Skip to main content

Rough Sets: Visually Discerning Neurological Functionality During Thought Processes

  • Conference paper
  • First Online:
  • 857 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11177))

Abstract

The central aim of this paper is to test and illustrate the viability of utilizing Rough Set Theory to visualize neurological events that occur when a human is thinking very intensely to solve a problem or, conversely, solving a trivial problem with little to no effort. Since humans solve complex problems by leveraging synapses from a distributed neural network in the frontal and parietal lobe, which is a difficult portion of the brain to research, it has been a challenge for the neuroscience community to functionally measure how intensely a subject is thinking while trying to solve a problem. Herein, we present our research of optimizing machine intelligence to visually illustrate when members of our cohort experienced misunderstandings and challenges during periods where they read and comprehended short code snippets. This research is a continuation of the authors’ research efforts to use Rough Sets and artificial intelligence to deliver a system that will eventually visually illustrate deception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., Lippert, T.: The human brain project: creating a european research infrastructure to decode the human brain. Neuron 92(3), 574–581 (2016)

    Article  Google Scholar 

  2. Antonenko, P., Paas, F., Grabner, R., Van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22(4), 425–438 (2010)

    Article  Google Scholar 

  3. Antonenko, P.D., Niederhauser, D.S.: The influence of leads on cognitive load and learning in a hypertext environment. Comput. Hum. Behav. 26(2), 140–150 (2010)

    Article  Google Scholar 

  4. Boksem, M.A., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention: an ERP study. Cogn. Brain Res. 25(1), 107–116 (2005)

    Article  Google Scholar 

  5. Bordin, E.S.: The generalizability of the psychoanalytic concept of the working alliance. Psychother. Theory Res. Pract. 16(3), 252 (1979)

    Article  Google Scholar 

  6. Brennan, R.L.: Generalizability theory. Educ. Meas. Issues Pract. 11(4), 27–34 (1992)

    Article  Google Scholar 

  7. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd edn. L. Erlbaum Associates, Hillsdale (1988)

    Google Scholar 

  8. Crk, I., Kluthe, T., Stefik, A.: Understanding programming expertise: an empirical study of phasic brain wave changes. ACM Trans. Comput. Hum. Interact. (TOCHI) 23(1), 2 (2016)

    Google Scholar 

  9. De Leeuw, J.R.: jsPsych: a javascript library for creating behavioral experiments in a web browser. Behav. Res. Methods 47(1), 1–12 (2015)

    Article  Google Scholar 

  10. Deco, G., Van Hartevelt, T.J., Fernandes, H.M., Stevner, A., Kringelbach, M.L.: The most relevant human brain regions for functional connectivity: evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. NeuroImage 146, 197–210 (2017)

    Article  Google Scholar 

  11. Duncan, J., Owen, A.M.: Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23(10), 475–483 (2000)

    Article  Google Scholar 

  12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  13. Forstmann, B.U., de Hollander, G., van Maanen, L., Alkemade, A., Keuken, M.C.: Towards a mechanistic understanding of the human subcortex. Nat. Rev. Neurosci. 18(1), 57–65 (2017)

    Article  Google Scholar 

  14. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. 5, 826–834 (1983)

    Article  Google Scholar 

  15. Cirett Galán, F., Beal, C.R.: EEG estimates of engagement and cognitive workload predict math problem solving outcomes. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 51–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31454-4_5

    Chapter  Google Scholar 

  16. Gopstein, D.: Understanding misunderstandings in source code. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM (2017)

    Google Scholar 

  17. Grillner, S., et al.: Worldwide initiatives to advance brain research. Nat. Neurosci. 19(9), 1118–1122 (2016)

    Article  Google Scholar 

  18. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage Publications Sage CA, Los Angeles (2006)

    Article  Google Scholar 

  19. Hogan, R.: Automated eeg detection algorithms and clinical semiology in epilepsy: importance of correlations. Epilepsy Behav. 22, S4–S6 (2011)

    Article  Google Scholar 

  20. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  21. Kalyuga, S., Ayres, P., Chandler, P., Sweller, J.: The expertise reversal effect. Educ. Psychol. 38(1), 23–31 (2003)

    Article  Google Scholar 

  22. Lewis, R., Mello, C.A., Ellenberger, J., White, A.M.: Domain adaptation for pathologic oscillations. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS (LNAI), vol. 8170, pp. 374–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41218-9_40

    Chapter  Google Scholar 

  23. Lewis, R., Mello, C.A., Carlsen, J., Grabenstatter, H., Brooks-Kayal, A., White, A.M.: Autonomous neuroclustering of pathologic oscillations using discretized centroids. In: 8th International Conference on Mass Data Analysis of Images and Signals with Applications in Medicine, 13–16 July 2013, New York, USA (2013)

    Google Scholar 

  24. Lewis, R.A., Waziri, A.: minedICE: a knowledge discovery platform for neurophysiological artificial intelligence. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 575–580. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_61

    Chapter  Google Scholar 

  25. Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J. Intell. Inf. Syst. 23(1), 5–16 (2004)

    Article  Google Scholar 

  26. Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends in cognitive sciences 8(5), 204–210 (2004)

    Article  Google Scholar 

  27. Neely, J.H.: Semantic priming effects in visual word recognition: A selective review of current findings and theories. Basic processes in reading: Visual word recognition 11, 264–336 (1991)

    Google Scholar 

  28. Newman, S.D., Carpenter, P.A., Varma, S., Just, M.A.: Frontal and parietal participation in problem solving in the tower of london: fmri and computational modeling of planning and high-level perception. Neuropsychologia 41(12), 1668–1682 (2003)

    Article  Google Scholar 

  29. Poldrack, R.: Neuroscience: The risks of reading the brain. Nature 541(7636), 156–156 (2017)

    Article  Google Scholar 

  30. E. L. Schwartz. Computational neuroscience. Mit Press, 1993

    Google Scholar 

  31. Trinidad, J.F., Shulcloper, J.R., Cortes, M.S.: Structuralization of universes. Fuzzy Sets and Systems 112(3), 485–500 (2000)

    Article  MathSciNet  Google Scholar 

  32. Yuste, R., Bargmann, C.: Toward a global brain initiative. Cell 168(6), 956–959 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NSF grant 1444827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lewis, R., Mello, C.A., Zhuang, Y., Yeh, M.KC., Yan, Y., Gopstein, D. (2018). Rough Sets: Visually Discerning Neurological Functionality During Thought Processes. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01851-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01850-4

  • Online ISBN: 978-3-030-01851-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics