
Dynamic Cut-Off Algorithm for Parameterised
Refinement Checking∗

Antti Siirtola1[0000−0001−9118−5087] and Keijo Heljanko2[0000−0002−4547−2701]

1 University of Oulu, Faculty of Information Technology and Electrical Engineering,
M3S Research Group, Finland

antti.siirtola@oulu.fi
2 Aalto University, Department of Computer Science, Finland

University of Helsinki, Department of Computer Science, Finland
Helsinki Institute for Information Technology (HIIT)

keijo.heljanko@iki.fi

Abstract. The verification of contemporary software systems is chal-
lenging, because they are heavily parameterised containing components,
the number and connections of which cannot be a priori fixed. We con-
sider the multi-parameterised verification of safety properties by refine-
ment checking in the context of labelled transition systems (LTSs). The
LTSs are parameterised by using first-order constructs, sorts, variables,
and predicates, while preserving compositionality. This allows us to pa-
rameterise not only the number of replicated components but also the
system topology, the connections between the components. We aim to
solve a verification task in the parameterised LTS formalism by determin-
ing cut-offs for the parameters. As the main contribution, we convert this
problem into the unsatisfiability of a first-order formula and provide a
SAT modulo theories (SMT)-based semi-algorithm for dynamically, i.e.,
iteratively, computing the cut-offs. The algorithm will always terminate
for topologies expressible in the ∃∗∀∗ fragment of first-order logic. It also
enables us to consider systems with topologies beyond this fragment, but
for these systems, the algorithm is not guaranteed to terminate. We have
implemented the approach on top of the Z3 SMT solver and successfully
applied it to several system models. As a running example, we consider
the leader election phase of the Raft consensus algorithm and prove a
cut-off of three servers which we conjecture to be the optimal one.

Keywords: labelled transition systems · refinement checking · safety
properties · compositional verification · parameterized systems · cut-off
· first-order logic · satisfiability modulo theories

1 Introduction

Contemporary software systems are not only highly concurrent and distributed
but also heavily parameterised containing components, the number and con-
nections of which cannot be a priori fixed. Since these systems are everywhere

? The final authenticated publication is available online at https://doi.org/10.

1007/978-3-030-02146-7_13.

2 A. Siirtola and K. Heljanko

around us, it is essential to verify that at least the most critical of them operate
properly in all circumstances, i.e., for all possible parameter values. Moreover,
since some subsystems (e.g., external software packages and subsystems con-
currently under construction) can only be available in an interface specification
form, we often need to be able to do their verification in a compositional way.

Contribution We consider the multi-parameterised verification of safety prop-
erties in the context of labelled transition systems (LTSs) with trace refinement
preorder and parallel composition and hiding operators. The LTSs are param-
eterised by using the constructs of first-order logic (FOL), sorts (a.k.a. types),
typed variables, and predicates, such that compositional verification is possible
in the parameterised setting, too. Sorts are used to parameterise the number of
replicated components whereas predicates enable us to parameterise the system
topology, i.e., the connections between the components.

Our goal is to solve a verification task in the parameterised LTS (PLTS)
formalism by determining cut-offs for the parameters such that in order to prove
a parameterised system implementation correct with respect to its specification,
it is sufficient to consider only finitely many instances up to the cut-offs. As the
main result, we show how this problem can be converted into the unsatisfiability
of a first-order formula (Thm 23). The result is accompanied by a SAT modulo
theories (SMT)-based semi-algorithm for computing the cut-offs. The algorithm
is called dynamic because it computes the cut-offs iteratively until the unsatisfi-
ability condition is met. The algorithm is implemented and successfully applied
to several parameterised system models, including the repeatable read property
of taDOM2+ XML database protocol [10] with the tree topology and the leader
election phase of the Raft consensus protocol with the quorum topology [17, 21].

Our approach is based on the precongruence reduction (PR) technique pre-
viously used to prove static cut-offs for PLTSs with predicates defined in the
universal fragment (∀∗) of FOL [24] and for PLTSs with special quorum func-
tions [21]. The technique is also adapted to parameterised modal interface au-
tomata without predicates [23]. In general, the PR technique applies to imple-
mentation-specification pairs the topology of which is downward-closed in the
sense that any (big) instance can be represented as a composition of smaller in-
stances. For example star, bipartite, totally connected, linear, tree, and quorum
topologies are such, but not all their combinations.

Static cut-off results [24, 21] are syntax-based and restricted to topologies
specifiable in fragments of FOL. Consequently, a separate result is needed for
each such fragment. The dynamic algorithm introduced here is not restricted
to any syntactic fragment and we can basically use the full expressive power of
FOL. The dynamic algorithm will always terminate for topologies expressible
in the ∃∗∀∗ fragment of first-order logic, because the fragment is decidable [8]
and such topologies are downward-closed [24]. The algorithm also enables us
to consider systems with downward-closed topologies beyond this fragment, but
for these systems, termination depends on the capabilities of the used SMT
solver. Nevertheless, the dynamic algorithm not only enables us to treat the

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 3

parameters of [24, 21] in a uniform way but it also allows for the use of parameters
that are beyond those handled by the static methods. Moreover, based on our
experiments, the dynamic algorithm produces at least as tight or even smaller
cut-offs than the static cut-off methods. For example, the static cut-off for the
number of servers in Raft is seven whereas the computed dynamic cut-off is only
three, which we conjecture to be the optimal one. Earlier, the cut-offs of 5-7 are
proved for other consensus algorithms [15].

Related Work The distinctive features of our solution to the parameterised
verification problem are compositionality, the support for multiple and topology
related parameters, and the dynamic computation of cut-offs.

As regards compositionality, the process algebraic approaches of Valmari &
Tienari [25], Lazić [13], and Creese [2] are the closest works. Valmari & Tien-
ari [25] present a generic induction method for parameterised verification. How-
ever, a crucial part of the technique is to come up with an invariant process which
is a task that cannot be automated in general. Lazić considers data-independent
systems which can handle infinite or arbitrarily large data types. His approach
allows multiple parameters and provides static cut-offs for the size of data types.
There is also a more general version of the results based on infinite automata [14]
but in this context, compositionality is not considered. Moreover, neither ap-
proach allows the number of concurrent components nor the system topology to
be parameterised. The limitation is overcome by Creese who combines the data-
independence results with the induction method [2]. Simultaneously, however,
full automation is lost.

Multi-parameterised verification is also considered by Emerson & Kahlon [4],
Hanna et al. [9], and Yang & Li [26]. The approaches [4, 26] are based on static
cut-offs, whereas [9] uses the iterative computation of cut-offs. The methods ap-
ply to systems with guarded broadcasts [4], shared actions [9], or rendezvous
communication [26] and specifications are given in temporal logic [4, 9] or as
property automata [26]. However, the formalisms do not lend support to com-
positionality. In addition to [25, 2, 9], dynamic cut-off computation is previously
considered by Kaiser, Kroening & Wahl [12], too. Their approach can be used for
the verification of reachability in boolean programs, but it does not lend support
to multiple parameters nor compositional reasoning.

Completely different approaches to parameterised verification are based on
abstract interpretation [27] and infinite-state verification algorithms [5]. While
some of these techniques lend support to multiple parameters, they are typically
not compositional. The additional benefit of our approach over these techniques
is that we can exploit efficient finite-state model checkers for verification and
since abstraction is not involved, false error traces are avoided.

Outline The next three sections are preliminaries; they cover the basics of LTSs,
FOL, and PLTSs. In Sect. 5, we present our main contribution, the dynamic cut-
off algorithm. The paper concludes with discussion on future research.

4 A. Siirtola and K. Heljanko

2 Labelled Transition Systems

In this section, we briefly recall a Communicating Sequential Processes (CSP)-
like LTS-based process calculus with parallel composition and hiding operators
and trace refinement preorder [18]. We use LTSs to express system components.

We assume a countably infinite set of events. One of the events is invisible,
denoted τ , and the other ones are visible. The visible events have an explicit
channel and data part; we assume countably infinite sets C and A of, respectively,
channels and atoms and that each visible event is of the form c(a1, . . . , an), where
c is a channel and a1, . . . , an ∈ A are atoms.

A labelled transition system (LTS) is a four-tuple L := (S,E,R, ṡ), where (1)
S is a finite non-empty set of states, (2) E is a finite set of visible events, also
called an alphabet, (3) R ⊆ S × (E ∪ {τ}) × S is a set of transitions, and (4) ṡ
is the initial state.

Let Li be an LTS (Si, Ei, Ri, ṡi) for both i ∈ {1, 2}. The parallel composition
(of L1 and L2) is an LTS (L1 ‖ L2) := (S1 × S2, E1 ∪ E2, R‖, (ṡ1, ṡ2)), where
R‖ is the set of all triples ((s1, s2), α, (s′1, s

′
2)) such that either (1) α 6= τ and

(si, α, s
′
i) ∈ Ri for both i ∈ {1, 2}; (2) (s1, α, s

′
1) ∈ R1, α /∈ E2, s2 ∈ S2, and

s′2 = s2; or (3) (s2, α, s
′
2) ∈ R2, α /∈ E1, s1 ∈ S1, and s′1 = s1.

Let L be an LTS (S,E,R, ṡ) and E′ a set of visible events. The LTS L after
hiding E′ is an LTS (L \ E′) := (S,E \ E′, R\, ṡ), where R\ is the set of (1)
all triples (s, α, s′) ∈ R such that α /∈ E′; and (2) all triples (s, τ, s′) such that
(s, α, s′) ∈ R for some α ∈ E′.

A finite alternating sequence (s0, α1, s1, . . . , αn, sn) of states and events of L
is an execution of L if s0 is the initial state and (si−1, αi, si) is a transition of L for
every i ∈ {1, . . . , n}. A finite sequence of visible events is a trace (of L), if there
is an execution of L such that the sequence can be obtained from the execution
by erasing all the states and the invisible events. The set of all the traces of L
is denoted by tr(L). An LTS L1 is a trace refinement of an LTS L2, denoted
L1 �tr L2, if L1 and L2 have the same alphabet and tr(L1) ⊆ tr(L2) [11]. The
LTSs L1 and L2 are trace equivalent, denoted L1 ≡tr L2, if and only if L1 �tr L2

and L2 �tr L1. Clearly, �tr is a preorder (i.e., a reflexive and transitive relation)
and ≡tr an equivalence relation on the set of LTSs.

The operators and the trace relations have many useful properties [11, 18, 24],
which are also exploited in the proofs. The parallel composition is commutative,
associative, and idempotent with respect to ≡tr (i.e., L ‖ L ≡tr L for all LTSs
L) and a single-state LTS Lid := ({ṡ}, ∅, ∅, ṡ) with the empty alphabet and no
transition is the identity element of ‖. This allows us to extend ‖ to every finite set
I = {i1, . . . , in} and all LTSs Li1 , . . . , Lin by defining (‖i∈I Li) = (‖nk=1 Lik) :=
(Li1 ‖ (‖i∈I\{i1} Li)), when n > 0, and (‖i∈I Li) = (‖nk=1 Lik) := Lid , when
n = 0. Moreover, distributing hiding over parallel composition results in an LTS
greater in the preorder; (L1 ‖ L2) \ E �tr (L1 \ E) ‖ (L2 \ E) for all LTSs
L1, L2 and every set E of visible events [24]. Finally, ≡tr is compositional with
respect to the parallel composition and hiding operators; if L1 �tr L2, then
L1 ‖ L3 �tr L2 ‖ L3 and L1 \E �tr L2 \E for all LTSs L1, L2, L3 and all sets E
of visible events. Hence, �tr is a precongruence and ≡tr a congruence on LTSs.

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 5

3 Many-Sorted First-Order Logic

In this section, we introduce first-order logic (FOL) [6] with sorts (a.k.a. types),
variables, and predicates. We use FOL to express system topologies.

We assume sets of sorts, variables, and predicates, denoted by T, X, and
F, respectively, that are disjoint and countably infinite. We assume that for
each atom a ∈ A, there is a sort Ta ∈ T and for each sort T ∈ T, the set
AT := {a ∈ A | Ta = T} is countably infinite. Hence, AT and AS are disjoint
whenever T and S are different sorts. Moreover, we assume that for each variable
x ∈ X there is a sort Tx ∈ T, and for each predicate F there is an arity nF ∈ ZZ+

and a tuple of sorts TF = (T 1
F , . . . , T

nF

F) specifying the domain of the predicate.

The atomic propositions are of the form > (always true), x = y (equivalence),
and F (x1, . . . , xn) (predicate application), where x and y are variables, F is
a predicate with arity n, and x1, . . . , xn are variables of the sort T 1

F , . . . , T
n
F ,

respectively. The formulae of FOL are defined by the grammar

V ::= p | ¬V | V ∧ V | V ∨ V | ∀x.V | ∃x.V ,

where x denotes a variable and p an atomic proposition. We also write x 6= y
(inequivalence) and V1 → V2 (implication) short for ¬(x = y) and (¬V1) ∨ V2,
respectively. A propositional formula or a guard is a formula without quantified
structures of the form ∀x.V and ∃x.V. A formula is in the prenex normal form
with quantifier alternation Q1, . . . , Qn if it is of the form Q1x1. · · · .Qnxn.V,
where Q1, . . . , Qn ∈ {∀,∃} are quantifiers and V is propositional.

A signature function maps a formula V to a finite set of sorts, variables, and
predicates, which are the parameters of V. The signature function, denoted par,
is defined inductively:

1. par(>) = ∅,
2. par(x = y) = {x, y, Tx, Ty},
3. par(F (x1, . . . , xn)) = {F, x1, . . . , xn, Tx1 , . . . , Txn},
4. par(¬V) = par(V),

5. par(V1 ∧ V2) = par(V1 ∨ V2) = par(V1) ∪ par(V2),

6. par(∀x.V) = par(∃x.V) = (par(V) \ {x}) ∪ {Tx} (x is considered bound).

We write parX(V) for the restriction par(V) ∩X of the signature to a set X.

A formula is evaluated by using a valuation function which assigns values to
sorts, variables, and predicates.

Definition 1 (Valuation). A valuation is a function φ such that

1. the domain of φ is a finite set of sorts, variables, and predicates,

2. for each sort T ∈ dom(φ), φ(T) is a finite non-empty subset of AT ,

3. for each variable x ∈ dom(φ), Tx ∈ dom(φ) and φ(x) ∈ φ(Tx), and

4. for each predicate F ∈ dom(φ), T 1
F , . . . , T

nF

F ∈ dom(φ) and φ(F) is a subset
of φ(T 1

F)× . . .× φ(TnF

F).

6 A. Siirtola and K. Heljanko

We write domX(φ) for the restriction dom(φ)∩X of the domain to a setX and
Im(φ) for the set

⋃
T∈domT(φ)

φ(T) of all atoms in the image of φ. The complement

φ(F) of the value of a predicate F is the set φ(T 1
F) × . . . × φ(TnF

F) \ φ(F). A
valuation φ is compatible with a formula V if par(V) ⊆ dom(φ). The instance of
V generated by a compatible valuation φ, denoted [[V]]φ, is a truth value obtained
in the usual way by substituting φ(T) for each sort T , φ(x) for each variable x
not bound in V, and φ(F) for each predicate F occurring in V and by evaluating
the operators. We say that φ satisfies V, if [[V]]φ is true. The satisfiability problem
in FOL asks whether for a given formula V, there is a valuation satisfying V. The
problem is undecidable in general, but the fragment consisting of the formulae
with the quantifier alternation ∃∗∀∗ is decidable [8]. Many-sorted FOL considered
here has several other known decidable fragments [1], too, but since many of
them do not contain full ∃∗∀∗, they are of limited use from the viewpoint of our
algorithm introduced in Sect. 5.

4 Parameterised Labelled Transition Systems

In this section, we parameterise LTSs with first-order constructs, sorts, variables,
and predicates, while preserving compositionality. With minor syntactic differ-
ences, this is done as in [24]. Parameterised LTSs can express systems with an
unbounded number of replicated components and we use them to model both
system implementations and specifications.

Example 2. As a running example, we consider the leader election phase of the
Raft consensus algorithm [17]. In Raft, time is divided into terms of arbitrary
length and a server can crash at any moment. When a server is running, it is in
one of the three states, a follower, candidate, or leader. A server always (re)starts
as a follower. A follower can vote for at most one server in a term. If a follower
does not regularly receive messages from the leader, it increases its term and
promotes itself to a candidate. A candidate sends vote requests to the other
servers and if it receives a quorum of votes, it becomes a leader. Our goal is to
formally prove that in each term, there is at most one leader independent of the
number of terms and the size of the cluster.

For our Raft model, we pick a sort TS to represent the set {s1, . . . , sn} ⊆ ATS

of the identifiers of servers and a sort TT to represent the set {t1, . . . , tm} ⊆ ATT

of the identifiers of terms. We also use a predicate QS with TQS
= (TS , TT , TS)

to assign each server and each term a set of servers from which the server needs
a vote in order to become a leader in the term. Variables xi of the sort TS are
used to refer to individual servers and a variable y of the sort TT is used to refer
to a specific term.

Next, we specify the values of QS . We require that for each server x0 and
each term y, the set Qx0,y := {x1 | QS(x0, y, x1)} of servers, from which x1
needs a vote in order to became a leader in the term y, is a quorum set (the
set covers more than half the servers including x0 itself) or the empty set (the
server cannot become a leader in the term y). Allowing the empty set is needed to

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 7

make the topology downward-closed so that our approach, introduced in the next
section, can be successfully applied. Since we do not have an explicit construct
for restricting the size of a set, we require that whenever Qx0,y is non-empty then
for every x1 /∈ Qx0,y, there is a unique x2 ∈ Qx0,y. For this purpose, we introduce
a partial function f : (x0, y, x1) 7→ x2 which is encoded as a predicate FS with
TFS

= (TS , TT , TS , TS) such that f(x0, y, x1) = x2 if and only if FS(x0, y, x1, x2).
The values of QS and FS are expressed as a formula

Qrm :=∀x0.∀y.((∀x1.¬QS(x0, y, x1))∨
(QS(x0, y, x0) ∧ ∀x1.(¬QS(x0, y, x1)→ ∃x2.FS(x0, y, x1, x2))))∧

∀x0.∀x1.∀x2.∀y.(FS(x0, y, x1, x2)→ (QS(x0, y, x2) ∧ ¬QS(x0, y, x1)))∧
∀x0.∀x1.∀x2.∀x3.∀y.((FS(x0, y, x1, x3) ∧ FS(x0, y, x2, x3))→ x1 = x2)∧
∀x0.∀y.∃x1.∀x2.(¬FS(x0, y, x2, x1) ∧ ¬FS(x0, y, x1, x2)) .

The first three lines of the formula state the relationship between QS and FS ,
the next line says that the function represented by FS is injective, and the last
line indirectly guarantees that if Qx0,y is non-empty then it is larger than its
complement, i.e., a quorum set covers more than half the servers. The formula is
outside the decidable fragment ∃∗∀∗, because it involves a quantifier alternation
∀∃∀, but our algorithm still terminates on this running example. ut

Parameterised LTSs are constructed from LTSs with variables substituted
for the atoms, propositional formulae used as guards, and (replicated) parallel
composition and hiding constructs which can be thought as operators on pa-
rameterised LTSs. Replicated parallel composition allows for parameterising the
number of components while guards are used to restrict the system topology.

Definition 3 (PLTS). Parameterised LTSs (PLTSs) are defined inductively:

1. If L is an LTS, a1, . . . , an are the atoms occurring in its alphabet, and
x1, . . . , xn are variables such that Tai = Txi

for all i ∈ {1, . . . , n}, then a
function L(x1, . . . , xn) := λa1, . . . , an.L is an (elementary) PLTS.

2. If P is a PLTS and G a guard, then ([G]P) is a (guarded) PLTS.
3. If P1 and P2 are PLTSs, then (P1 ‖ P2) is a (parallel) PLTS.
4. If P is a PLTS and x a variable, then (‖x P) is a (replicated parallel) PLTS.
5. If P is a PLTS and C a finite set of channels, (P \ C) is a (hiding) PLTS.

The signature function is extended to the set of PLTSs by setting:

1. par(L(x1, . . . , xn)) = {x1, . . . , xn, Tx1 , . . . , Txn},
2. par([G]P) = par(G) ∪ par(P),
3. par(P1 ‖ P2) = par(P1) ∪ par(P2),
4. par(‖x P) = (par(P) \ {x}) ∪ {Tx} (x is considered bound), and
5. par(P \ C) = par(P).

The signature determines the parameters of the PLTS and a valuation φ is said
to be compatible with a PLTS P if par(P) ⊆ dom(φ). We sometimes write
P(x1, . . . , xn) to emphasise that P has the variables x1, . . . , xn as parameters.

8 A. Siirtola and K. Heljanko

A PLTS is evaluated to an LTS by fixing the values of the parameters and by
evaluating the operators. Handling binary operators is straightforward, but in
order to evaluate a replicated construct ‖xP by using a compatible valuation φ,
we need to iterate over all the extensions of φ to {x}. Let φ be a valuation and X
a set of variables such that Tx ∈ domT(φ) for all x ∈ X. We write ext(φ,X) for
the set of all valuations φ′ with the domain dom(φ)∪X such that φ′(x) ∈ φ(Tx)
for all x ∈ X and φ′|dom(φ)\X = φ|dom(φ)\X , i.e., φ and φ′ agree on the values of
the parameters outside X. We can now extend the instantiation function [[·]]φ to
PLTSs P for which par(P) ⊆ dom(φ).

Definition 4 (Instance of a PLTS). Let P be a PLTS and φ a compatible
valuation. The φ-instance of P or the instance of P (generated by φ) is denoted
by [[P]]φ and determined inductively as follows:

1. [[L(x1, . . . , xn)]]φ = L(φ(x1), . . . , φ(xn)),

2. [[[G]P ′]]φ =

{
[[P ′]]φ, if [[G]]φ is true,
Lid , if [[G]]φ is false (the instance has no behaviour),

3. [[P1 ‖ P2]]φ = [[P1]]φ ‖ [[P2]]φ,
4. [[‖x P ′]]φ = ‖φ′∈ext(φ,{x})[[P ′]]φ′ ,
5. [[P ′ \C]]φ = [[P ′]]φ \ {c(a1, . . . , an) | c ∈ C, a1, . . . , an ∈ A}.

Example 5. For the Raft specification, we use an event leader(x0, y) to denote
that the server x0 is chosen as a leader in the term y. First, we consider the
specification from the viewpoint of two servers, x0 and x1, and a term y. PLTS
Spec2 (x0, x1, y) on the left of Fig. 1 formally says that no two servers can become
a leader during the same term but repeating a leader notification is fine.

Recall the definition of the predicate QS from Ex. 2. As we let the variable
y to range over all term identifiers and x0, x1, and x2 over all server identifiers,
we obtain the model of the full specification as a PLTS

Spec := ‖
x0

‖
x1

‖
x2

‖
y
[QS(x0, y, x2) ∧QS(x1, y, x2)]Spec2 (x0, x1, y) ,

which says that for each term, there is at most one leader. The guard guar-
antees that for each term, we only consider servers with (non-empty) overlap-
ping quorum sets. This is not a restriction since any two quorum sets are over-
lapping. Since Spec2 (x0, x1, y) has no bound variable, par(Spec2 (x0, x1, y)) =
{x0, x1, y, TS , TT }, but par(Spec) = {QS , TS , TT } as Spec has only bound vari-
ables.

In order to visualize Spec, let us consider a valuation φ such that φ(TT) =
{t1}, φ(TS) = {s1, . . . , sn}, and {x | (si, t1, x) ∈ φ(QS)} is a quorum set for
all i ∈ {1, . . . , n}. Obviously, the valuation is compatible with Spec and the φ-
instance of Spec is a star-shaped LTS on the right of Fig. 1, which indeed says
that there is at most one leader for the term t1. ut

We complete the PLTS formalism by extending the trace refinement relation
to the set of PLTSs while preserving compositionality. However, instead of a
single relation, there will be infinitely many, since we use formulae to define the
allowed values of parameters.

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 9

leader(x0, y)

leader(x0, y)

leader(x1, y)

leader(x1, y)
leader (s1 , t1)

leader (s1, t1)

leader (sn, t1)

leader (sn, t1)

lea
d
er

(s
2 ,t

1)

leader (s2, t1)

. . .

Fig. 1. On the left: PLTS Spec2 (x0, x1, y) representing the Raft specification from the
viewpoint of two servers, x0 and x1, and a term y. On the right: the instance of Spec
representing the Raft specification from the viewpoint of n servers s1, . . . , sn and a
term t1.

Definition 6 (Trace refinement on PLTSs). Let P and Q be PLTSs and
V a formula. We write P �Vtr Q, if [[P]]φ �tr [[Q]]φ for all valuations φ that are
compatible with P and Q and satisfy V.

Obviously, the definition can also be restricted to valuations with the minimal
domain par(P ‖ Q) ∪ par(V). Therefore, we write va(V | P,Q) for the set of all
valuations φ which have the domain par(P ‖ Q) ∪ par(V) and satisfy V.

Parameterised verification tasks can now be expressed as follows: Given an
implementation PLTS P, a specification PLTS Q, and a topology formula V, we
consider P to be correct (with respect to Q) (when V), if P �Vtr Q. This allows
for the verification of safety properties. Parameterised trace refinement relations
also enable compositional verification since they are precongruences. This follows
from Def. 4 and the precongruence of �tr.

Proposition 7. For all formulae V, the relation �Vtr is a precongruence on the
set of PLTSs [24].

Example 8. For the Raft implementation, we use an event vote(x0, y, x1) to de-
note that the server x0 votes for the server x1 in the term y and an event
candidate(x0, y) to denote that the server x0 promotes itself to a candidate
in the term y. The behaviour of the Raft implementation is modelled in the
same fashion as the specification. First, we capture it in the follower/candidate
mode from the viewpoint of three servers x0, x1, x2 and a term y in a PLTS
Flw3 (x0, x1, x2, y) on the left of Fig. 2. The PLTS says that in the term y, the
server x0 can vote for either x1, x2, or itself or become a candidate and vote
for itself. When we let the variables x1, x2, and y to range over all values in
their domain (with the restriction that the values of x1 and x2 are different), we
obtain the model of a single server x0 running in the follower/candidate mode
as a PLTS

Flw(x0) := ‖
x1

‖
x2

[x1 6=x2] ‖
y

Flw3 (x0, x1, x2, y) ,

which states that a server can vote for at most one server in the term or become
a candidate.

10 A. Siirtola and K. Heljanko

vote(x0, y, x1)

vote(x0, y, x1)

vote(x0, y, x2)

vote(x0, y, x2)

candidate(x0, y)vote(x0, y, x0)

vote(x0, y, x0)

candidate(x0, y) vote(x1, y, x0)

vote(x1, y, x0)

leader(x0, y)

Fig. 2. On the left: PLTS Flw3 (x0, x1, x2, y) representing the Raft implementation in
the follower/candidate mode from the viewpoint of three servers x0, x1, x2 and a term
y. On the right: PLTS Ldr2 (x0, x1, y) representing the Raft implementation in the
candidate/leader mode from the viewpoint of two servers x0, x1 and a term y.

Second, we model the Raft implementation in the candidate/leader mode
from the viewpoint of two servers x0, x1 and a term y as a PLTS Ldr2 (x0, x1, y)
on the right of Fig. 2. This model says that once the server x0 becomes a candi-
date and receives a vote from the server x1, it can promote itself to a leader in
the term y. As we let y to range over all term ids and x1 to range over all server
ids in the quorum set of the server x0 for the term y, the model of a single server
x0 running in the candidate/leader mode is obtained as a PLTS

Ldr(x0) := ‖
y
‖
x1

[QS(x0, y, x0) ∧QS(x0, y, x1)]Ldr2 (x0, x1, y) ,

which says that in order for a server to become a leader, it needs to become a
candidate and then receive a vote from a quorum of servers, including itself.

When we compose the partial models in parallel and let x0 to range over all
server ids, we obtain the model of the Raft implementation with an arbitrary
many servers and terms as a PLTS Raft := ‖x0

(Ldr(x0) ‖ Flw(x0)). Finally,

we hide the events irrelevant to the specification yielding to a PLTS Raft ′ :=
Raft \ {vote, candidate}. Now, the problem on the correctness of Raft can be

formalised as the question whether Raft ′ �Qrm
tr Spec holds. Code for the Raft

example is found in the online appendix [22]. ut

5 Dynamic Cut-Off Algorithm

In this section, we show how a parameterised trace refinement checking task can
be reduced to finitely many refinement checks among LTSs by determining a
cut-off set. As the main result, we convert the problem of determining a cut-off
set into the unsatisfiability in FOL and introduce an SMT-based semi-algorithm
for computing such a set.

Definition 9 (Cut-off set). Let P be an implementation PLTS, Q a specifica-
tion PLTS, V a topology formula, and Φ ⊆ va(V | P,Q) a finite set of valuations.
The set Φ is a cut-off set (for P,Q, and V), if P �Vtr Q if and only if [[P]]φ � [[Q]]φ
for all φ ∈ Φ.

Our approach can find cut-off sets for implementation-specification pairs
where the system topology is downward-closed and the specification does not

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 11

involve hiding. Both the restrictions are necessary for decidability [24], but the
latter one is less severe since hiding is typically only applied on the implemen-
tation side. Hence, from now on, an implementation PLTS refers to any PLTS,
whereas a specification PLTS means a PLTS which does not involve hiding. Re-
sults similar to Prop. 15 are proved in [24, 23, 21] but the main result, Thm 23,
the supporting lemmata, Lemmata 20 and 22, and the related dynamic cut-off
algorithm are completely new.

Intuitively, our verification technique consists of the following steps. First, we
show that if a big instance of the implementation PLTS P (resp., a specification
PLTS Q) is composed of the same components as a set of small instances and
each small instance of P is a trace refinement of the corresponding instance
of Q, then the big instance of P is a trace refinement of the big instance of
Q, too (Prop. 15). Second, if the system topology is downward-closed, i.e, all
the instances are covered by a finite set of small instances, then we can reduce
a refinement checking on PLTSs to finitely many refinement checks on LTSs
(Prop. 18). Third, we convert the sufficient condition for a cut-off set into the
unsatisfiability of a first-order formula (Thm 23). Finally, we give an SMT-based
semi-algorithm for computing a cut-off set and successfully apply it to several
system models (Algorithm 1).

In order to present the technique in detail, we first formalise the notion of
a small instance. After that, in Lemma 14, we show that small instances are
generated by small valuations, called subvaluations.

Definition 10. Let P be a PLTS and φ a compatible valuation. The set of the
components (of the φ-instance of P), denoted by comp(P, φ), is defined induc-
tively:

1. comp(L(x1, . . . , xn), φ) = {L(φ(x1), . . . , φ(xn))},

2. comp([G]P ′, φ) =

{
comp(P ′, φ), if [[G]]φ is true,
∅, otherwise,

3. comp(P1 ‖ P2, φ) =
⋃
i∈{1,2}

(
{i} × comp(Pi, φ)

)
,

4. comp(‖x P ′, φ) =
⋃
φ′∈ext(φ,{x})

(
{φ′(x)} × comp(P ′, φ′)

)
, and

5. comp(P ′ \ C, φ) = comp(P ′, φ).

We say that the φ-instance of P is smaller than (or equal to) the ψ-instance of
P if comp(P, φ) is a subset of comp(P, ψ).

Example 11. Recall our Raft model and the definition of Qx0,y from Ex. 2. Let
θ ∈ va(Qrm | Raft ′,Spec) such that θ(TS) = {s1, . . . , sn}, θ(TT) = {t1, . . . , tm},
and {x | (si, tl, x) ∈ θ(QS)} is a quorum set with (si, tl, si) ∈ θ(QS) for all
i ∈ {1, . . . , n} and l ∈ {1, . . . ,m}. Then

comp(Spec, θ) =

n⋃
i=1

n⋃
j=1

m⋃
l=1

n⋃
k=1

sk∈Qsi,tl
∩Qsj,tl

{(
si,
(
sj ,
(
sk,
(
tl,Spec2 (si, sj , tl)

))))}
. ut

Definition 12 (Subvaluation). Let Π and Ξ be sets of predicates. A valuation
φ is a (Π,Ξ)-subvaluation of a valuation ψ if and only if

12 A. Siirtola and K. Heljanko

1. the valuations have the same domain,
2. φ(T) ⊆ ψ(T) for all sorts T ∈ domT(φ),
3. φ(x) = ψ(x) for all variables x ∈ domX(φ),
4. φ(F) ⊆ ψ(F) for all predicates F ∈ domF(φ) ∩Π, and
5. φ(F) ⊆ ψ(F) for all predicates F ∈ domF(φ) ∩Ξ.

The fact that φ is (not) a (Π,Ξ)-subvaluation of ψ is denoted φ ⊆ΠΞ ψ (respec-
tively, φ 6⊆ΠΞ ψ). Given a propositional formula G, we write pr+(G) and pr−(G)
for the set of predicates occurring within, respectively, even and odd number of
negations in G. The notation is extended to PLTSs P by defining pr⊕(P), where
⊕ ∈ {+,−}, as the union of all pr⊕(G) as G ranges over all guards in P.

Example 13. Let θ be a valuation as in Ex. 11 and Θ the set of all valua-
tions θ′ ∈ va(Qrm | Raft ′,Spec) such that θ′(TT) = {tl}, θ′(TS) = {si, sj , sk},
and θ′(QS) ⊆ θ(QS) for some l ∈ {1, . . . ,m} and i, j, k ∈ {1, . . . , n}. Since
Spec involves a single predicate, QS , without negation, pr+(Spec) = {QS} and
pr−(Spec) = ∅. This implies that Θ is a finite set of (pr+(Spec),pr−(Spec))-
subvaluations of θ. It is also easy to see that for all θ′ ∈ Θ, comp(Spec, θ′) is a
subset of comp(Spec, θ), i.e., [[Spec]]θ′ is smaller than [[Spec]]θ . ut

Lemma 14. Let P be a PLTS, G a propositional formula, and ψ, φ valuations
compatible with P and G such that φ is a (∅, ∅)-subvaluation of ψ.

1. If P is an elementary PLTS, then [[P]]ψ = [[P]]φ.
2. If φ is a (pr+(G),pr−(G))-subvaluation of ψ and [[G]]φ, then [[G]]ψ.
3. If φ is a (pr+(P),pr−(P))-subvaluation of ψ, then [[P]]φ is smaller than [[P]]ψ.

Proof. (1) Since φ|X = ψ|X and an instance of P is completely defined by the
values of variables, the claim is evident. (2) Put G into negation normal form G
and argue by induction on the structure of G by using the claim as an induction
hypothesis. (3) By induction on the structure of P by using (1) and (2) and the
lemma as an induction hypothesis. ut

With the aid of the lemma above, we can show that the correctness of a
(big) implementation instance can be derived from the correctness of smaller in-
stances if the big implementation and specification instances are composed of the
same components as the smaller, respectively, implementation and specification
instances. This is formalised as Prop. 15.

Proposition 15. Let P be an implementation PLTS, Q a specification PLTS,
ψ a valuation compatible with P and Q, and Φ a finite set of (pr+(P‖Q),pr−(P‖
Q))-subvaluations of ψ. If comp(P ‖Q, ψ) =

⋃
φ∈Φ comp(P ‖Q, φ) and [[P]]φ �tr

[[Q]]φ for all φ ∈ Φ, then [[P]]ψ �tr ‖φ∈Φ[[P]]φ �tr ‖φ∈Φ[[Q]]φ �tr [[Q]]ψ.

Proof. First, we argue that if comp(P, ψ) =
⋃
φ∈Φ comp(P, φ), then [[P]]ψ �tr

‖φ∈Φ[[P]]φ. The proof proceeds by induction on the structure of P by using the
claim as an induction hypothesis.

The cases when P is an elementary PLTS, a (replicated) parallel PLTS, or
a hiding PLTS are similar to the proofs of Lemmata 23 and 25 in [24]: the base

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 13

case (an elementary PLTS) follows from the idempotence of ‖, the case when
P is a (replicated) parallel PLTS utilises the associativity and commutativity
of ‖ (and, respectively, the identity property), and the case when P is a hiding
PLTS follows from the distributivity of hiding over parallel composition. Hence,
we only need to consider the case when P is [G]P ′. If [[G]]ψ is false, then by the
second item of Lemma 14, [[G]]φ is false for all φ ∈ Φ. This implies that [[P]]ψ ≡tr

Lid ≡tr ‖φ∈Φ[[P]]φ. Let us then assume that [[G]]ψ is true and let Φt be the set of
all φ ∈ Φ such that [[G]]φ is true. Since comp(P, φ) is empty for all φ ∈ Φ \Φt, it
means that comp(P, ψ) =

⋃
φ∈Φt

comp(P, φ). By the induction hypothesis and
the identity of Lid , it implies that [[P]]ψ ≡tr [[P ′]]ψ �tr ‖φ∈Φt

[[P ′]]φ ≡tr ‖φ∈Φ[[P]]φ.
The proof that comp(Q, ψ) =

⋃
φ∈Φ comp(Q, φ) implies ‖φ∈Φ[[Q]]φ �tr [[Q]]ψ

is similar but simpler because there is no need to consider the case with hiding.
Finally, we argue like in the proof of Proposition 27 in [24]. If comp(P ‖

Q, ψ) =
⋃
φ∈Φ comp(P ‖ Q, φ) and [[P]]φ �tr [[Q]]φ for all φ ∈ Φ, then by above

and the precongruence of �tr, [[P]]ψ �tr ‖φ∈Φ[[P]]φ �tr ‖φ∈Φ[[Q]]φ �tr [[Q]]ψ. ut

Example 16. Let θ and Θ be as in Ex. 11 and 13. Since every element of
comp(Spec, θ) depends on the identifiers of at most three servers and one term,
it is easy to see that comp(Spec, θ) =

⋃
θ′∈Θ comp(Spec, θ′), i.e., the θ-instance

of Spec is composed of the same components as the set of θ′-instances, where
θ′ ∈ Θ. Similarly, we can see that every element of comp(Raft ′, θ) depends
on the identifiers of at most three servers and one term, which implies that
comp(Raft ′, θ) =

⋃
θ′∈Θ comp(Raft ′, θ′). Since Θ is finite, by Prop. 15, it means

that if [[Raft ′]]θ′ �tr [[Spec]]θ′ for all θ′ ∈ Θ, then [[Raft ′]]θ �tr [[Spec]]θ, too. ut

Valuations that can be obtained from each other by injective renaming result
in equivalent verification tasks. A function (injection) g : A→ B, where A,B ⊆
A, is a sortwise function (respectively, injection) if g(a) ∈ ATa

for each a ∈ A.
Let φ be a valuation and g a sortwise function. We write g(φ) for a valuation φ′

which is obtained from φ by mapping the atoms in the image using g. Valuations
φ1 and φ2 are (non-)isomorphic, if there is (respectively, not) a sortwise injection
g : Im(φ1)→ Im(φ2) such that φ2 = g(φ1). It is easy to see that for isomorphic
valuations φ1 and φ2, [[P]]φ1

� [[Q]]φ1
if and only if [[P]]φ2

� [[Q]]φ2
[24].

Prop. 15 and the notion above imply that if the system topology is downward-
closed in the sense that all the instances are covered by a finite set of (injectively
renamed) small instances, then we can reduce a refinement checking on PLTSs
to finitely many refinement checks on LTSs. This is stated formally as Prop. 18.

Definition 17 (Downward-closed topology). A topology V of an implemen-
tation-specification pair (P,Q) is downward-closed, if there is a finite set Φ ⊆
va(V | P,Q) of valuations for which the following holds: For all ψ ∈ va(V | P,Q)
and all P ∈ comp(P‖Q, ψ), there is a valuation φ ∈ Φ and a sortwise injection g
from Im(φ) such that P ∈ comp(P ‖Q, g(φ)) and g(φ) is a (pr+(P ‖Q),pr−(P ‖
Q))-subvaluation of ψ. The set Φ is called a witness for downward-closedness.

Proposition 18. Let V be a downward-closed topology for (P,Q) and Φ a wit-
ness for downward-closedness. Then Φ is a cut-off set for P, Q, and V.

14 A. Siirtola and K. Heljanko

Proof. In order to prove that Φ is a cut-off set for P, Q, and V, it is sufficient
to show that if [[P]]φ �tr [[Q]]φ for all φ ∈ Φ, then [[P]]ψ �tr [[Q]]ψ for all ψ ∈
va(V | P,Q), because the opposite implication is trivial. Hence, let us assume
that [[P]]φ �tr [[Q]]φ for all φ ∈ Φ and let ψ ∈ va(V | P,Q). Since Φ is a witness for
downward-closedness, for every P ∈ comp(P ‖Q, ψ), there is a valuation φP ∈ Φ
and a sortwise injection gP from Im(φP) such that P ∈ comp(P ‖ Q, gP (φP))
and gP (φP) is a (pr+(P ‖ Q),pr−(P ‖ Q))-subvaluation of ψ. By the third item
of Lemma 14, [[P ‖Q]]gP (φP) is smaller than [[P ‖Q]]ψ for all P ∈ comp(P ‖Q, ψ),
which implies that comp(P‖Q, ψ) =

⋃
P∈comp(P‖Q,ψ) comp(P‖Q, gP (φP)). Since

[[P]]φ �tr [[Q]]φ for any φ ∈ Φ, we know that [[P]]g(φ) �tr [[Q]]g(φ) for all sortwise
injections g such that dom(g) = Im(φ), too. Hence, [[P]]gP (φP) �tr [[Q]]gP (φP) for
all P ∈ comp(P ‖ Q, ψ). By Prop. 15, it implies that [[P]]ψ �tr [[Q]]ψ. Therefore,
Φ is a cut-off set. ut

Prop. 18 gives a sufficient condition for a cut-off set, but it does not clearly
say which valuations should be included in the set. That is why we will transform
the condition of downward-closedness into a first-order formula, the satisfaction
of which can be, in decidable cases, analysed by using existing tools. For that
purpose, we introduce Lemmata 20 and 22, which tell how the tests for P ∈
comp(P, φ) and g(φ) ⊆ΠΞ ψ occurring in the condition are converted in FOL. In
order to present the results, we assume that X is partitioned into sets X0, X′,
and X′′, each containing infinitely many variables for each sort. Moreover, we
assume that only the variables in X0 are used in PLTSs and topology formulae
and for each atom a ∈ A there is a unique variable x′′a ∈ X′′ such that Ta = Tx′′a .

Definition 19 (Branch). The set of the branches of a PLTS P, denoted br(P),
is defined inductively as follows:

1. br(L(x1, . . . , xn)) = {>},
2. br([G]P ′) = {G ∧ B | B ∈ br(P ′)},
3. br(P1 ‖ P2) = br(P1) ∪ br(P2),
4. br(‖x P ′) = {∃x.(x′ = x ∧ B) | B ∈ br(P ′)}, where x′ ∈ X′ is a variable of

the sort Tx not occurring in br(P ′), and
5. br(P ′ \ C) = br(P ′).

Lemma 20. Let P be a PLTS and φ and ψ compatible valuations. There is P ∈
comp(P, φ)∩comp(P, ψ) if and only if there are B ∈ br(P), φ′ ∈ ext(φ, parX′(B))
and ψ′ ∈ ext(ψ,parX′(B)) such that [[B]]φ′ and [[B]]ψ′ are true and ψ′|X = φ′|X.

Proof. By induction on the structure of P by using the lemma as an induction
hypothesis. ut

Example 21. Recall the Raft specification Spec and the valuation θ from Ex. 11.
Since only the parameterised version of the parallel composition is used it Spec,
there is a single branch

∃x0.(x′0 = x0 ∧ ∃x1.(x′1 = x1 ∧ ∃x2.(x′2 = x2 ∧ ∃y.(y′ = y∧
QS(x0, y, x2) ∧QS(x1, y, x2) ∧ >)))) .

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 15

For every (si, (sj , (sk, (tl,Spec2 (si, sj , tl))))) ∈ comp(Spec, θ), there is an exten-
sion θ′ of θ to {x′0, x′1, x′2, y′} such that θ′(x′0) = si, θ

′(x′1) = sj , θ
′(x′2) = sk, and

θ′(y′) = tl. It is also easy to see that θ′ satisfies the branch above. ut

Lemma 22. Let φ and ψ be valuations with the same domain, Π,Ξ ⊆ domF(φ)
sets of predicates, g : Im(φ)→ Im(ψ) a sortwise function, and ψg a valuation in
ext(ψ, {x′′a | a ∈ Im(φ)}) such that ψg(x

′′
a) = g(a) for all a ∈ Im(φ). Then g is

an injection and g(φ) ⊆ΠΞ ψ, if [[NoSval(φ,Π,Ξ)]]ψg
is false, where

NoSval(φ,Π,Ξ) :=
(∨
{a,b}⊆Im(φ)

a 6=b

x′′a = x′′b
)
∨
(∨
x∈domX(φ)

x′′φ(x) 6= x
)
∨

(∨
F∈Π

∨
(a1,...,an)∈φ(F)

¬F (x′′a1 , . . . , x
′′
an)
)
∨
(∨
F∈Ξ

∨
(a1,...,an)∈φ(F)

F (x′′a1 , . . . , x
′′
an)
)
.

Proof. Let us assume that [[NoSval(φ,Π,Ξ)]]ψg
is false. Because the first big dis-

junction is false, it implies that the variables x′′a, where a ∈ Im(φ), representing
the image of g are mapped to different values. Hence, g is an injection.

In order to prove that g(φ) ⊆ΠΞ ψ, we will show that the conditions (1)–(5)
of Def. 12 are met. (1) By the assumption, dom(g(φ)) = dom(φ) = dom(ψ).
(2) Because g is a sortwise function: Im(φ) → Im(ψ), (g(φ))(T) ⊆ ψ(T) for all
sorts T ∈ domT(φ). (3) Since the second big disjunction is false, (g(φ))(x) =
ψg(x

′′
φ(x)) = ψg(x) = ψ(x) for all x ∈ dom(φ), (4) If F ∈ Π and (a1, . . . , an) ∈

(g(φ))(F), then (g−1(a1), . . . , g−1(an)) ∈ φ(F). Because the third big disjunc-
tion is false, it implies that (ψg(x

′′
g−1(a1)

), . . . , ψg(x
′′
g−1(an)

)) ∈ ψg(F). Since

(ψg(x
′′
g−1(a1)

), . . . , ψg(x
′′
g−1(an)

)) = (g(g−1(a1)), . . . , g(g−1(an))) = (a1, . . . , an)

and ψg(F) = ψ(F), it means that (a1, . . . , an) ∈ ψ(F). (5) Similar to (4). ut

By combining Prop. 18 and Lemmata 20 and 22, a sufficient condition for a
cut-off set can be converted into the unsatisfiability of a first-order formula.

Theorem 23 (Cut-off theorem). Let P be an implementation PLTS, Q a
specification PLTS, V a topology formula, and Φ ⊆ va(V | P,Q) a finite set of
valuations. The set Φ is a cut-off set for P, Q, and V, if the first-order formula

V ∧ B ∧
∧
φ∈ΦB

(
∀x′′a1 . · · · .∀x

′′
an .NoSval(φ, pr+(P ‖ Q),pr−(P ‖ Q))

)
(1)

is unsatisfiable for all B ∈ br(P ‖ Q), where ΦB = {φ′ ∈ ext(φ, parX′(B)) | φ ∈
Φ, [[B]]φ′} is the set of the extensions of the valuations in Φ to parX′(B) satisfying
B and for every φ ∈ ΦB, a1, . . . , an are the atoms in Im(φ).

Proof. We will show that if Φ is not a witness for downward-closedness, then
Formula 1 is satisfiable for some branch B ∈ br(P ‖ Q), which by Prop. 18
implies the theorem.

By Def. 17, Φ is not a witness for downward-closedness if the following con-
dition holds: There is a valuation ψ ∈ va(V | P,Q) and P ∈ comp(P ‖ Q, ψ)

16 A. Siirtola and K. Heljanko

such that for every valuation φ ∈ Φ and a sortwise injection g from Im(φ), if
P ∈ comp(P ‖Q, g(φ)) then g(φ) is not a (pr+(P ‖Q),pr−(P ‖Q))-subvaluation
of ψ.

By Lemma 20, the condition can be converted into the form: There is a
valuation ψ ∈ va(V | P,Q), a branch B ∈ br(P ‖ Q), and ψ′ ∈ ext(ψ,parX′(B))
such that [[B]]ψ′ and for every valuation φ ∈ Φ and a sortwise injection g from
Im(φ), if [[B]]φ′ for some φ′ ∈ ext(g(φ),parX′(B)) with ψ′|X = φ′|X then g(φ) is
not a (pr+(P ‖ Q),pr−(P ‖ Q))-subvaluation of ψ.

After simplification, the condition can be put as follows: There is a branch
B ∈ br(P‖Q) and a valuation ψ′ ∈ va(V∧B | P,Q) such that for every valuation
φ′ ∈ ΦB and for every sortwise function g : Im(φ′)→ Im(ψ′), g is not an injection
or g(φ′) is not a (pr+(P ‖ Q),pr−(P ‖ Q))-subvaluation of ψ′.

Next, we apply Lemma 22 and convert the condition into the form: There
is a branch B ∈ br(P ‖ Q) and a valuation ψ′ ∈ va(V ∧ B | P,Q) such that
for all valuations φ′ ∈ ΦB and for all sortwise functions g : Im(φ′) → Im(ψ′),
[[NoSval(φ′,pr+(P ‖ Q),pr−(P ‖ Q))]]ψ′g is true.

Since Φ is finite and each valuation only has finitely many extensions to
parX′(B), universal quantification over the valuations in ΦB can be substituted
by a finite conjunction. Universal quantification over sortwise functions is, in
general, a second-order construct. However, since the image of each function
g : Im(φ′) → Im(ψ′) is finite and represented by the variables in {x′′a | a ∈
Im(φ′)}, the universal quantification over sortwise functions can be replaced by
the universal quantification over these variables. Hence, the condition gets the
form: There is a branch B ∈ br(P‖Q) and a valuation ψ′ ∈ va(V∧B | P,Q) such
that [[

∧
φ′∈ΦB

(
∀x′′a1 . · · · .∀x

′′
an .NoSval(φ′,pr+(P ‖ Q),pr−(P ‖ Q))

)
]]ψ′ is true.

Finally, the existence of ψ′ ∈ va(V ∧ B | P,Q) can be simply encoded as
the satisfaction of the formula V ∧ B. This means that Φ is not a witness for
downward-closedness, if there is a branch B ∈ br(P ‖ Q) such that Formula 1
is satisfiable, which by Prop. 18 implies the theorem. Obviously, the formula is
also in FOL since it only involves first-order constructs. ut

The iterative application of Thm 23 results in Algorithm 1 that allows us to
determine a cut-off set for systems with a downward-closed topology by starting
from the empty set and appending the set with non-isomorphic valuations of
increasing size until the Formula 1 becomes unsatisfiable for all branches. The
removal of isomorphs is implemented by converting the valuations into coloured
graphs as described in [19] and by using the nauty library [16] to compute a
canonical form for each graph. Finally, the valuations with redundant canonical
graph representations are removed.

There are two points in the algorithm that are critical for termination. The
one is the condition of the while loop, Formula 1. The formula consists of several
conjuncts: the topology V, a branch B involving only conjunctions and existential
quantification, and universally quantified conjuncts. Since quantification (over
non-empty sets) can be pushed outside the conjunctions, the condition is of the
form V ∧ U , where U is in the ∃∗∀∗ fragment. Therefore, the whole condition is
within the decidable ∃∗∀∗ fragment if the topology V is.

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 17

The other critical point is querying a sort from an oracle and incrementing
the cut-off, because the cut-offs heavily affect the length of Formula 1. In the
worst case, when predicates are involved, the formula grows exponentially in the
size of the cut-offs, and even when predicates are not used, the length of the
formula is quadratic in the size of the cut-offs. Of course, a non-deterministic
oracle can guess the optimal order, but also in practice, the algorithm will always
compute some (not necessarily an optimal) cut-off set as long as incrementing is
done fairly, i.e., the incrementation of a sort cannot be omitted infinitely many
times consecutively. Hence, the algorithm will always terminate for topologies
expressible in the ∃∗∀∗ fragment of FOL, because as stated in Lemma 24, the
fragment is decidable and such topologies are downward-closed. The algorithm
also enables us to consider systems with downward-closed topologies beyond this
fragment, but termination depends on the capabilities of the used SMT solver. If
the solver is unable to decide the satisfiability of the equation and consequently,
returns the unknown value, it is always safe to consider the equation satisfiable.
This may lead to an infinite execution loop but guarantees the correctness of the
algorithm.

input : implementation PLTS P, specification PLTS Q, topology formula V
output: cut-off set Φ for P, Q, and V
foreach T ∈ parT(P ‖ Q) ∪ parT(V) do cutoff T ← 1;
Φ← the set of all non-isomorphic valuations φ ∈ va(V | P,Q) such that
|φ(T)| = 1 for all T ∈ domT(φ);

foreach B ∈ br(P‖Q) do
while Formula 1 of Thm 23 is satisfiable do

get a sort To ∈ parT(P ‖ Q) ∪ parT(V) from an oracle and increment
cutoff To

;
append the set Φ with all non-isomorphic valuations φ ∈ va(V | P,Q)
such that |φ(To)| = cutoff To

and |φ(T)| ≤ cutoff T for all
T ∈ domT(φ) \ {To};

end

end
Algorithm 1: Dynamic cut-off algorithm

Lemma 24. Let V be a formula in the ∃∗∀∗ fragment of FOL. Then the satisfi-
ability of V is decidable and the topology V of any implementation-specification
pair is downward-closed.

Proof. The decidability of the ∃∗∀∗ fragment is well-known [8, 1].
Let us then consider a topology V := ∃x1. · · · .∃xn.U , where U is in the

∀∗ fragment. Without the loss of generality, we may assume that the variables
x1, . . . , xn do not occur in P and Q. By Thm 50 in [24], we know that there is
a witness Φ′ for downward-closedness for the topology U of (P,Q).

Next, we will show that Φ := {φ′|dom(φ′)\{x1,...,xn} | φ′ ∈ Φ′} is a witness
for downward-closedness for the topology V of (P,Q). Let ψ ∈ va(V | P,Q)

18 A. Siirtola and K. Heljanko

and P ∈ comp(P ‖ Q, ψ). Then there is ψ′ ∈ ext(ψ, {x1, . . . , xn}) such that
ψ′ ∈ va(U | P,Q) and P ∈ comp(P ‖Q, ψ′). Since Φ′ is a witness for downward-
closedness for U , there is a valuation φ′ ∈ Φ′ and a sortwise injection g such that
P ∈ comp(P‖Q, g(φ′)) and g(φ′) is a (pr+(P‖Q),pr−(P‖Q))-subvaluation of ψ′.
Because x1, . . . , xn do not occur in P‖Q, it implies that φ := φ′|dom(φ′)\{x1,...,xn}
is a valuation in Φ such that P ∈ comp(P ‖ Q, g(φ)) and g(φ) is a (pr+(P ‖
Q),pr−(P‖Q))-subvaluation of ψ. Hence, Φ is a witness for downward-closedness
for the topology V. ut

Corollary 25 (Soundness and completeness). Let P be an implementation
PLTS, Q a specification PLTS, and V a topology formula.

1. If Algorithm 1 terminates with Φ, then Φ is a cut-off set for P, Q, and V.
2. If V is downward-closed and there is a decision procedure for formulas of the

form V ∧U (where U is in the ∃∗∀∗ fragment), then Algorithm 1 terminates.
3. If V is in the ∃∗∀∗ fragment, then Algorithm 1 terminates.

Proof. (1) Follows from Thm 23. (2) Follows from the facts that downward-
closed topologies have a witness and the algorithm will eventually compute some
witness. (3) Follows from Lemma 24 and (2). ut

We have implemented a prototype version of Algorithm 1 in Bounds tool [20].
The tool uses the Z3 SMT solver [3] for testing satisfiability and the oracle is im-
plemented as a fair heuristic. The heuristic uses the satisfying valuation provided
by Z3 and favours the incrementation of sorts which the valuation maps to a set
larger than the current cut-off. The tool takes a parameterised verification task
as an input, computes a cut-off set by using the dynamic cut-off algorithm, and
provided the algorithm terminates, produces an LTS refinement checking task
for each valuation in the cut-off set. After that, the verification is completed by
refinement checking the instances by using FDR [7]. Once we have proved that
a system implementation refines its specification, we can use the specification,
which is usually much smaller, in place of the system implementation in further
verification efforts. This is possible since our PLTS formalism is compositional.

Example 26. We have applied Bounds to several system models by using both
the dynamic and static cut-off algorithms (Table 1). The Raft model for the static
algorithm uses specific quorum function variables [21] which in our formalism are
modelled in FOL. The tree topology of taDOM2+ and the lower bound for the
number of transactions are naturally modelled by using existential quantification
but for the static algorithm, which does not support it, they are modelled by us-
ing free variables. Otherwise the models are identical. In each case, the dynamic
algorithm performs at least as well as the static one in terms of running time
and the size of a cut-off set. In the case of Raft and tree-based taDOM2+, the
implementation based on static cut-offs ran out of memory, whereas the dynamic
one terminated with very small cut-offs, which we claim to be optimal. Hence,
the dynamic algorithm not only enables extending the application domain of
static ones but also provides more compact cut-offs. All experiments were made
on an 8-thread Intel i7-4790 with 16GB of memory running Ubuntu 16.04 LTS.
An example run of Bounds on the Raft model is in the online appendix [22]. ut

Dynamic Cut-Off Algorithm for Parameterised Refinement Checking∗ 19

Table 1. The performance of the dynamic cut-off algorithm with respect to the static
ones, |T | is the cut-off size for a sort T , |Φ| is the size of the cut-off set, and t is the time
taken (in seconds) by the computation of the cut-off set Φ plus refinement checking the
φ-instances for all φ ∈ Φ.

System Parameters Dynamic Static
cut-offs t(s) cut-offs t(s)

Raft [21] servers (S), terms (T),
quorum topology

|S| = 3, |T| = 1,
|Φ| = 20

7+2 |S| = 7, |T | = 1,
|Φ| > 105

dnf

Shared
resources [24]

users (U), resources (R),
forest topology

|U | = 2, |R| = 3,
|Φ| = 6

1+6 |U | = 2, |R| = 3,
|Φ| = 6

1+6

Shared
resources [24]

users (U), resources (R),
ring topology

|U | = 4, |R| = 1,
|Φ| = 4

1+1 |U | = 4, |R| = 1,
|Φ| = 4

1+1

taDOM2+
[24]

transactions (T), nodes
(N), forest topology

|T | = 2, |N | = 3,
|Φ| = 14

1+
1122

|T | = 2, |N | = 3,
|Φ| = 14

1+
1130

taDOM2+
[24]

2+ transactions (T),
nodes (N), tree topology

|T| = 2, |N| = 3,
|Φ| = 7

1+
1121

|T | = 4, |N | = 4,
|Φ| = 45

11+
dnf

Token
ring [20]

users (U), ring topology |U | = 4,
|Φ| = 3

1+1 |U | = 4,
|Φ| = 3

1+1

Ring with 2
tokens [24]

users (U), ring topology |U | = 5,
|Φ| = 30

10+
7

|U | = 5,
|Φ| = 30

25+
7

6 Conclusions and Future Work

We have provided a semi-algorithm for reducing a refinement checking task in the
parameterised LTS formalism to a finite set of refinement checks between LTSs.
The algorithm is implemented in a tool and applied to several system models.
The novelty of the algorithm is in its generality; it not only combines existing
static cut-off techniques but also extends their application domain beyond known
decidable fragments. In future, we aim to extend the algorithm to other process
algebraic formalisms such as modal interface automata [23].

References

1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic.
J. Symb. Comput. 45(2), 153–172 (2010)

2. Creese, S.J.: Data Independent Induction: CSP Model Checking of Arbitrary Sized
Networks. Ph.D. thesis, Oxford University (2001)

3. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS ’08. LNCS, vol. 4963, pp. 337–340. Springer (2008)

4. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D.A. (ed.) CADE-17, LNCS, vol. 1831, pp. 236–254. Springer (2000)

5. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1), 63–92 (2001)

20 A. Siirtola and K. Heljanko

6. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Courier Dover Publications (2015)

7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: A par-
allel refinement checker for CSP. STTT 18(2), 149–167 (2016)

8. Gurevich, Y.: On the classical decision problem. In: Rozenberg, G., Salomaa, A.
(eds.) Current Trends In Theoretical Computer Science: Essays and Tutorials,
World Scientific Series in Computer Science, vol. 40, pp. 254–265. World Scientific
(1993)

9. Hanna, Y., Samuelson, D., Basu, S., Rajan, H.: Automating cut-off for multi-
parameterized systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM ’10, LNCS, vol. 6447,
pp. 338–354. Springer (2010)

10. Haustein, M., Härder, T.: Optimizing lock protocols for native XML processing.
Data Knowl. Eng. 65(1), 147–173 (2008)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized

concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV ’10, LNCS,
vol. 6174, pp. 645–659. Springer (2010)

13. Lazić, R.S.: A Semantic Study of Data Independence with Applications to Model
Checking. Ph.D. thesis, Oxford University (1999)

14. Lazić, R.S., Nowak, D.: A unifying approach to data-independence. In: Palamidessi,
C. (ed.) CONCUR ’00, LNCS, vol. 1877, pp. 581–595. Springer (2000)

15. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In: Ma-
jumdar, R., Kunčak, V. (eds.) CAV ’17, LNCS, vol. 10427, pp. 217–237. Springer
(2017)

16. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symb. Comput. 60,
94 – 112 (2014)

17. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Gibson, G., Zeldovich, N. (eds.) USENIX ATC ’14. pp. 305–320. USENIX
Association (2014)

18. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)
19. Siirtola, A.: Algorithmic Multiparameterised Verification of Safety Properties. Pro-

cess Algebraic Approach. Ph.D. thesis, University of Oulu (2010)
20. Siirtola, A.: Bounds2: A tool for compositional multi-parametrised verification.

In: Ábrahám, E., Havelund, K. (eds.) TACAS ’14, LNCS, vol. 8413, pp. 599–604.
Springer (2014)

21. Siirtola, A.: Refinement checking parameterised quorum systems. In: Legay, A.,
Schneider, K. (eds.) ACSD ’17. pp. 39–48. IEEE (2017)

22. Siirtola, A., Heljanko, K.: Online appendix, http://cc.oulu.fi/~asiirtol/

papers/dyncutoffapp.pdf
23. Siirtola, A., Heljanko, K.: Parametrised modal interface automata. ACM Trans.

Embed. Comput. Syst. 14(4), 65:1–65:25 (2015)
24. Siirtola, A., Kortelainen, J.: Multi-parameterised compositional verification of

safety properties. Inform. Comput. 244, 23–48 (2015)
25. Valmari, A., Tienari, M.: An improved failures equivalence for finite-state systems

with a reduction algorithm. In: Jonsson, B., Parrow, J., Pehrson, B. (eds.) PSTV
’91. pp. 3–18. North-Holland (1991)

26. Yang, Q., Li, M.: A cut-off approach for bounded verification of parameterized
systems. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) ICSE ’10. pp.
345–354. ACM (2010)

27. Zuck, L., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Comput. Lang. Syst. Str. 30(3), 139–169 (2004)

