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Abstract. Blockchain technology like Bitcoin is a rapidly growing field
of research which has found a wide array of applications. However, the
power consumption of the mining process in the Bitcoin blockchain alone
is estimated to be at least as high as the electricity consumption of Ire-
land which constitutes a serious liability to the widespread adoption of
blockchain technology. We propose a novel instantiation of a proof of
human-work which is a cryptographic proof that an amount of human
work has been exercised, and show its use in the mining process of a
blockchain. Next to our instantiation there is only one other instanti-
ation known which relies on indistinguishability obfuscation, a crypto-
graphic primitive whose existence is only conjectured. In contrast, our
construction is based on the cryptographic principle of multiparty com-
putation (which we use in a black box manner) and thus is the first known
feasible proof of human-work scheme. Our blockchain mining algorithm
called uMine, can be regarded as an alternative energy-efficient approach
to mining.

Keywords: Blockchain · Applied cryptography · Peer-to-Peer
Proof of work

1 Introduction

The last few years have seen a rising interest in the use of blockchain technol-
ogy. Originally, blockchain architectures emerged from the design of the cryp-
tographic cash system Bitcoin [27] to construct alternative cryptocurrencies.
Nowadays, there are applications besides cryptocurrencies, like secure and fair
multiparty computations [2,7,19] or smart contracts [23,24,33], though decen-
tralized cryptocurrencies are still the main driving force behind the blockchain
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by the Netherlands Organisation for Scientific Research (NWO) in the context of
the CRIPTIM project. The full version of this article can be found at IACR [22].

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 20–38, 2018.
https://doi.org/10.1007/978-3-030-01950-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_2&domain=pdf


uMine: A Blockchain Based on Human Miners 21

trend. In a nutshell, blockchains provide an immutable distributed ledger and
thus can potentially be used to record various forms of asset ownership in dif-
ferent domains.

One of the major drawbacks of blockchain technology is its huge energy
consumption. According to de Vries [32] Bitcoin alone consumes at least
2.55 gigawatts of energy making it comparable to countries such as Ireland’s
electricity consumption (3.1 gigawatts). We identify this problem to be one of
the main challenges of scaling blockchains and allowing for their widespread
adoption.

In this article we tackle the issue of the huge energy consumption of
blockchains by introducing uMine, a mining algorithm based on a novel proof of
human-work construction. Proofs of human-work are cryptographic mechanisms
where a prover can convince a verifier that it has spent some amount of human
work. In particular, proof of human-work puzzles can only be solved by humans
and not by computers under the hardness assumption of some underlying AI
problem. This allows us to lower the energy consumption of the blockchain by
exchanging the costly proof of work mining algorithm by a proof of human-work
which can only be provided by humans.

Proofs of human-work were originally developed by Blocki and Zhou [8] but
their construction relies on indistinguishability obfuscation, a theoretical cryp-
tographic primitive where no realization is known. Our new construction in con-
trast is based on multiparty computation where multiple feasible instantiations
exist [5,9,10,17,28].

Our contributions can be summarized as follows:

– We provide a novel instantiation of a proof of human-work which does not rely
on indistinguishability obfuscation but instead uses multiparty computation
as a black box.

– We prove the security of our proof of human-work given a secure captcha.
– We use our proof of human-work to construct uMine, a novel energy efficient

mining algorithm where the mining is performed by human miners creating
proofs of human-work.

2 Building Blocks

Notation: We write a ← A(x) to assign to a the output of running the random-
ized algorithm A on the input x. We denote with a ← A(x; r) the deterministic
result of running A on input x with the fixed randomness r. We say that an
algorithm A is ppt if it runs in probabilistic polynomial time.

2.1 Blockchain

A blockchain is a distributed append-only database together with a consensus
algorithm where nodes decide which data is persisted. Usually blockchains are
frequently used in the design of cryptographic currencies, to agree on the order
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of transactions and provide a single immutable log where all transactions are
recorded. The most prominent example is Bitcoin [27], which was the first to
introduce the idea of a blockchain. The participants in the consensus protocol
bundle transactions into blocks and try to append them to the blockchain by
partially inverting a hash function, a process which is called proof of work [11,12].
Since each node is granted a financial reward in the underlying cryptocurrency
for finding a new correct block, the so called mining reward, proof of work
achieves alignment of incentives. If these nodes, called miners, solve a proof
of work to include wrong transactions in the chain, their financial reward is
annihilated, since the other nodes reject wrong blocks. Thus it is rational for
miners to only persist valid information in the blockchain.

The proof of work mining algorithm includes a difficulty parameter which in
Bitcoin is adjusted every 2016 blocks (approximately two weeks) such that one
block is expected to be found every ten minutes assuming no changes in the hash
rate. This mechanism allows the global hash rate to change while preserving the
block creation rate. While the optimal adjustment of the difficulty parameter is
not well understood it is clear that a difficulty parameter needs to be supported
when designing alternative mining algorithms.

For further reading regarding blockchains we refer the reader to the survey
by Tschorsch et al. [31] or the book by Antonopoulos [3].

While the original vision of blockchains [27] was that each processor has the
same chance to mine a block, nowadays the mining industry is dominated by few
corporations with specialized mining hardware. Due to this commercialized min-
ing arms race the power consumption of the whole Bitcoin network has increased
significantly. For the scalability and the further development of blockchain tech-
nology this clearly constitutes a problem.

2.2 Slow Hash Functions

Slow hash functions are a special kind of hash function. While usual hash func-
tions H are designed to be easy to compute, the evaluation of a slow hash func-
tion H in contrast is computationally costly. Normally the evaluation of a slow
hash function like bcrypt [30] or scrypt [29] is on the order of several hundred
milliseconds, thus slowing down brute-force attacks significantly. The intuition
behind slow hash functions is that an authorized user needs to evaluate them
only once, and thus the overhead is negligible.

2.3 Captchas

Captcha is an acronym for a Completely Automated Public Turing test to tell
Computers and Humans Apart. They are challenge response tests to determine
if the user is a human or a program. One major application is to prevent auto-
mated registrations of accounts in web services. The most common form of a
captcha puzzle consists of a set of warped letters, where the user is requested to
recognize the letters, a task which is supposedly hard for computers and easy
for humans. There are also other forms like audio-based captchas where the user
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is challenged to recognize speech data. To enable automatic verification of a
given solution without human assistance the service provider has usually stored
a secret set of puzzle-solutions pairs. These pairs are generated by computing
a puzzle from a known solution. For verification, access to these puzzle-solution
pairs is needed and hence captchas are in general not publicly verifiable.

Since captchas are based on the assumption that some fundamental AI prob-
lem is hard to solve, the need to model the human solver as an entity distinct
from an algorithm arises. Sometimes this is done in the form of a (yet) unknown
algorithm. Since we prefer giving a clearer exposition to giving a philosophi-
cally correct one we simply model the human as an oracle that can provide the
solutions to a captcha puzzle along the lines of Blocki and Zhou [8].

Definition 1. Captcha [8]: A Captcha C is a quintuple of algorithms (Setup,W,
G, Σhuman ,Verify) with the following properties:

– PP ← C.Setup(1λ) is the generation of the public parameters PP given a
security parameter λ.

– σ ← C.W(PP) is a randomized algorithm sampling a solution σ given the
public parameters.

– Z ← C.G(PP , σ) generates a captcha-puzzle Z with solution σ. We write
C.G(PP , σ; r) if we fix the randomness r, i.e., if we consider C.G as a deter-
ministic function.

– σ ← C.Σhuman(PP ,Z ) is a solution finding algorithm that takes as input the
public parameters and a puzzle Z and outputs a solution σ. It has internal
access to a human oracle.

– b := C.Verify(PP ,Z , σ) outputs a single bit which is 1 whenever there is a
random r, such that C.G(PP , σ; r) = Z .

The original definition of a captcha by Blocki and Zhou [8] additionally uses a
tag which is generated together with the puzzle and needed for the verification of
a solution σ. We stress that our construction later also works with the definition
of Blocki and Zhou, where the tag is set as undefined. However, the tags are not
necessary in our construction and thus we decided to present our work using a
simpler definition to aid in the understanding.

If the randomness r which was used to generate the captcha in the algorithm
C.G is known it may be possible to invert C.G. In the case of image based captchas
r determines the chosen transformations, e.g., rotation, addition of noise, and
their parameters applied on the solution to yield a puzzle [1]. Knowledge of these
may allow an attacker to invert the used transformations and thus recover the
solution σ from a puzzle Z without the use of human work. Consequently the
security of a captcha puzzle Z = C.G(PP , σ; r) is usually based on the secrecy
of the random value r, which was used to generate the puzzle [1, Section Who
knows What?].

Additional Requirements for Our Construction: In contrast to the orig-
inal definition by Blocki and Zhou [8] we require the generation of the puzzles
C.G(PP , σ; r) to be collision-free, i.e., injective, in its randomness r and in its
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solutions σ. Regarding the solutions σ it is natural to assume that there can be
no two different solutions to the same puzzle. Regular image based captchas do
have this property. Regarding injectivity in the randomness r we can assume
that it serves as an enumeration of the puzzle space for a given captcha solution.
Consider the case of image based captchas where the randomness determines
the type of transformations. Different transformations with different parameters
yield different puzzles and thus collision freeness can be assumed.

Use in Our Instantiation: In our construction of a proof of human-work the
randomness r used in the puzzle generation C.G is set to a deterministic value
containing a slow hash of the solution H(σ). This way it is easy to verify a
solution publicly, given a puzzle, since one only needs to regenerate the puzzle
from the solution σ using the same randomness and check if the given puzzle
equals the computed one. The use of a slow hash function is necessary to prevent
bruteforcing of the solution using the verification algorithm.

Security Properties: We require that any captcha should be solvable by a
human. We use the term human-work unit to denote the effort needed to solve
a single instance of a captcha. Although the time needed to solve a captcha may
depend on the human and his abilities, we expect these differences to be small
and similar to the differences in performance of different computer hardware.

Definition 2. Honest Human Solvability [8]: We say that a human-machine
solver C.Σhuman controls m human-work units if it can query its human oracle
at least m times. We say that a captcha system C = (Setup,W,G, Σhuman ,Verify)
is honest human solvable if for every polynomial m = m(λ) and for any human
C.Σhuman controlling m human-work units, it holds that

P

⎡
⎢⎢⎣

∀PP ← C.Setup(1λ);
∀i ∈ [m]

(
σ∗

i ← C.W(PP)
)
;

∀i ∈ [m]
(
Z ∗

i ← C.G(PP , σ∗
i )

)
:

(σ∗
1 , . . . , σ

∗
m) ← C.Σhuman(PP ,Z ∗

1 , . . . ,Z ∗
m)

⎤
⎥⎥⎦ ≥ 1 − negl(λ)

Finally we require that captchas are hard for computers to solve without
access to a human oracle.

Definition 3. Captcha Break [8]: We say that a ppt adversary A who has at
most m human-work units breaks security of a captcha system C = (Setup,W,G,
Σhuman ,Verify) if there exist polynomials m = m(λ), n = poly(λ) and μ(λ) such
that if A controls at most m human-work units it holds that

P

⎡
⎢⎢⎢⎢⎢⎢⎣

∀PP ← C.Setup(1λ);
∀i ∈ [n]

(
σ∗

i ← C.W(PP)
)
;

∀i ∈ [n]
(
Z ∗

i ← C.G(PP , σ∗
i )

)
;

S ← A(PP ,Z ∗
1 , . . . ,Z ∗

n);
∀i ∈ [n]

(
bi ← maxσ∈S C.Verify(PP ,Z ∗

i , σ)
)

:∑
i∈[n] bi ≥ m + 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 1
μ(λ)
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It is debatable, whether in AI research the concept of a security parameter
applies [1]. AI research does not deal with asymptotics and thus it can be argued
that problem classes are either solvable or unsolvable, independent of the con-
crete problem in the problem class. This is in contrast to classical cryptography
where it may be feasible to solve certain “small” instances of problems without
solving all, e.g., factorization of small integers may be possible, without being
able to factorize all integers. Thus, if captchas are either solvable or unsolv-
able in the real world our definitions can be made even stronger by setting the
negligible term in the definition of honest human solvability to zero. Without
a tunable security parameter, a captcha is called broken if the attacker has a
success probability of 1 of finding solutions without access to a human oracle.

2.4 Proof of Human-Work Puzzles

Proof of human-work puzzles (PoH) were first introduced by Blocki and Zhou [8].
Their goal was to construct a publicly verifiable proof that some amount of
human work has been exercised. Their construction relies on indistinguishability
obfuscation [14] and thus is currently infeasible.

A PoH in contrast to a captcha has a tunable difficulty parameter and is
publicly verifiable. That means that no secret knowledge is needed neither to
generate nor to verify a PoH. Especially, the solution does not need to be known
to generate the puzzle as is the case with captchas. The difficulty parameter
enables its use as a mining algorithm in a blockchain as explained above.

Definition 4. Proof of Human-work Puzzle [8]: A proof of human-work puzzle
system POH consists of four algorithms (Setup,G, Σhuman ,V) where:

– PP ← POH.Setup(1λ, 1ω) is a randomized system setup algorithm that takes
as input a security parameter λ and a difficulty parameter ω and outputs
public parameters of the system PP.

– x ← POH.G(PP) is a randomized algorithm that takes as input the public
parameters PP and outputs a puzzle x.

– a ← POH.Σhuman(PP , x) is a solution finding algorithm that has access to
a human oracle. It takes as input the public parameters and a puzzle x and
outputs a solution σ to the puzzle.

– b := POH.V(PP , x, a) is a deterministic verification algorithm that takes as
input the public parameters PP, together with a puzzle x and a solution a and
outputs a bit b where b = 1 if and only if a is a valid solution to the puzzle x.

Similar to a captcha we require from PoHs that they are solvable by a human,
with a success probability depending on the difficulty parameter. Following the
notation of Blocki and Zhou [8] and Miller et al. [26] we define ζ(m,ω) :=
1 − (1 − 2−ω)m. This describes the probability of finding a valid solution using
m queries to the human oracle.

Definition 5. Honest Human Solvability [8]: We say that a PoH system
POH = (Setup,G, Σhuman ,V) is honest human solvable if for every polynomial
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m = m(λ), and for any honest human-machine solver POH.Σhuman who controls
m human-work units, it holds that

P

⎡
⎢⎢⎣

∀PP ← POH.Setup(1λ, 1ω);
x∗ ← POH.G(PP);
a∗ ← POH.Σhuman(PP , x∗) :

POH.V(PP , x∗, a∗) = 1

⎤
⎥⎥⎦ ≥ ζ(m,ω) − negl(λ)

Further, we require that any adversary that controls too few human-work
units succeeds in solving a PoH only with negligible probability.

Definition 6. Adversarial Human Unsolvability [8]: We say that a ppt algo-
rithm A breaks security of the PoH system POH = (Setup,G, Σhuman ,V) if for
some polynomials m = m(λ) and μ(λ) when A controls at most m human-work
units, it holds that

P

⎡
⎢⎢⎣

∀PP ← POH.Setup(1λ, 1ω);
x∗ ← POH.G(PP);
a∗ ← A(PP , x∗) :
POH.V(PP , x∗, a∗) = 1

⎤
⎥⎥⎦ ≥ ζ(m + 1, ω) +

1
μ(λ)

2.5 Multiparty Computation Protocol

Multiparty computation protocols (MPC) are cryptographic protocols that allow
a set of mutually distrusting parties to collaboratively compute a function with
private input values. For example, the parties evaluate some f(y1, . . . , yn), where
the input yi is only known to party i. The participants in the protocol do not
learn anything beyond their own inputs and the solution f(y1, . . . , yn).

While traditional schemes suffered from severe performance issues, over the
last few years, multiple practical solutions that can deal with arbitrary com-
putable functions f have emerged [5,9,10,17,28]. In our case we require a secure
multiparty protocol with k different parties, where k − 1 participants can be
controlled by an active attacker. An active (malicious) attacker can arbitrarily
deviate from any protocol execution in an attempt to cheat. This is in contrast to
passive (semi-honest) attackers who try to gather as much information about the
underlying inputs and (intermediate) outputs but honestly follow the prescribed
steps in the given protocol.

We use MPC as a black box in this article, having secret sharing based MPC
protocols in mind (such as SPDZ [9]). For this we define an MPC protocol MPC
as a triple of ppt algorithms (Setup,Share,Reveal) where:

– PP ← MPC.Setup(1λ) is a randomized algorithm that takes a security param-
eter λ as input and sets up the protocol by distributing the keys and param-
eters. It outputs the public parameters for the system.

– 〈y〉 ← MPC.Share(PP , y) shares the value y among the k participants using a
secret sharing scheme such that each of the k participants receives one share.
We use 〈y〉 to denote the vector of secret shares of y. Note that the Share
algorithm can be executed by one of the participants or any other external
party with access to the parameters PP .
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– y ← MPC.Reveal(PP , 〈y〉) reconstructs the value y from its secret shares 〈y〉.
The MPC participants send their secret shares 〈y〉 to an external party who
can then execute MPC.Reveal and learn the value y; consequently being the
only party knowing y in the clear.

By abuse of notation, we apply computable functions on secret shares to denote
the computation of the secret shares of the result of the function applied to the
clear values, i.e., we denote 〈f(y1, . . . , yn)〉 by f(〈y1〉, . . . , 〈yn〉). The clear values
are not revealed by this operation. Note that knowledge of the public parameters
may be needed for this computation, but is left out to simplify our notation.

One possible MPC framework for our use is SPDZ [9], which consists of a
preprocessing and an online phase. The preprocessing phase is independent of
the function to be computed as well as of the inputs. In the online phase the
actual function is evaluated. The online phase has a total computational and
communication complexity linear in the number of participants k. The work done
by each participant in SPDZ is only a small constant factor larger than what
would be required to compute the function in the clear. Thus, SPDZ provides
an efficient framework which satisfies our requirements.

3 Our Construction

3.1 Overview

On a high level we are interested in exchanging the proof of work by a PoH.
The parties involved in our system are human miners, i.e., miners who control
some human-work units, who try to solve the PoH puzzles in order to gain the
block rewards, as well as a consortium of k puzzle generators. To mine a new
block, each human miner requests a puzzle for a proof of human-work from the
puzzle generators. The puzzle is linked to the transactions the human miner
wants to persist, as well as to the current block in the blockchain. Throughout
the generation of the puzzle, the solution is unknown to any single party, in
contrast to regular captchas. If the human miner does not succeed in solving the
puzzle it can request a new puzzle from the captcha generators. If the human
miner succeeds however, it can publish the new block containing the captcha
puzzle, its solution, and the transactions. A node which receives a new block can
check the transactions and the proof of human-work for validity. It accepts the
block if all of these are correct and mining continues on top of the new block.

3.2 Our Proof of Human-Work

We give a new instantiation of a PoH puzzle which does not rely on indistin-
guishability obfuscation [14] like the work of Blocki and Zhou [8], but instead on
MPC. Our construction is the first PoH which is feasible and does not involve a
trusted third party. In contrast to the work of Blocki and Zhou [8], computing
the algorithm POH.G in our construction needs interaction with a set of captcha
generators {C1, . . . , Ck}. This set can be a fixed consortium of k parties as will
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be explained in Subsect. 3.4. The assumption of interaction poses no problem
for our use case since for mining on a blockchain the miners are required to be
online anyway to receive the latest blocks and transactions.

The intuition behind our construction is that the captcha generators collab-
oratively compute a captcha puzzle using multiparty computation. This com-
putation is done in such a way that each captcha generator has access to only
a secret share of the solution, but not to the solution itself. Consequently, the
solution is unknown to any single party.

Nevertheless, since it is a captcha the solution can be found by querying
the human oracle. If the hash of the solution σ of the captcha puzzle is above a
difficulty parameter the solution is deemed invalid for the PoH. Thus, for creating
a valid PoH one may need to solve multiple captchas depending on the difficulty,
until a captcha solution with a small hash is found. This captcha solution then
constitutes a PoH a.

In order to achieve public verifiability, remember that the generation of a
captcha puzzle is a probabilistic algorithm using the solution. If the randomness
used in the captcha generation is known it is possible to regenerate the captcha
puzzle from the solution. This allows public verification of the solution since the
recomputed puzzle can be compared to the given puzzle. In our construction the
randomness in the captcha generation is derived from the captcha solution itself.

Fig. 1. Simplified Overview of our Proof of Human-work Construction

A standard workflow is shown in Fig. 1. As a first step the captcha generators
{C1, . . . , Ck} are initialized by executing MPC.Setup with an appropriate security
parameter. Now, suppose a human M wants to compute a proof of human-work.

First, the human sets up the public parameters PP for the proof of human-
work by executing POH.Setup. The public parameters consist of the public keys
of the captcha generators, a difficulty parameter ω, and a security parameter λ.

Next, the human queries the captcha generators to obtain a captcha by
executing POH.G. To this end, he computes public parameters C.PP for the
captcha by running the setup algorithm of the captcha with security parame-
ter λ. The public parameters C.PP are distributed to the captcha generators
{C1, . . . , Ck} (Step 1 in Fig. 1). Each captcha generator Cj chooses a random
value yj and shares it among the other captcha generators, according to the
multiparty computation protocol (Step 2 in Fig. 1). Together, the captcha gen-
erators sample a solution σ of the captcha by using the sum of their chosen
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randomness y1 ⊕· · ·⊕ yk in the sampling algorithm C.W together with the pub-
lic parameters of the captcha C.PP . This solution σ is not revealed, but rather
stays secret shared between the captcha generators. Thus, no captcha generator
knows the solution. From the shared solution 〈σ〉 the shares of the captcha puzzle
〈Z 〉 are computed by the captcha generators using multiparty computation as
〈Z 〉 ← C.G

(
C.PP , 〈σ〉;H(〈σ〉)) (Step 3 in Fig. 1). Here, H denotes a slow hash

function. Each captcha generator signs its share of the puzzle and sends it to
the human M (Step 4 in Fig. 1). We call these signed shares τ . The human then
reveals the puzzle Z by executing the MPC.Reveal algorithm of the multiparty
computation protocol. M is now the only person knowing the captcha puzzle
Z , and the solution σ is unknown to any single party. The puzzle to the PoH is
x = (C.PP ,Z , τ).

In order to create the PoH the human solves the captcha puzzle Z by exe-
cuting its captcha solving algorithm. This yields a solution σ to the captcha.
If H(σ) < Tω then this constitutes a valid proof of human-work. Here, H is a
hash function and Tω = 2n−ω analogous to Blocki and Zhou [8], where ω is the
difficulty parameter and n is the bit size of the output of H. If this is not the
case, i.e., if the hash of the solution is not small enough, the human has to start
again by querying the captcha generators for a new puzzle until he succeeds in
solving a captcha with a small solution. The PoH consists of the solution to the
captcha puzzle a = σ.

To verify the PoH, i.e., to execute POH.V, the public parameters PP , the
puzzle x, and its solution a are needed. The verifier first needs to check if the
puzzle has been computed in a correct way, i.e., by the captcha generators.
This can be done by checking τ , the signatures on the shares of the solution
which are included in the puzzle x. Next, the verifier checks that the hash of the
solution is small enough, i.e., if H(σ) < Tω. As a final step, the verifier checks
that the solution is a correct solution to the captcha. This can be done by
simply regenerating a puzzle from the solution and checking equality between
the recomputed puzzle and the original puzzle. I.e., it needs to be checked if
C.G

(
C.PP , σ;H(σ)

)
= Z . If any of these three steps fails, the PoH is rejected.

Otherwise it is considered valid.

Construction 1. Let C be a secure human solvable captcha and MPC be a secure
MPC scheme initialized with public parameters MPC.PP ← MPC.Setup(1λ). Let
H : {0, 1}• → {0, 1}n be a hash function. We define Tω = 2n−ω analogous
to Blocki and Zhou [8]. We use Tω to scale our difficulty parameter ω, since
P (H(r) < Tω) = 2−ω for a random r. We now construct a PoH by defining the
following operations.

– PP ← POH.Setup(1λ, 1ω) outputs the parameters PP containing λ, ω, and
the public keys of the captcha generators C1, . . . , Ck.

– x ← POH.G(PP) is computed by interacting with the set of captcha gen-
erators {C1, . . . , Ck}. First we parse λ and ω from PP locally and compute
the public parameters for the captcha as C.PP ← C.Setup(1λ). These are
then given to the captcha generators. Each captcha generator Cj chooses
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a secret random value yj and uses MPC.Share(MPC.PP , yj) to distribute
shares of its value yj among the k captcha generators. In a next step the
captcha generators compute 〈σ〉 = C.W(C.PP , 〈y1〉 ⊕ · · · ⊕ 〈yk〉) using MPC
such that each of the captcha generators now possesses a secret share of
the solution σ to the captcha. The solution σ is not revealed but stays in
the secret shared domain. Next, the captcha generators compute the puzzle
〈Z 〉 ← C.G

(
C.PP , 〈σ〉;H(〈σ〉)). The captcha generators each sign their shares

〈Z 〉 of the puzzle as τ which later guarantees that each of the captcha gener-
ators Cj has participated in the protocol.
Finally the captcha puzzle Z is revealed by executing Z =
MPC.Reveal(MPC.PP , 〈Z 〉) and the PoH puzzle x = (C.PP ,Z , τ) is output.

– a ← POH.Σhuman(PP , x) computes a solution a to a PoH as follows.
First, the parameters λ, ω, are parsed from PP. The puzzle is parsed as
(C.PP ,Z , τ) = x. Then the captcha solving algorithm is queried σ ←
C.Σhuman(C.PP ,Z ). If H(σ) < Tω we return the solution a = σ. Otherwise
a = ⊥ is returned.

– b := POH.V(PP , x, a) first parses σ = a and checks if H(σ) < Tω. If that
is not the case b = 0 is returned. Otherwise we parse (C.PP ,Z , τ) = x and
check the signatures and the final shares of the puzzle τ to ensure that the
puzzle has been generated in a correct way, i.e., by the captcha generators Cj,
and not by anyone else. This is possible, since the public keys of the captcha
generators needed for the verification of the signatures are contained in PP.
If τ is invalid, we return b = 0. As a third step we need to ensure that the
solution σ is a valid solution to the captcha. This can be done by checking if
C.G

(
C.PP , σ;H(σ)

)
= Z . If that is the case, return b = 1, otherwise return

b = 0.

Theorem 1. If our construction is instantiated with a secure and honest human
solvable captcha, then the resulting PoH is honestly human solvable and adver-
sarial human unsolvable under the assumption that at least one of the k captcha
generators C1, . . . , Ck is honest.

Proof. The proof can be found in the full version of the paper [22].

3.3 Block Generation

In this section we describe a design of a blockchain which is based on proofs
of human-work. We call the resulting mining process uMine. In order to mine
a new block Bi, a human miner M needs access to the previous block Bi−1.
Further it needs to have a set of transactions Tx i, which it wants to persist in
the new block Bi.

To mine a new block, first, the algorithm POH.Setup(1λ, 1ω) is run in order
to generate the public parameters for the PoH. The security parameter λ is
globally fixed but the difficulty parameter ω needs to be adjusted dynamically
to ensure a stable block creation rate. In Bitcoin the difficulty parameter is
adjusted every 2016 blocks such that the expected block generation interval is



uMine: A Blockchain Based on Human Miners 31

10 min, assuming no changes in the global mining power. Although it is unknown
if these parameters are optimal, there is insufficient research covering the choice
of parameters and thus we see no reason to deviate from them.

The captcha generators C1, . . . , Ck are initialized by computing the algorithm
MPC.PP ← MPC.Setup(1λ). After generating the public parameters for the PoH
the human miner M contacts the set of captcha generators to receive a PoH
puzzle xi for the new block Bi as we will explain in the following.

The human miner splits the hash of the transactions H(Tx i), as well as
the hash of the current block hi−1 into secret shares 〈H(Tx i)〉, 〈hi−1〉 which
are distributed to the captcha generators.1 Each captcha generator computes
the captcha parameters as PP ← C.Setup(1λ). Together they compute a
random captcha solution in the secret shared domain as follows. First, each
captcha generator Cj chooses a secret input yj uniformly at random. This
secret randomness is shared among the captcha generators by computing 〈yj〉 =
MPC.Share(MPC.PP , yj). The shared randomness is used to compute the secret
shared random captcha solution as 〈σi〉 = C.W(PP , 〈y1〉 ⊕ · · · ⊕ 〈yk〉). This way,
none of the captcha generators knows the solution σi.

To be able to use our PoH construction from above in a blockchain we need
to include a reference to the previous block hi−1 = H(Bi−1) and the new trans-
actions Tx i in the puzzle. Otherwise, if an already persisted transaction in the
blockchain is modified the PoH is still valid, and thus integrity of persisted
transactions cannot be guaranteed. In order to connect the hash of the previous
block and the transactions with the puzzle the captcha generators compute their
secret shares of the captcha puzzle Zi given their shares of the solution 〈σi〉 as
〈Zi〉 = C.G

(
PP , 〈σi〉;H (hi−1,H(Tx i), 〈σi〉)

)
. I.e., the hash of the previous block

hi−1 and the current transactions H(Tx i) are included in the randomness of the
puzzle generation At this stage, each captcha generator has a share of a captcha
puzzle 〈Zi〉 where the solution is effectively unknown to any single party.

Next, the captcha generators send their signed final shares of the captcha
puzzle to the human miner M who assembles them as a PoH xi = (C.PP ,Zi, τi),
where Zi = MPC.Reveal(MPC.PP , 〈Zi〉) is the revealed captcha puzzle. Here, τi

is the set of the final signed shares of the puzzle from the multiparty protocol
run. It is used to prove that each captcha generator participated in the protocol
and thus guarantees that the puzzle has been generated in a correct way.

The human can now try to solve its PoH xi. If the hash of the solution
to the encapsulated captcha is too big, that is, when H(σ) ≥ Tω, the human
requests another PoH puzzle from the captcha generators. If the human eventu-
ally succeeds to find a solution σ′

i to the PoH, it can locally verify its solution,
by checking if Zi = C.G

(
C.PP , σ′

i;H(hi−1,H(Tx i), σ′
i)

)
. If that is the case, it can

publish the new block Bi containing the captcha puzzle xi, its solution ai = σ′
i,

1 We explain our protocol using classical secret sharing based MPC, where a dealer
distributes shares of the input and a set of nodes computes on these shares. We hope
this makes our explanations more clear. In a practical implementation we suggest
the use of SPDZ [9] which is a highly optimized variant thereof.
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as well as the transactions Tx i and a reference to the previous block in form of
a hash hi−1.

Each receiving node verifies the solution to the captcha, by running
POH.V(PP , xi, ai). More specifically, the captcha puzzle Zi is recomputed from
its solution and it is examined if this leads to the same Zi, i.e., if Zi = C.G

(
C.PP ,

σi;H(hi−1,H(Tx i), σi)
)
. Additionally the signed shares of the puzzle τi are

checked for correctness of the signature to guarantee that the puzzle was created
by the correct parties. Further it is examined if H(σ) < Tω holds.

Beyond these steps of verification of the PoH for usage in a blockchain, the
difficulty parameter ω and the validity of the transactions in the new block is
checked, as in Bitcoin.

If any of these checks fails, the new block is discarded and mining continues
on top of the old block Bi−1. Otherwise the human miners can continue to
generate blocks on top of Bi.

If one of the captcha generators is malicious it may abort the generation
of the puzzle to the PoH, thus preventing that new blocks can be mined by
a PoH. To remedy this situation we additionally allow blocks to be mined by
proof of work as in Bitcoin. However, in order to keep the advantages of the
mining with human work, we use a distinct difficulty parameter from the proof
of human-work. The difficulty parameter of the proof of work is chosen in such a
way that mining a block using proof of work is significantly harder than mining
with proofs of human-work. This ensures that the mining process is dominated
by PoH and proof of work is only used as a fallback mechanism.

3.4 Choosing the Captcha Generators

One important design consideration is the choice of the captcha generators.
In this paper we discuss only a static consortium. However, it is possible to
choose captcha generators dynamically based on the randomness contained in
the blockchain. This is explained in the full version of the paper [22].

Static Consortium: In the most simple case we can assume a consortium of
k fixed entities. If some of them are not online, no proof of work puzzles will
be generated. In this case proof of work can be used as a fallback mechanism
as explained above. Thus, if the captcha generators are not online, our system
collapses to proof of work mining. Due to our use of SPDZ [9] we can tolerate up
to k − 1 cheaters. However, if all k parties collude, they may be able to generate
captchas where they already know the solution and thus mine faster than any
human miner, achieving a significant financial gain. We can remedy this situ-
ation by providing incentives for captcha generators to expose collusions and
then punish the colluding parties and reward the traitor (see next paragraph).
Intuitively this provides incentives for the traitor to reveal collusion, thus pre-
venting the formation of collusions in the first place. For this to work the captcha
generators additionally publish a signed commit on their shares of the solution
σ. These can be included in the information used to verify that the puzzle was
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generated by the correct parties τ which consists of the signed shares of the
puzzle.

The Traitor Reward Protocol: The traitor reward protocol has two rounds.
In a first round any captcha generator can claim that the captcha generators
colluded by publishing the particular shares of the puzzle solution of each captcha
generator. If collusion influenced the creation of the current block, at least the
miner of the block knows this information.2

Other parties are allowed to chime in with their claims of collusion by also
publishing commits to the respective shares of the captcha generators. After a
fixed timespan the first round ends and the second round starts.

In the second round the captcha generators have to reveal their commitments
on their shares of the solution. If any of them does not comply within a fixed time
period, collusion can be assumed. The claims of the supposed traitors are handled
in the order of their arrival. Note that since we are in a distributed setting
there is no global time. However, since we want to reward only some traitor to
deter collusion and not necessarily the first traitor, this poses no problem. The
claimed shares of the solutions are compared with the real shares of the captcha
generators and if they coincide, collusion has occurred. In this case, the witness
of collusion can be persisted in the blockchain as a regular transaction and the
block reward of the fraudulent block is granted to the traitor. Note that there
is no need to invalidate the block which has been mined fraudulently, since it
contains only valid transactions and thus, is a valid block.

The time periods for the traitor reward protocol need to be chosen appro-
priately and the block reward needs to be locked for a fixed amount of time to
prevent that it is already spent before collusion claims can be handled.

Consequently each captcha generator can choose to either collude or not
collude and orthogonally to betray the other nodes or refrain from doing so,
leading to the four strategies (collude, betray), (not collude, claim betrayal),
(collude, not betray), and (not collude, not claim betrayal). The incentives need
to be designed such that not colluding and not claiming betrayal has to be the
strictly dominant strategy in a game-theoretic sense, because this is the behavior
we want to support in the captcha generators. Colluding and not betraying the
others needs to be a strictly dominated strategy, such that colluding nodes gain
a profit from betraying the other conspirators. However, the profit needs to be
smaller than if there would have been no collusion at all. Otherwise it may be
rational to stage betrayal and share the reward with the other nodes. For the
other two strategies there are no restrictions.

2 It may be the case that the k colluding parties decide to reveal the solution to the
PoH by MPC, such that no one knows the partial solutions of the other captcha
generators. Even then k − 1 nodes can collude to reveal their particular shares,
recompute the missing share of the last captcha generator, and claim betrayal. This
increases their reward in contrast to not betraying the last captcha generator. For
our cases it is irrelevant if a subset of captcha generators or only a single one claims
betrayal. Though for the sake of simplicity we assume a single traitor.
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It is interesting to note that under the assumption of rational actors the
traitor reward protocol will never be executed. Thus, collusions are prevented
by the existence of the traitor reward protocol and not by its execution.

4 Security

Additionally to the trust assumptions in usual blockchain systems, we require
that at least one of the k captcha generators is honest due to our use of SPDZ [9].
For the security of our PoH scheme we require that it is instantiated with a secure
captcha system. If this is not the case and the captcha can be solved without
human work, our uMine construction will not lose its functionality but instead
degrade to a form of proof of work. Other than the use of a secure captcha we
do not impose any additional trust assumptions.

Since our main focus is to substitute the proof of work by an environmentally
friendly alternative, some of the attacks in Bitcoin also affect our scheme. In
particular, since we treat forks as in Bitcoin, our construction is vulnerable to
51% attacks and eclipse attacks [16]. Although, to successfully pull off a 51%
attack an attacker needs to be in charge of more than 50% of the human work
units in the system instead of more than 50% of the computational resources, as
in Bitcoin. However, we do not introduce any new security vulnerabilities under
our assumptions.

In the following we discuss the infeasibility of selected attacks.

History Rewriting: If old transactions are changed in the blockchain, the solu-
tion to the captcha is invalidated, since the transactions are also used in the gen-
eration of the puzzle Zi from the solution σi as follows: Zi = C.G

(
PP , σi;H(Bi−1,

H(Tx i), σi)
)
.

Finding two sets of transactions Tx i �= Tx ′
i which yield the same puzzle

Zi for the solution σi, implies that H(Bi−1,H(Tx i), σi) = H(Bi−1,H(Tx ′
i), σi),

since C.G is collision-free in its randomness by assumption. So, an attacker would
have to find a collision in the slow hash function H to successfully change the old
transactions which is assumed to be infeasible. Note that changing the solutions
σi also does not yield an attack, since they are referenced in the next block.

Thus, the only way left to change transactions already persisted in the
blockchain would be to split the chain after this block and redo the human
work. This is only possible if an attacker controls more than 50% of the human
resources in the network.

Transaction Denial Attack: In a transaction denial attack, the attacker tries
to prevent a transaction from being confirmed. If the attacker is a human miner,
it can only succeed if his chain grows faster than the chain containing the trans-
action it wants to censor. This is exactly the case if it has more than 50% of
the human power in the system. As soon as that is not the case anymore, the
transaction will be included in the blockchain.

If the attacker is one of the captcha generators instead, it cannot prevent
inclusion of the transaction in the chain, by not serving a captcha to the miners
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which want to include that specific transactions. That is due to the fact that the
captcha generators do not see the transactions but only their hash. Identifying
if a transaction is included in a set of transactions, given only the hash of the
set is infeasible.

Thus, an attacker is unable to target specific transactions for denial.

Bruteforcing of Solutions: Since captchas usually do not have much
entropy—image based captchas consists of up to 12 characters—an attacker
A may have the idea to simply brute-force the solution σi to a puzzle Zi. This
would possibly allow A to mine a block without spending human labor on it.

While we can almost never fully prevent brute-forcing, our use of a slow
hash function impedes the attempts of the attacker. To brute-force a solution,
an attacker needs to guess a σ′

i, compute Z ′
i = C.G

(
PP , σ′

i;H(Bi−1,H(Tx i), σ′
i)

)
and then check if Z ′

i = Zi. I.e., A needs to evaluate a slow hash function for each
guess, which is expensive.

5 Related Work

There is a series of related work which suggests an alternative to Bitcoin’s waste-
ful proof of work.

The most famous among these approaches is probably proof of stake [6,20],
where the scarcity used to power the blockchain is the underlying currency itself.
In proof of stake the miner of the next block is chosen pseudorandomly among the
set of all miners. The probability of a miner being chosen to create a new block
is dependent on its wealth which can lead to an undesirable “rich get richer”
scenario. A common problem in proposals for proof of stake is that in the case of
a blockchain fork miners have nothing to lose by trying to mine on both chains,
thus preventing the fork from resolving. Peercoin [20] solves this problem by
including centralized checkpoints in the code, thus introducing a trusted third
party. Other protocols such as Algorand [15] do not provide incentives for the
participants. The first construction to provably solve the proof of stake problem
is due to Kiayias et al. [18].

Other approaches to substitute proof of work are proofs of storage [21,25]
i.e., proving possession of a specific file, or proofs of space [4,13], where a miner
only constructs a proof about the size of its memory resources. However, these
approaches will also invariably degrade into a hardware arms race and thus do
not solve the problem of the vast energy consumption of blockchain technology.

A spiritual predecessor of our work is HumanCoin [8]. However HumanCoin
is based on a PoH based on indistinguishability obfuscation [14], a cryptographic
principle where no construction is known yet and thus is currently infeasible.

Their construction of a PoH, and consequently HumanCoin requires a trusted
setup phase for the generation of the obfuscated programs which are used to
generate the captchas without revealing the solutions.

If the unobfuscated programs are known, miners can generate puzzle-solution
pairs to the PoH without spending any human work by running the puzzle-
generation in the clear. In contrast, in our work we are able to verify that the
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puzzles have been created in such a way that no-one knows the solution by
publishing and verifying the signed final shares of the captcha generators τ .

In HumanCoin, collision-freeness of the captcha puzzle generation algorithm
is not stated, but if this is not assumed their scheme is trivially insecure. Their
PoHs are generated by xi = C.G

(
PP ;H(Tx i, hi−1)

)
, where hi−1 is the hash

of the previous block. If there is no collision resistance in the randomness, old
transactions can be changed without changing the puzzle, thus invalidating the
integrity of the transactions stored in blockchain.

HumanCoin does not implement any countermeasures against brute-forcing
the solution to the PoH from its verification function in contrast to our use of a
slow hash function.

In contrast to HumanCoin our PoH puzzle generation phase is online and
requires k captcha generators. However, this poses no problem, since to mine new
blocks a miner has to receive new transactions and blocks and thus is required
to be online anyway.

6 Conclusion

We have introduced uMine, an energy-efficient alternative to proof of work min-
ing which utilizes human workers. Our construction is based on a novel instan-
tiation of proofs of human-work which relies on MPC, thereby answering an
open question of Blocki and Zhou [8] whether proofs of human work without
indistinguishability obfuscation are possible. Our proof of human-work scheme
is introduced as a separate building block and thus may find applications beyond
cryptocurrencies.

Our uMine system may share similarities with early manual accounting sys-
tems, whose bookkeepers were financially compensated. Additionally, our sys-
tem decentralizes the ledger and provides anyone with the opportunity to be
an accountant, provided it accepts the remuneration. We leave the social and
economical implications of our work as an open question.
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22. Kopp, H., Kargl, F., Bösch, C., Peter, A.: uMine: a blockchain based on human
miners. Cryptology ePrint Archive, report 2018/722 (2018). https://eprint.iacr.
org/2018/722

23. Kopp, H., Mödinger, D., Hauck, F.J., Kargl, F., Bösch, C.: Design of a privacy-
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