 7! the
residual at iteration ¢ for the example x; as follows:

t _3ZC(F¢_1(xt),yt))

r., =

i OF 1 (w) (4)

In fact, from this functional gradient descent approach, we can define a greedy
approximation of Eq (3) by using a regression loss £, on the residuals computed
in Eq (4) with respect to the classification loss £.:

T
h; = argminy, Z O (h(xy),7h). (5)

t=1

As stated above, when a weak learner h; is updated, we need: (i) to update
the weights ol associated to this learner in each representation p and (ii) update
the representation weights o in the final decision as follows:

Ole(Fi(x).y)  p . o, OleFil@d)ye)

OaP A oot

P.— o —
af =, —n i
2

All the steps of our ONLB training process are summarized in Algorithm 1.
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In practice, we instantiate our losses with the square loss for the regression
and the logistic loss for the classification as follows:

Ce(f(we)yye) = log(L+ e ) 4, (f (), rf) = (rf = f(20))*.

The choice of the logistic loss is motivated by the need to have bounded
gradients in order to avoid their exponential growth with the boosting iterations,
which can happen for noisy instances for example. The square loss is the main
loss function for regression tasks and has demonstrated superior computational
and theoretical properties for the online setting [22]. Then, according to Eq (5),
the weak classifiers are updated as follows:

T
h; = argminy, Z(h(xt) —rh)2. (6)

t=1

Equ (6) suggests a fairly simple update of each weak learner: each weak online
learning algorithm .A4; uses a simple stochastic gradient descent with respect to
one example at each step. The residuals can be obtained thanks to a straight
forward closed form:

S | E—
v 1+ eytFi-1(z)

. o . if ,
Finally, we used a relu activation function such that £(z) = g ; tie?w(i)se

The weights of the latent spaces of and a? are now updated as follows:

Ph. . N
= a4 % if o hi(x:) >0, aof = Oép_|_77yt[’17(zz‘:1 afhi(w))
- 0 otherwise ’ ’ 1+ eytFi(we) '

At test time, our model learned using Algorithm 1 predicts as follows:
P N
F*(x) = sign (F(m)) = sign ( Z alL, ( Z othAx))) .
p=1 =1

4 Experiments

In this section, we provide an experimental evaluation of our non-linear online
boosting method ONLB in terms of both quantitative and qualitative analy-
sis. First, we perform a comparative study with different state-of-the-art online
boosting algorithms on public datasets. Second, we present an analysis of the
learned representations.

4.1 Classification Results

We use 10 public datasets from the UCI repository by considering binary clas-
sification problems (multi-class datasets were converted into binary problems as
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Algorithm 1 Ounline Non-Linear gradient Boosting (ONLB)

1: INPUT: N online weak learners, a learning rate n and P latent spaces.
2: Initialize hg =0
3: fort=1to 7T do

4: Receive example x;

5:  Predict Fo(z¢) = ho =0

6: for i =1to N do

7: Reveal y; the label of example x;

8: Compute the residual rf = Wg}{iiw

9: Predict h;(z¢)

10: A; suffers loss £,.(r¢, hi(x;)) and updates the hypothesis h;
11: for p=1to P do

12: af = aP — nalc(fgéit)vyt); of = af — nalc(fgé?),yt)
13: end for

14: end for

15: end for

indicated in parenthesis): Poker (0 vs [1,9]), MNIST ([0,4] vs [5,9]), Wine ([3,6]
vs [7,9]), Abalone ([0,9] vs [10,29]), Covtype (2 vs all), Shuttle (1 vs all), Pima,

#examples|positives ratio|#features
Covtype| 581,012 51.2% 54
Poker | 1,025,010 49.88% 10
MNIST| 70,000 49% 718
Abalone| 4,177 49% 8
Pima 767 34.9% 8
Adult 42,842 23.9% 14
HIV 6,590 13.3% 8
w8a 64000 3% 300
Shuttle | 58,000 21.4% 9
wine 6,497 20.64% 12

Table 1: Properties of the datasets used in the experiments.

Adult, HIV, w8a. A summary of these datasets is presented in Table 1.

Our experimental setup is defined as follows. For every dataset, we apply
a 3-fold cross validation. For tuning the hyper-parameters, we perform in each
fold a progressive validation [23] on the training set as proposed in [11]: This
validation process uses every new example to evaluate the model and then use
it for training. Note that we simulate the online learning setting by giving the
examples according to a random order to the algorithm. We train different mod-
els in parallel with respect to their hyper-parameter values (i.e. the number of
weak learners N, the learning rate 7 and 7 the weak learner edge) and we select
the one achieving the lowest progressive validation error. The selected model is

then evaluated on the test set.
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We compare our method to different online boosting algorithms from current
state-of-the-art: the four algorithms online. BBM, Adaboost.OL, Adaboost.OL. W,
OGB from [11,13] and streamBoost from [14]3. For all the algorithms, we choose
as a relatively weak classifier a neural network with one hidden layer and two
units that we update in an online learning fashion using stochastic gradient de-
scent. We report the classification error obtained for each algorithm in Table 2.

ONLB achieves competitive results with the state of the art online boosting
methods and even outperforms them on most datasets. In some cases, such as for
MNIST or Poker, we clearly see that, while using much more weak learners (see
Fig. 2), the other methods were not able to capture the target concept as much
as ONLB did. Note that, a mandatory condition in our experiments was 7" > 1
such that the boosting takes part in the learning process but in some cases, the
online boosting algorithms were not able to do better than the baseline on the
test set. For example, on the Adult database, only ONLB and OGB achieved an
average error lower than the base learner.

In Table 3, we present the average number of weak learners chosen with re-
spect to the progressive validation process for each model. While being an online
linear boosting algorithm, online. BBM achieves its performances with a signif-
icantly smaller number of weak learners compared to the other linear boosting
methods. As mentioned in [11], this algorithm is optimal in the sense that no
online linear boosting algorithm can achieve the same error rate with fewer weak
learners or examples asymptotically. That being said, ONLB algorithm achieves,
on average, better performances with more than twice less weak learners than
online. BBM.

Finally, in Fig. 2, we plot the convergence curves with respect to the in-
creasing number of examples used for two datasets: MNIST and Abalone. For
all algorithms, each curve corresponds to the evolution of the error rate accord-
ing to the progressive validation error measured during training. We observe
that ONLB still achieves the best convergence rate for both datasets. A similar
behavior has been observed for the other datasets and exhibits the nice fast con-
vergence property of our algorithm which needs less weak learners to converge
to its optimum.

4.2 Analysis of the learned multi-latent representations

In this section, we present two different qualitative analyses on the latent repre-
sentations learned by our algorithm. First, we show that given a sufficiently large
number of weak base learners, the representations obtained tend to be rather
uncorrelated. This provides an evidence that ONLB can generate some diversity.
Then, we show that these representations contribute in a comparable way to the
final decision. For our study, we use the following setup. We consider a model
with 100 representations (i.e. P = 100). We use two base learners: a relatively

3 We used the implementations available in Vowpal Wabbit and re-implemented the
streamBoost and OGB algorithms.
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Table 2: Error rate reported for different online boosting algorithms.

Dataset |Base learner| ONLB |online. BBM|Adaboost.OL|Adaboost.OL.W| OGB |streamBoost
Covtype 0.2401 0.2057| 0.2242 0.2273 0.2313 0.2264 0.2128
Poker 0.4182 0.0497| 0.2375 0.1234 0.0953 0.3880 0.2668
MNIST 0.1105 0.0561 0.1029 0.1557 0.0830 0.1139 0.0655
Abalone 0.2673 0.2523 0.2831 0.2487 0.2531 0.2669 0.2720
Pima 0.2992 0.2795 0.2913 0.2952 0.2835 0.2874 0.2953
Adult 0.1523 0.1465 0.1530 0.1530 0.1526 0.1476 0.1586
HIV 0.1986 0.1393 0.1273 0.1360 0.1291 0.1540 0.1526
Shuttle 0.0211 0.0024| 0.0173 0.0061 0.0058 0.0133 0.0050
w8a 0.0189 0.0148 0.0158 0.0146 0.0167 0.0178 0.0155
wine 0.1979 0.1687| 0.1921 0.1931 0.1931 0.1743 0.1833

Table 3: Average number of weak learners (N) selected by progressive validation.

Dataset |ONLB|online. BBM|Adaboost.OL|Adaboost.OL.W|OGB|streamBoost
Covtype| 6 60 79 59 282 63
Poker 52 222 348 311 320 285
MNIST 14 66 147 207 431 131
Abalone| 5 6 12 3 166 8
Pima 65 64 109 141 437 174
Adult 13 6 18 17 161 119
HIV 6 6 94 188 32 16
Shuttle 30 43 243 108 121 159
w8a 4 7 54 42 132 40
wine 5 8 112 91 97 118
Average| 20 49 121 116 218 111
-@- ONLB x -@- ONLB
~¥- online.BBM 0559 Q‘\ ¥- online.BBM
051 -<- streamBoost T -<- streamBoost
-~ Adaboost.OL o501 i -»- Adaboost.OL
0.4 ~A- Adaboost.OLW o) ¢‘ ;::\:k\ :: :ilboost.m.w
5031 @ 040{ / ‘\\ \:&
¥ ) ‘~:‘ - \ )
021 0.35 ‘.\i. A“":":'*‘*x.,_,,,h‘__(
> SRR . MR Ne g o Aay
0.1 P S i B> Sl ks Sk St 0301 Hﬂ%&gﬁj
0 10000 20000 30000 40000 50000 60000 0 500 1000 1500 2000 2500

#Examples #Examples

Fig.2: Progressive validation error with respect to the learning examples for
MNIST on the left and Abalone on the right.

weak neural network with one hidden layer composed of 2 units (2-NN) and a
stronger learner consisting of a neural network with 500 units in its unique hid-
den layer (500-NN). All representation weights are initialized following a uniform
distribution such that the different representations are highly uncorrelated. We
consider one training file of a fold of the MNIST dataset used above for learning.
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Our first analysis aims at showing that the learned representations tend to be
uncorrelated when using a weak learner. For this purpose, we compute a corre-
lation matrix C between all the representations such that C,,,, = \/##m
measures the correlation between the latent representations n and m, cov is
the covarlance matrix computed with respect to the input weights {a"}¥ ; and
{al}N | of these representations. We show, in Fig. 3, the C' matrix for the latent
space representations obtained after convergence with the 2-NN base learners.
We can see that most of the representations tend to be uncorrelated or weakly
correlated. In contrast, Fig. 4 presents the C' matrix using the 500-NN base
learners. We see here that most of the representations are highly correlated.
This expriment shows that by using sufficiently weak base learners, we are able
to learn diverse and uncorrelated representations.

In our second analysis, we want to confirm that the uncorrelated latent rep-
resentations are informative enough to contribute in a comparable way to the
final strong model. We propose to compute, for each representation p, a relative
importance coefficient (2, by taking the absolute values of the predictions of
p right before they are merged together with the other representation outputs
to form the final prediction. We average this coefficient over {z;}X ; examples
taken from a validation set independent from the learning sample as follows:

1 K N
= EZIapﬁp(Zafhi(xt))l. (7)
t=1 i=1

We expect for important representations a high (2, (i.e. having a high impact
in the final decision) and a low (2, for irrelevant ones (i.e. having low impact in
the final decision).

We consider then the models learned with the 2-NN and 500-NN base learners
as previously. For each model, we plot the importance coefficient {2, (y-axis)
agamst the average correlation of each representation (x-axis) that we define as
Cp =% ZZ 1 Cpi. This illustrates the importance of each representation in the
final decision with respect to their correlation level.

Fig. 5 gives the plot for the model using the 2-NN base learners. We see
here that all the representations are involved in the final decision and that their
relative importance coefficients are rather comparable. This is in opposition to
the plot of Fig. 6 that provides the results for the model using the 500-NN base
learners. First, we see that many representations are not used in the final decision
and these correspond to the ones that are uncorrelated. In fact, representations
involved in the final decision are the ones that are all highly correlated with an
average correlation coefficient around 0.75. Clearly, since these representations
have a high correlation level, actually only one representation is really useful at
the end. But note that this representation can in fact be learned by a standard
linear gradient boosting.

From this experiment, we see that complex models are hard to diversify in
online boosting. Moreover, tuning their hyperparameters is harder making the
probability of overfitting higher and they require a significant larger amount of
training time which makes such complex models useless for online boosting.
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5 Conclusion

In this paper, we presented a new Online Non-Linear Boosting algorithm. In this
method, we combine different representations of the same set of weak classifiers
to produce a non-linearly boosted model in order to learn the idiosyncrasies
of the target concept. Our experimental results showed a general improvement
over current state of the art online boosting methods. Additionally, the non-
linear architecture of the model allows the method to use less weak learners
and to obtain faster convergence in terms of examples. Our approach has also
the interesting property to produce efficiently diverse latent spaces contributing
actively to the model predictions. This property makes our model adaptive by
giving more importance to the best current representations.

Perspectives of this work include adapting our method to the multi-class
setting, to study the impact of delayed feedback (i.e. labels arriving only after
some time delay) and to investigate possible adaptations for transfer learning
and continuous learning in the online setting.
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