Skip to main content

Barricaded Boundary Minority Oversampling LS-SVM for a Biased Binary Classification

  • Conference paper
  • First Online:
Discovery Science (DS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11198))

Included in the following conference series:

  • 816 Accesses

Abstract

Classifying biased datasets with linearly non-separable features has been a challenge in pattern recognition because traditional classifiers, usually biased and skewed towards the majority class, often produce sub-optimal results. However, if biased or unbalanced data is not processed appropriately, any information extracted from such data risks being compromised. Least Squares Support Vector Machines (LS-SVM) is known for its computational advantage over SVM, however, it suffers from the lack of sparsity of the support vectors: it learns the separating hyper-plane based on the whole dataset and often produces biased hyper-planes with imbalanced datasets. Motivated to contribute a novel approach for the supervised classification of imbalanced datasets, we propose Barricaded Boundary Minority Oversampling (BBMO) that oversamples the minority samples at the boundary in the direction of the closest majority samples to remove LS-SVM’s bias due to data imbalance. Two variations of BBMO are studied: BBMO1 for the linearly separable case which uses the Lagrange multipliers to extract boundary samples from both classes, and the generalized BBMO2 for the non-linear case which uses the kernel matrix to extract the closest majority samples to each minority sample. In either case, BBMO computes the weighted means as new synthetic minority samples and appends them to the dataset. Experiments on different synthetic and real-world datasets show that BBMO with LS-SVM improved on other methods in the literature and motivates follow on research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajeeb, N., Nayal, A., Awad, M.: Minority svm for linearly separable imbalanced datasets. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2013)

    Google Scholar 

  2. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_7

    Chapter  Google Scholar 

  3. Alcalá-Fdez, J., et al.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 17 (2011)

    Google Scholar 

  4. Awad, M., Motai, Y., Näppi, J., Yoshida, H.: A clinical decision support framework for incremental polyps classification in virtual colonoscopy. Algorithms 3(1), 1–20 (2010)

    Article  Google Scholar 

  5. Blanzieri, E., Bryl, A.: A survey of learning-based techniques of email spam filtering. Artif. Intell. Rev. 29(1), 63–92 (2008)

    Article  Google Scholar 

  6. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 475–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_43

    Chapter  Google Scholar 

  7. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines (2000)

    Google Scholar 

  10. Das, B.: Implementation of smoteboost algorithm used to handle class imbalance problem in data (2012). https://www.mathworks.com/matlabcentral/fileexchange/37311-smoteboost

  11. Di Martino, M., Decia, F., Molinelli, J., Fernández, A.: Improving electric fraud detection using class imbalance strategies. In: ICPRAM (2), pp. 135–141 (2012)

    Google Scholar 

  12. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representations for text categorization. In: Proceedings of the 7th International Conference on Information and Knowledge Management, pp. 148–155. ACM (1998)

    Google Scholar 

  13. Hajj, N., Awad, M.: Isolated handwriting recognition via multi-stage support vector machines. In: 6th IEEE International Conference on Intelligent Systems, pp. 152–157. IEEE (2012)

    Google Scholar 

  14. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  16. Imam, T., Ting, K.M., Kamruzzaman, J.: z-SVM: An SVM for improved classification of imbalanced data. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 264–273. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_30

    Chapter  Google Scholar 

  17. Khanna, R., Awad, M.: Efficient learning machines: theories, concepts, and applications for engineers and system designers. Apress (2015)

    Google Scholar 

  18. Köknar-Tezel, S., Latecki, L.J.: Improving svm classification on imbalanced data sets in distance spaces. In: 9th International Conference on Data Mining, pp. 259–267. IEEE (2009)

    Google Scholar 

  19. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  20. Kowalczyk, A., Raskutti, B.: One class svm for yeast regulation prediction. ACM SIGKDD Explor. Newsl. 4(2), 99–100 (2002)

    Article  Google Scholar 

  21. Li, P., Chan, K.L., Fang, W.: Hybrid kernel machine ensemble for imbalanced data sets. In: 18th International Conference on Pattern Recognition, vol. 1, pp. 1108–1111. IEEE (2006)

    Google Scholar 

  22. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  23. Nayal, A., Jomaa, H., Awad, M.: Kerminsvm for imbalanced datasets with a case study on arabic comics classification. Eng. Appl. Artif. Intell. 59, 159–169 (2017)

    Article  Google Scholar 

  24. Ou, Y.Y., Hung, H.G., Oyang, Y.J.: A study of supervised learning with multivariate analysis on unbalanced datasets. In: International Joint Conference on Neural Networks, pp. 2201–2205. IEEE (2006)

    Google Scholar 

  25. Ramentol, E., Caballero, Y., Bello, R., Herrera, F.: Smote-rsb*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory. Knowl. Inf. Syst. 33(2), 245–265 (2012)

    Article  Google Scholar 

  26. Raskutti, B., Kowalczyk, A.: Extreme re-balancing for SVMS: a case study. ACM Sigkdd Explor. Newsl. 6(1), 60–69 (2004)

    Article  Google Scholar 

  27. Rizk, Y., Mitri, N., Awad, M.: An ordinal kernel trick for a computationally efficient support vector machine. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3930–3937. IEEE (2014)

    Google Scholar 

  28. Rizk, Y., Partamian, H., Awad, M.: Toward real-time seismic feature analysis for bright spot detection: a distributed approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. (2017)

    Google Scholar 

  29. Saab, S.A., Mitri, N., Awad, M.: Ham or spam? a comparative study for some content-based classification algorithms for email filtering. In: 17th IEEE Mediterranean Electrotechnical Conference, pp. 339–343 (2014)

    Google Scholar 

  30. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  31. Stefanowski, J., Wilk, S.: Improving rule based classifiers induced by modlem by selective pre-processing of imbalanced data. In: Proceedings of the RSKD Workshop at ECML/PKDD, Warsaw, pp. 54–65. Citeseer (2007)

    Google Scholar 

  32. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  33. Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: SVMS modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(1), 281–288 (2009)

    Article  Google Scholar 

  34. Tax, D.M., Duin, R.P.: Support vector domain description. Pattern Recognit. Lett. 20(11), 1191–1199 (1999)

    Article  Google Scholar 

  35. Vapnik, V.: The Nature of Statistical Learning Theory. Springer science & business media, Berlin (2013)

    Google Scholar 

  36. Veropoulos, K., Campbell, C., Cristianini, N., et al.: Controlling the sensitivity of support vector machines. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 55–60 (1999)

    Google Scholar 

  37. Wang, X., Matwin, S., Japkowicz, N., Liu, X.: Cost-sensitive boosting algorithms for imbalanced multi-instance datasets. In: Zaïane, O.R., Zilles, S. (eds.) AI 2013. LNCS (LNAI), vol. 7884, pp. 174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38457-8_15

    Chapter  Google Scholar 

  38. Wu, G., Chang, E.Y.: Adaptive feature-space conformal transformation for imbalanced-data learning. In: International Conference on Machine Learning, pp. 816–823 (2003)

    Google Scholar 

  39. Wu, G., Chang, E.Y.: Class-boundary alignment for imbalanced dataset learning. In: ICML 2003 workshop on learning from imbalanced data sets II, pp. 49–56. Washington (2003)

    Google Scholar 

  40. Wu, G., Chang, E.Y.: KBA: Kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 17(6), 786–795 (2005)

    Article  Google Scholar 

  41. Yang, J., Bouzerdoum, A., Phung, S.L.: A training algorithm for sparse LS-SVM using compressive sampling. In: IEEE International Conference on Acoustics Speech and Signal Processing, pp. 2054–2057. IEEE (2010)

    Google Scholar 

  42. Yang, P., Xu, L., Zhou, B.B., Zhang, Z., Zomaya, A.Y.: A particle swarm based hybrid system for imbalanced medical data sampling. BMC Genomics 10(3), S34 (2009)

    Article  Google Scholar 

  43. Zhuang, L., Dai, H.: Parameter optimization of kernel-based one-class classifier on imbalance learning. J. Comput. 1(7), 32–40 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hmayag Partamian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Partamian, H., Rizk, Y., Awad, M. (2018). Barricaded Boundary Minority Oversampling LS-SVM for a Biased Binary Classification. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds) Discovery Science. DS 2018. Lecture Notes in Computer Science(), vol 11198. Springer, Cham. https://doi.org/10.1007/978-3-030-01771-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01771-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01770-5

  • Online ISBN: 978-3-030-01771-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics