®

Check for
updates

Adaptive Formal Framework for WMN
Routing Protocols

Mojgan Kamali'®™) and Ansgar Fehnker?(®)

L Abo Akademi University, Turku, Finland
2 University of Twente, Enschede, The Netherlands
mojgan.kamali@abo.fi, ansgar.fehnker@utwente.nl

Abstract. Wireless Mesh Networks (WMNs) are self-organising and
self-healing wireless networks that provide support for broadband com-
munication without requiring fixed infrastructure. A determining factor
for the performance and reliability of such networks is the routing proto-
cols applied in these networks. Formal modelling and verification of rout-
ing protocols are challenging tasks, often skipped by protocol designers.
Despite some commonality between different models of routing protocols
that have been published, these models are often tailored to a specific
protocol which precludes easily comparing models. This paper presents
an adaptive, generic and reusable framework as well as crucial generic
properties w.r.t. system requirements, to model and verify WMN rout-
ing protocols. In this way, protocol designers can adapt the generic mod-
els based on protocol specifications and verify routing protocols prior
to implementation. This model uses Uppaal SMC to identify the main
common components of routing protocols, capturing timing aspect of
protocols, communication between nodes, probabilities of message loss
and link breakage, etc.

1 Introduction

Wireless Mesh Networks (WMNs) are self-organising and self-healing wireless
networks that provide support for broadband communication without requiring
fixed infrastructure. They provide rapid and low-cost network deployment and
have been applied in a wide range of application areas such as public safety,
emergency response networks, battlefield areas, etc.

A determining factor for the performance and reliability of such networks is
the routing protocols applied in these networks. Routing protocols specify the
way of communication among nodes of the network and find appropriate paths
on which data packets are sent. They are grouped into two main categories:
proactive and reactive routing protocols. Proactive protocols rely on the peri-
odic broadcasting of control messages through the network (time-dependent)
and have the information available for routing data packets. Reactive protocols,
in contrast, behave on-demand, meaning that when a packet targeting some
destination is injected into the network they start the route discovery process.

© Springer Nature Switzerland AG 2018
K. Bae and P. C. Olveczky (Eds.): FACS 2018, LNCS 11222, pp. 175-195, 2018.
https://doi.org/10.1007/978-3-030-02146-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02146-7_9&domain=pdf

176 M. Kamali and A. Fehnker

Previous studies of routing protocols mostly rely on simulation approaches
and testbed experiments. These are appropriate techniques for performance
analysis but are limited in the sense that it is not possible to simulate sys-
tems for all possible scenarios. Formal techniques, mathematically languages
and approaches, are used to complement testbed experiments and simulation
approaches. They provide tools to design and verify WMN routing protocols,
allow to model protocols precisely and to provide counterexamples to diagnose
their flaws.

Statistical Model checking (SMC) combines model checking with simulation
techniques to overcome the barrier of analysing large systems as well as provid-
ing both qualitative and quantitative analysis. Uppaal SMC monitors simulation
traces of the system and uses sequential hypothesis testing or Monte Carlo sim-
ulation (for qualitative and quantitative analysis respectively) to decide if the
intended system property is satisfied with a given degree of confidence. Statis-
tical model checking does not guarantee a 100% correct result, but it is able to
provide limits on the probability that an error occurs. In this work, we apply
Uppaal SMC [7], the statistical extension of Uppaal.

Contributions. Our work has been inspired by the fact that formal modelling
and verification of routing protocols seem challenging tasks. Protocol designers
often decide on skipping this level of development. We provide an adaptive,
generic and reusable framework as well as crucial generic properties w.r.t. system
requirements, to model and verify WMN routing protocols. In this way, protocol
designers can adapt the generic models based on protocol specifications and
verify routing protocols prior to implementation.

In particular, this study describes how to build reusable components within
the constraints imposed by the Uppaal modelling language. It identifies the main
components that routing protocols have in common, and how to map them to
data structures, processes, channels, and timed automata in the Uppaal lan-
guage. We show the validity and applicability of our models by modelling Bet-
ter Approach To Mobile Ad-hoc Networking (BATMAN) [19], Optimised Link
State Routing (OLSR) [5], and Ad-hoc On-demand Distance Vector version2
(AODVv2) [21] protocols using our framework.

Outline: The paper is structured as follows: in Sect.2, we give an overview of
the formal modelling language used in this paper. Then in Sect. 3, we shortly
overview the general structure of WMN routing protocols. Section 4 is the core of
this paper where we discuss our generic Uppaal framework as well as our generic
Uppaal properties. Section5 demonstrates the adaptability of our framework,
sketching examples of BATMAN, OLSR, and AODVv2 protocols. We discuss
related work in Sect.6 and draw conclusions as well as propose future research
directions in Sect. 7.

2 DModelling Language

Most routing protocols of WMNs have complex behaviour, e.g., real-time
behaviour, and formal modelling and verification of such systems end up being

Adaptive Formal Framework for WMN Routing Protocols 177
Global Declarations
= Type definitions
= Channels
= Variables and constants
= Functions
i g

Local declarations Local declarations Local declarations g
= Variables and consts = Variables and consts = Variables and consts %
= Functions = Functions = Functions = v
Automaton Automaton Automaton
= Locations = |Locations = |ocations <

" |nvariant " |nvariant " |nvariant
= Edges = Edges = Edges

= Guard = Guard = Guard

= Sync label = Sync label = Sync label

= Update = Update = Update

Fig. 1. Common structure of Uppaal models. Arrow denote access to variables and
functions. Location names are treated like Booleans by the requirements.

a challenging task. Moreover, choosing a formal modelling language which con-
siders the significant characteristic of these protocols is an important step in the
development of a formal framework. In this work, we apply Uppaal SMC (which
is based on stochastic time automata) to be able to realistically model timing
behaviour, wireless communication, probabilistic behaviour, and complex data
structure of routing protocols. In addition, the Uppaal GUI and Uppaal simu-
lator provide a visualised interpretation of the system which makes the task of
modelling easier. We describe the basic definitions that are used in Uppaal SMC.

2.1 Uppaal Timed Automata

The theory of timed automata [1] is applied for modelling, analysing and verify-
ing the behaviour of real-time systems. A finite timed automaton is defined as a
graph consisting of finite sets of locations and edges (transitions), together with
a finite set of clocks having real values. The logical clocks of automata are ini-
tialised with zero and are increased with the same rate. Each location may have
an invariant, and each edge may have guards (possibly clock guards) which allow
a transition to be taken, and/or actions that can be updates of some variables
and/or clocks.

The modelling language of Uppaal extends timed automata as defined by
Alur and Dill [1] with various features, such as types, data structures, etc [2].
A system is a network of timed automata that can synchronise on channels

178 M. Kamali and A. Fehnker

and shared variables. Fig.1 depicts the common structure of Uppaal models.
Uppaal distinguishes between global declarations and processes. All processes are
running concurrently at the same level, and the model has no further hierarchy.
Processes are actually instantiations of parameterised templates. Separate from
the system model are the requirements, which describe properties, or statistical
experiments.

Type definitions in the global declaration are used to define ranges of integers
— often used as identifiers — or structs. Variables can be any integer type, any
newly defined type, channels, and arrays of these. Clock variables that evaluate
to real numbers are used to measure time. All clocks progress at the same rate,
and can only be reset to zero. The global declaration can also define functions
in a C-like language. These functions can be used anywhere in the model.

Each process has its own local declarations. These may contain variable dec-
larations and function declarations. The scope of these is limited to the process.
While it is possible to locally define types and channels, this is rarely done; at
most to define urgent broadcast channels that force transitions once their guard
becomes true.

For each process, there exists an automaton that operates on local and global
variables and may use the locally and globally defined functions. Every automa-
ton can be presented as a graph with locations and edges. Each location may
have an invariant, and each edge may have a guard, a synchronisation label,
and/or an update of some variables.

Synchronisation between automata happens via channels. For every chan-
nel a there is one label a! to identify the sender, and a? to identify receivers.
Transitions without a label are internal; all other transitions use either binary
handshake or broadcast synchronisation. Uppaal SMC supports only broadcast
channels [7]:

Broadcast synchronisation means that one automaton with a !-edge synchro-
nises with several other automata that all have an edge with a relevant ?-label.
The initiating automaton is able to change its location, and apply its update if
and only if the guard on its edge is satisfied. It does not need a second automa-
ton to synchronise with. Matching ?7-edge automata must synchronise if their
guards evaluate to true in the current state. They will change their location and
update their states. First, the automaton with the !-edge updates its state, then
the other automata follow. If more than one automaton can initiate a transition
on a !-edge, the choice is made non-deterministically.

Due to the structure of the Uppaal model, automata cannot exchange data
directly. A common workaround is the following: If an automaton wants to send
data to another automaton, it synchronises on a channel. It writes the data to a
global variable during an update, which is then copied by the second automaton
to its local variable during its update.

Also, due to the scoping rules, one automaton cannot use a method of one of
the other automata, for example, to query its state. The common workaround
is to make either a duplicate of important information global, or to have the

Adaptive Formal Framework for WMN Routing Protocols 179

information global, and have a self-imposed rule on which a process can read
and write and to what part of the global variables.

In addition to the system model, it is possible to define requirements. Require-
ments can access all global and local variables, and use global and local functions,
as long as they are side-effect free, i.e. they do not change variables outside of the
scope of the function. Requirements can iterate over finite ranges, using forall,
exists, or sum iterators.

Uppaal has several other keywords to define the behaviour of delays and
transitions, such as urgent or priority. The discussion of these is outside of the
scope of this paper. The common structure of Uppaal, with its scoping rules,
however, is relevant for this paper, as it sets the framework in which we have to
develop our generic model.

2.2 Uppaal Stochastic Timed Automata

Uppaal SMC [7] is a trade off between classical model checking and simula-
tion, monitoring only some simulation traces of the system and uses sequential
hypothesis testing or Monte Carlo simulation (for qualitative and quantitative
analysis respectively) to determine whether or not the intended system property
is satisfied with a given degree of confidence.

The modelling formalism of Uppaal SMC is based on the extension of Uppaal
timed automata described earlier in this section. For each timed automata com-
ponent, non-deterministic choices between several enabled transitions assigned
by probability choices, refine the stochastic interpretation. A model in Uppaal
SMC can consist of a network of stochastic timed automata that communicate
via broadcast channels and shared variables.

Classical Uppaal’s verifier uses a fragment of Computation Tree Logic (CTL)
to model system properties. Uppaal SMC adds to its query language elements of
the Metric Interval Temporal Logic (MITL) to support probability estimation,
hypothesis testing, and probability comparison, and in addition the evaluation
of expected values [7].

The algorithm for probability estimation [12] computes the required number
of runs to define an approximation interval [p — €, p + €] where p is the proba-
bility with a confidence 1-a.. The values of € (probabilistic uncertainty) and «
(false megatives) are selected by the user and the number of runs is calculated
using the Chernoff-Hoeffding bound. In Uppaal SMC, the query has the form:
Prlbound](¢), where bound shows the time bound of the simulations and ¢ is
the expression (path formula).

Evaluation of expected values of a max of an expression which can be
evaluated to a clock or an integer value is also supported by Uppaal SMC.
In this case, the bound and the number of runs (V) are given explicitly and
then max of the given expression (expr) is evaluated. The query has the form:
ELbound; N](max : expr)); an explicit confidence interval is also required for
these type of queries.

180 M. Kamali and A. Fehnker

Communication

3
Q
1)

)

= Message type definitions
= Channels for each message type
= Meta variables for exchanging values

= C tivit tri
Queue (proactive/reactive) Handler (proactive/reactive) . lvll)entrrf)f:l;vtloyargj cl;:'xdelete

E = Channel for synchronizing with S | ® Channel for synchronizing with é connections
2 Handler 3 Queue S | = Method to check whether
S | = Routingtable nodes are connected

s = Buffer =
8" Methods for adding and deletion = Current message § = Clock for topology changes

of messages = Clock for processing delay =
S o § = Methods update routing table §
S |® Receiving messages S | = Methods to create messages g = Model for adding or removing
§ [* Includes loss = Methods to check whether g connections
§ = Passing to handler message should be dropped. 3

: Receving from Queue

= Dropping messages = Variables for bookkeeping
= Processing, and sending of new Methods for properties
n = Methods to be used by tester

Timers (optional)

= Flag for restart and expired timers
= Urgent restart channel

automaton
global

= Boolean for running timer
= Array of clocks

= Variables for bookkeeping
= Methods for properties

()

enerator (proactive)

= Invariant for running timer
= Restart
= Expiring timer

" Generate control messages at regular

intervals. = Test automaton

automaton | local |global

automaton

automaton | local

Fig. 2. Generic structure of a WMN routing protocol model for verification, with
respect to typical structure of an Uppaal model.

3 Overview Uppaal Model of WMN Routing Protocols

WMN routing protocols disseminate information in the network to provide the
basis for selecting routes. Routing protocols specify which control messages
should be sent through the network. These messages are received/lost by other
network nodes. Receiving nodes update their information about other nodes
based on received messages. Network nodes can send data packets to destina-
tions in the network using discovered paths. Figure 2 depicts the main compo-
nents that define a routing protocol model.

Communication. The protocol has to specify the types of control messages and
the information they contain. This information consists of originator address,
originator sequence number, etc. The model has to specify whether a message is
sent as a unicast or as a multicast message’.

Topology. The network topology shows how nodes are connected to each other.
Connectivity is commonly modelled as an adjacency matrix. The model should
provide methods to add and delete connections, as well as a model that deter-
mines how the topology changes. This paper uses a simple model of link failure;
a more elaborate study of dynamic topologies can be found in [10].

1 To avoid confusion, we will refer to this type of communication as multicast, instead
of broadcast. We reserve the term broadcast for Uppaal channels.

Adaptive Formal Framework for WMN Routing Protocols 181

Node. The behaviour of a protocol is defined by the composition of a queue,
a handler, and — if the protocol is proactive — by one or more generators, and
possibly a number of timers.

Queue. Messages from other nodes should be stored in a buffer or queue. Based
on the order of arrival they will be processed later by the handler (first in, first
out method is applied for buffers). If different messages arrive to a node at the
same time, the choice of the message reception happens non-deterministically.
It will use the information in these messages to update the corresponding
routing information about sender nodes.

Handler. The handler is the core of the protocol. The handler will receive mes-
sages from the queue and update the stored information, which is kept in the
routing table. Depending on the content of the message, and the current state
of the routing table, the handler further decides whether to drop the message,
send a broadcast message to all other neighbouring nodes, or send a unicast
message to another node (both broadcast and unicast message consider send-
ing delays).

Different ways of nodes communication (multicast and unicast) are modelled
illustrated schematically in Fig. 3. For multicast synchronisation, we use an
array of broadcast channels Multicast[], one channel for each node. The
invariant and the guard will encode the timing and duration of a transition
(message delay). The guard of the corresponding edge of the receiving node
— which will be part of its queue model- will encode the connectivity, i.e., it
will not synchronise if the nodes are not connected. The sender will take the
edge, regardless of whether other nodes are connected.

Unicast is modelled by a two-dimensional array of channels Unicast[][], one
channel for each pair of nodes. Unicast messages assume that on a lower level
reception is acknowledged. If this fails, for example, if the nodes are not con-
nected, the sender has to take an alternative transition. A typical alternative
would be to multicast an error message or initiate a route request.

Generator. Proactive protocols send control messages at regular intervals.
They highly depend on on-time broadcasting of their control messages in
order to keep track of network information. Hence, each node includes also a
model to generate those messages.

Timers. A protocol may use simple timers that can be reset, and expire after
a set time. They can be used by the handler, to time delays or the duration
of different modes of operation.

Verification. Since the model will be used for verification, the models will include
parts that are only included for this purpose. This will include variables for
bookkeeping and methods that check conditions on existing data structures. For
this reason, the routing table of the handler was made global, to give access to
verifications methods. Otherwise, the routing tables could be a local variable of
the corresponding handler. The verification part of the model also often includes
a test automaton, which may insert messages, change the topology, and record
progress in response to certain events.

182 M. Kamali and A. Fehnker

Guard
Unicast[][]!
Update

Guard
Multicast[]!
Update

Guard
Multicast[]!
Update O

Invariant

Invariant

Fig. 3. Unicast and broadcast synchronisation.

The section omits the discussion of type definitions and constants that are
used throughout the model. The next section will provide more detail on the
various components of the Uppaal model.

4 Generic Uppaal Framework

Our framework consists of global declarations which are global in the system
and accessible/updatable by all automata as well as local declarations that are
exclusive to each automaton, i.e., these declarations can be accessed and updated
only by the automaton itself. There are in total six templates for automata in our
framework; four of them are used for modelling protocols and two are concerned
with verification. The models are adaptable to protocol specifications, and they
are available at http://users.abo.fi/mokamali/FACS2018.

4.1 Communication

To facilitate communication between network nodes in the model, there are a
number of global declarations and type definitions. The number of nodes is const
int N. Addresses of nodes are of type typedef int[@, N - 1] IP.

Communication can take place via unicast or multicast messages. The model
includes the following channels:

broadcast chan unicast[NJ[N];
broadcast chan multicast[N];
urgent broadcast chan taul[N];
broadcast chan newpkt[N];

The tau channel is used to have internal transitions take place as soon as enabled.
They are not used for synchronisation. The newpkt channel is used to insert a
new packet at a given node.

A protocol must define for each type of message the message format. The
reference implementation provides example for packets, route request messages,
route reply messages, route error messages, and control messages, also known as
TC messages. The format of a TC message, for example, is defined as:

typedef struct {
IP oip; //originator IP

http://users.abo.fi/mokamali/FACS2018

Adaptive Formal Framework for WMN Routing Protocols 183

int hops; //hops
TTLT ttl; //time-to-live

IP sip; //sender IP
SQN osn; //originator sequence number
} TCMSG;

The model will include a similar type definition for all types of messages. To
make the treatment of message uniform we then define a generic message type
as follows:

typedef struct {
MSGTYPE msgtype; //Type of message

TCMSG tc; //TC message
PACKET packet; //Packet
RREQMSG rreq; //Route request msg
RREPMSG rrep; //Unicast route reply msg
RERRMSG rerr; //Route error msg

} MSG;

The field msgtype is an index into which type of message is being sent; only the
corresponding field should be set. This construction is a work-around for not
having union types in the Uppaal language.

Each type of message also comes with functions that generate a message of
that type. They will be used for convenience and succinctness in the model. It
also includes a global variable MSG msgglobal, which a sender copies into, and
recipients copy from.

4.2 Topology

The network topology is defined by an adjacency matrix topology[NJ[N] with
boolean type showing the directed connectivity between nodes, i.e., element 1
in the matrix shows that two nodes are directly connected and 0 indicates that
two nodes are not connected directly, however they may be connected via some
intermediate nodes. The connectivity between nodes is modelled by function
bool isconnected(IP i, IP j), and links can be dropped by calling function
void drop (IP i,IP j).

While protocols have to deal with mobility, the mobility models themselves
are outside of the scope of this paper and these routing protocols. The processes
that establish or delete links — and whether these processes are non-deterministic,
stochastic, or probabilistic — are not part of the protocols themselves. The refer-
ence model includes a simple model TopologyChanger that drops between ran-
domly selected nodes at a rate of 1 : 10. More elaborate models for changing
topologies can be found in [10].

We should add here that even if we define a topology matrix to show the
direct connectivity between nodes, the network is still wireless. It means that
network nodes are not aware of each other before receiving the control messages,
and they realise the connectivity only after they receive/process control messages
from their neighbours.

184 M. Kamali and A. Fehnker

newpkt[ip]?
addmsg(msgglobal)

r

isconnected(sip,ip) isconnected(sip,ip)

i in]?

unicastfsip][ip]? multicast[sip]?
addmsg(msgglobal) A

; loss | ()

(" (nextmsg()!I=NONE)

getmsg[ip]?
msgglobal=msglocal[0],
\deletemsg()

100-loss |
addmsg(msgglobal) |

-

Fig. 4. Queue automaton.

4.3 Node

The model for a node using a reactive protocol comprises of two automata, the
Queue and the Handler, proactive protocols also include a Generator. If the
protocol uses timers, the model includes a fourth automaton to manage the
timers. The generic model defines a number of global variables and channels to
facilitate synchronisation between these parts. For instance, channel imsg[N] is
an urgent channel which is used for synchronisation between Handler and Queue
automata.

Queue. The template of the queue defines a number of local constants and vari-
ables to manage the stored messages. The most important variable is an array MSG
msglocal[QLength]. The reference model includes methods void addmsg(MSG
msg) and void deletemsg() to add or delete messages from the queue. For
synchronisation with the Handler the model includes a global variable bool
isMsgInQ[N] to encode whether a queue contains at least one message.

The automaton for the queue has essentially one control location, as depicted
in Fig.4. It has one self-loop for unicast messages, and one loop for multicast
messages that can be received, and one for new packets that are inserted by the
tester. The latter loop includes a probabilistic choice to lose the message with
probability of loss. The automaton also includes a loop, labelled getmsg?, for
the handler to request the first element of the queue.

Handler (Reactive/Proactive). Nodes have routing tables that store infor-
mation about other nodes of the network which are empty (initialised to 0 at the
beginning) and may be updated when they receive control messages from their
neighbour nodes (conditions on when to update routing tables can be specific
to each protocol). The reference implementation defines an entry to the routing
table as:

Adaptive Formal Framework for WMN Routing Protocols 185

multicasting
t_send<=time_sending_max

ifMulticast()

t_send>=time_sending_min

multicast[ip]! taulip]!

msglocal.msgtype==NONE &&
isMsgInQ]ip]

getmsg([ip]!

postMulticast() preMulticast(),
t_send=0

ifDrop()
tau[ip]!
postDrop()

getNextMsg()

intraNodeCommunication

t_send>=time_sending_min&& | ifUnicast() ifUnicastFail() && t_send>=time_sending_min &&
lifUnicastFail() tau[ip]! lifReport() ifUnicastFail() &&
i | o1l ifReport()
unicast[ip][nexthop]! preUnicast(), tau[ip]!)
multicast][ip]!

postUnicast() t_send=0 postFailureDrop()

postFailureReport()

unicasting
t_send<=time_sending_max

Fig. 5. Handler automaton.

typedef struct
{ IP dip;

SQN dsn;

int hops;

IP nhop;
} rtentry;

The routing tables are then defined as rtentry art[NJ[N]. This is a global
variable to allow the Generator and verification part read access. Protocols may
define additional data structures, for example for error handling.

The handler has a main control location, as depicted in Fig. 5. It includes one
loop for multicast messages. The transition to location multicasting prepares
the message, and waiting in that location up to the permitted amount of time
models the message delay, then the transition back to the main location, actually
copies the message to the global variable msgglobal, for the queue of the receivers
to read. The loop for unicast messages has a similar setup, except that includes
the option of failure, as in Fig. 3. One option is to drop the message, the other
is to multicast an error message. The model also includes for each message type
a loop that drops the message, and a loop that requests a new message from the
queue.

Most routing protocols use sequence numbers to keep track of newly received
information. The reactive version of the handler includes the sequence number,
in the proactive version this is a task for the Generator.

186 M. Kamali and A. Fehnker

Generator (Proactive). The task of the Generator in a proactive protocol
(time-dependent) is to create messages at regular intervals based on the protocol
specification. There may be more than one generator, generating more than
one type of message. The Generator will use a number of clocks to time the
generation of those messages as well as to model the sending time of messages
(message delays).

Timers (Optional). The protocol may include a fixed number of timers. The
model includes as global variables the number of timers, the threshold for each
timer, and boolean flags for restart, and to notify that a timer has expired. The
automaton managing all timers of one node, has an array of clocks. Once the
handler sets the restart flag for a timer to true, the timer automaton will reset
a corresponding clock. This transition is urgent, ensuring that no time expires
between setting the restart flag, and resetting the corresponding clock. After the
threshold duration of the timer, the flag for an expired timer will be set.

4.4 Verification

The model includes for verification purposes a number of side-effect free func-
tions, that can be used by the properties. This includes function to count the
number of delivered packets, and how many routes have been established.

For verification the model also includes an automaton Tester. The reference
model includes an automaton that injects one new packet after about 50 rounds
of communication, after which it proceeds to location final.

The reference implementation focuses on three main properties, namely for
route establishment, network knowledge and packet delivery. These properties
verify the core functionality of protocols, e.g., routing data packets.

Route Establishment. The reference model includes the following property for
route establishment:

Pr[<=1000](<>(route_establishment (OIP1,DIP1)))

The function route_establishment() returns true if the node OIP1, the source
node, has the information about the destination node DIP1 to later send data
packet to the destination. The property computes the probability that the func-
tion route_establishment() returns true in less than or equal to 1000 time units
(this value can be altered based on the system requirements).

Network Knowledge. The reference model includes the following property for
the network knowledge:

E[<=1000;100](max:total_knowledge ())

This property computes the expected number of connections that have been
discovered by time 1000. The function total_knowledge() counts for how many
originator/destination pairs a route is known.

Adaptive Formal Framework for WMN Routing Protocols 187

Packet Delivery. The property for packet delivery is as follows:
E[<=1000;100](max:packet_delivered())

Packet delivery property shows the number of data packets being delivered at
their destinations. The property returns the expected value during 1000 time
units by 100 runs. Function packet_delivered() is used to count the number of
delivered packets.

5 Experiments

We model three well-known routing protocols of WMNs, namely BATMAN,
OLSR, AODVv2, to show the reusability and adaptability of our framework. We
also verify these protocols for the three different properties discussed in the last
section. Each of these is considered for the following scenarios: (1) 0% message
loss and no link failures, (2) 80% message loss and no link failures, and (3) 0%
message loss and possible link failures.

For all of our experiments, we inject one packet to an arbitrary source to be
delivered to an arbitrary destination. We consider networks in a grid, a linear,
a fully connected or a ring topology consisting of 9 nodes, as our framework is
independent of the number of nodes in the network. It means that number of
nodes in the network is adjustable (larger networks are allowed to have) as long
as the tool can manage the number of states in the system (state space should
be manageable by the tool). A detailed study of these protocols and verification
of the models for all possible combinations and/or larger networks are out of
the scope of this paper; we only illustrate the applicability and power of the
proposed framework.

The automaton TopologyChanger is included in models that exhibits link
failure. The rate of failure can be simply adjusted based on the protocol speci-
fication. We set this value as rate 1 : 10 for all of our models and experiments,
e.g., BATMAN, OLSR, AODVv2 models. As none of the protocols that we con-
sidered for this study uses timers, we did not have to include the corresponding
automaton.

We conduct our experiments using the following set-up: (i) 3.2 GHz Intel Core
i5, with 8GB memory, running the Mac OS X 10.11.6 “El Capitan” operating
system; (ii) Uppaal SMC model-checker 64-bit version 4.1.20. In Uppaal SMC,
two main statistical parameters a and €, in the interval [0, 1], must be fixed
by the user. These parameters indicate the probability of false negatives and
probabilistic uncertainty, respectively. In our experiments, these values, i.e., false
negatives («) and probabilistic uncertainty (e) are both set to 0.05, leading to a
confidence level of 95%.

5.1 Better Approach to Mobile Ad-hoc Networking (BATMAN)

BATMAN [19] is a proactive protocol used in WMNs. It decentralises route
information, i.e., no node has all the data. Each node only maintains informa-
tion about the possible best next hop. The protocol has two main aims: first, it

188 M. Kamali and A. Fehnker

discovers all bidirectional links and then identifies the best next hop neighbour
for all the other nodes in the network. To provide this information, each node
broadcasts originator messages (OGMs) through the network at a regular inter-
val. A node keeps track of the information about other known nodes, stored in
the node’s routing table. When a node receives a message from its neighbours,
it updates this information.

Since BATMAN is a proactive protocol, we include a Generator for creating
OGMs in addition to the Handler and the Queue. We adapted our framework
based on the model of [4]. Table 1 shows the result of our verification for different
topologies. We ran the same experiments for the original model of [4] and we
got similar results as we got for our adjusted BATMAN model.

Results show that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the prob-
ability in the interval [0.90-1.00] and the routing tables are all populated by
periodic exchanging of control messages as they were expected by the specifica-
tion. The injected packet is delivered at the destination in all types of topolo-
gies. When message loss increases to 80%, these values may decrease. The same
happens also in case of possible link failures. The verification of the route estab-
lishment property (probability estimation) takes on average about 2s whereas
the verification for calculating the number of delivered packets and routing
table entries (expected value evaluation) takes on average about 215s (calcu-
lating the expected values is more time-consuming compared to estimating the
probability).

5.2 Optimised Link State Routing (OLSR)

OLSR/[5], a proactive protocol used in WMNs; bears the benefit of having routes
to different destinations available to be used whenever needed. This is done
by exchanging control messages, namely HELLO and Topology Control (TC),
periodically through the network. Receiving nodes update their routing tables
based on the information in the messages so that when a packet to be destined
to some destination is injected, it can find the path in routing tables.

OLSR differs from other proactive protocols in the way that it minimises
flooding of control messages by selecting so-called Multipoint Relays (MPRs).
Informally, an MPR takes over the communication for a set of nodes that are
one-hop neighbours of this node; these one-hop neighbours receive all the routing
information from the MRPs and hence do not need to send and receive routing
information from other parts of the network.

Our model for each node includes in addition to the routing table also data
structures to manage the selection of MPRs. The model includes two Generators,
one for HELLO and one for TC messages, the Handler and the Queue. We
adapted our framework based on the model of [15] and verified our generic
properties. Table 2 shows the result of our verification for different topologies.
We ran the same experiments for the original model of [15] and we got similar
results as we got for our adjusted OLSR model.

Adaptive Formal Framework for WMN Routing Protocols 189

Table 1. BATMAN verification results

Route establishment Network knowledge Packet delivery
0% loss 80% loss |link failure |0% loss|80% loss|link failure|0% loss|80% loss|link failure
Grid 0.90 — 1.00/0.00 — 0.10/0.88 — 0.98|72 7 70 1 0 0.4
Linear 0.90 — 1.00|0.00 — 0.100.00 — 0.10|72 4 36 1 0 0
Fully connected|0.90 — 1.00|0.25 — 0.35|0.90 — 1.00|72 22 72 1 0.1 0.8
Ring 0.90 — 1.00|0.24 — 0.34/0.85 — 0.95|72 4 58 1 0.1 0.6

Table 2. OLSR verification results

Route establishment Network knowledge Packet delivery
0% loss 80% loss link failure |0% loss|80% loss|link failure|0% loss|80% loss|link failure
Grid 0.90 — 1.00/0.33 — 0.43|0.90 — 1.00|72 65 70 1 0 0.3
Linear 0.90 — 1.00/0.00 — 0.10(0.18 — 0.28|72 34 50 1 9 9
Fully connected|0.90 — 1.00/0.90 — 1.00|0.89 — 0.99|72 72 72 1 1 0.5
Ring 0.90 — 1.00/0.90 — 1.00(0.89 — 0.99|72 43 63 1 1 0.6

Table 3. AODVv2 verification results

Route establishment Network knowledge Packet delivery
0% loss 80% loss link failure |0% loss|80% loss|link failure|0% loss|80% loss|link failure
Grid 0.90 — 1.00/0.00 — 0.10(0.14 — 0.24|28 3 21 1 0 0.3
Linear 0.90 — 1.00/0.00 — 0.10|0.00 — 0.10|72 1 8 1 0.1 0
Fully connected|0.90 — 1.00/0.16 — 0.26|0.90 — 1.00|9 21 11 1 0.1 0.8
Ring 0.90 — 1.00/0.11 — 0.21|0.79 — 0.89|30 2 10 1 0 0.7

Results indicate that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the prob-
ability in the interval [0.90-1.00] and the routing tables are all populated by
periodic exchanging of control messages as they were expected by the specifica-
tion. The injected packet is delivered at the destination in all types of topologies.
When message loss increases to 80%, these values may decrease. The same hap-
pens also in case of possible link failures. The verification regarding route estab-
lishment property (probability estimation) takes on average about 2s whereas
the verification for calculating the number of delivered packets and routing
table entries (expected value evaluation) takes on average about 185s (calcu-
lating the expected values is more time-consuming compared to estimating the
probability).

5.3 Ad-Hoc On-Demand Distance Vector Version2 (AODVv2)

AODVv2 [21], a reactive protocol for WMNs, behaves on-demand. This means
that it tries to find a route to the destination when a packet is injected into the
network. The protocol initiates RREQ message and the receiving nodes update
their routing tables and possibly rebroadcast the message until the RREQ is
received by its destination. Then the destination sends a RREP message back to
the source of the RREQ. In this way, a path from the source to the destination
is created and the packet can be forwarded via that path. AODVv2 will report
failure of links by multicasting RERR messages.

190 M. Kamali and A. Fehnker

The model of AODVv2 protocol contains only models for the Handler and
the Queue. As a reactive protocol, it does not need a generator. Compared to
the other two models, AODVv2 has more message types, as it includes error
reporting. This also means that in addition to routing information, each node
maintains information of routing errors. We adapted our framework based on
the model of [16] and verified our generic properties. Table3 shows the result
of our verification for different topologies. We ran the same experiments for the
original model of [16] and we got similar results as we got for our adjusted
AODVv2 model which shows the adaptability and reusability of our framework.

Results show that in case of reliable communication (0% loss), the source
nodes can find a path to the destination of the injected packet with the proba-
bility in the interval [0.90-1.00]. Routing tables are partially populated by peri-
odic exchanging of control messages as they were expected by the specification
(reactive protocols find paths to destinations on-demand, so it is expectable that
not all tables are updated). However in the linear topology, all routing tables
are updated due to the path accumulation feature of AODVv2, meaning that
whenever a control message travels via more than one node, information about
all intermediate nodes is accumulated in the message and then is distributed to
its recipients.

The injected packet is delivered at the destination in all types of topolo-
gies in case of reliable communication (0% message loss). When message loss
increases to 80%, these values may decrease. The same happens also in case of
possible link failures. The verification regarding route establishment property
(probability estimation) takes on average about 2s whereas the verification for
calculating the number of delivered packets and routing table entries (expected
value evaluation) takes on average about 15s (calculating the expected values is
more time-consuming compared to estimating the probability).

Evaluating the expected values for AODVv2 takes less time due to the reac-
tive characteristic of AODVv2, meaning that since AODVv2 broadcasts con-
trol messages on demand it has less number of states compared to BATMAN
and OLSR that broadcast control messages periodically which decreases the
time spent for verification. As all the three protocols are modelled applying our
framework, it is possible to easily compare the protocols w.r.t. the properties
and verification time.

5.4 Discussion on BATMAN, OLSR and AODVv2 Models

Here, we discuss how much our framework needs the interaction from the mod-
eller to be adjusted based on the protocol specification. In other words, how
much the three case studies and our framework have in common and how much
they are different. The general structure of our six automata (locations and
transitions of the automata), i.e., Handler, Queue, Generator, Timer, Topology-
Changer and Tester, and their synchronisation remain unchanged and only some
declaration (code fragments) of the automata may need to be modified/added
based on the specification of the protocol.

Adaptive Formal Framework for WMN Routing Protocols 191

— Communication: format of each message has been separately modified using
typedef struct (based on BATMAB, OLSR and AODVv2 specifications) and
later is added in our generic message MSG. The IP address of nodes, SQN
sequence numbers, channels, etc are borrowed from the framework.

— Topology: connectivity function, network topology and TopologyChanger
automata remain unchanged. We have only borrowed them from our frame-
work.

— Node: the Queue and the Timer automata remain unchanged and they have

been only imported and used. Function createMSG in the Generator decla-
ration which is applicable only for BATMAN and OLSR, has been modified
based on the specification (as mentioned earlier, the format of messages for
different protocols are unique to the protocol and must be changed based on
the specification). The interval for sending periodic messages is a parameter
of each protocol and should be set in the declarations.
The Handler needs more interactions from the modeller when modifying the
local declaration of the automaton. This is the case due to different behaviour
of protocols, e.g., when to update a routing table, when to process/drop a
message, when to multicast a message, etc. For instance, BATMAN protocol
has a specific procedure for storing sequence numbers which is unique to this
protocol, OLSR has a specific procedure for determining MPRs, and AODVv2
has a specific procedure for accumulating paths. These specific features need
to be separately modelled for each protocol and our framework only supports
the standardise behaviour of routing protocols which were discussed earlier.
Our models move much of the logic to functions inside the model in order to
have the core of the protocol as code fragments in the model which makes
the modelling task easier.

— Verification: the three system requirements (properties) and their correspond-
ing functions have also been imported without any modifications. The Tester
automaton injects the packet in accordance to the category of the protocol;
reactive or proactive protocol. If the protocol is proactive (BATMAN and
OLSR), the Tester automaton injects the packet after routes are discovered;
and if the protocol is reactive (AODVv2), the Tester injects the packet for
route discovery process and the routes are discovered later after packet injec-
tion. It means that only the time interval that the Tester transition is enabled
differs for reactive and proactive protocols.

6 Related Work

Formal modelling and analysis of the WMNs and Mobile Ad-hoc Networks
(MANETS) and their routing protocols is among challenging tasks, and formal
verification of such systems has attracted the attention from formal methods
community [3,11,17]. Fehnker et al. [8] applied the Uppaal model checker [2] for
analysing qualitative properties of the AODV protocol in all network topologies
with five nodes. Kamali et al. [15] focused on formal modelling and verifying
OLSR protocol in network topologies with five nodes. They have also applied

192 M. Kamali and A. Fehnker

Event-B to model OLSR and have analysed this protocol in large networks (no
size barrier w.r.t. the size of the network) [14]. Chaudhary et al. [4] formally
modelled BATMAN routing protocol using Uppaal model checker revealing sev-
eral ambiguities in the RFC. They verified their model for loop-freedom, bidirec-
tional link discovery, and route-discovery. Fehnker et al. [9] modelled and verified
LMAC protocol of wireless sensor networks applying Uppaal. Their study was
carried out to detect and resolve collision in networks consisting of four and five
nodes.

There are several studies using (statistical) model checking to analyse WMN
and MANET routing protocols. Hofner and Meclver [13] made a comparison of
the AODV and DYMO protocols on arbitrary networks up to five nodes con-
sidering perfect communication among nodes, applying the Uppaal SMC model
checker. Their analysis shows that DYMO has worsened performance compared
to AODV. Dal Corso et al. [6] studied the extended and generalised work done
by [13] to 4x3 grids with lossy communication. They showed contrary results,
indicating that DYMO is performing better compared to AODV. Kamali et
al. [16] investigated and compared the performance and looping property of
the most recent version of AODV protocol [21] with DYMO on 3x3 grids. Their
results indicate that the more recent version of AODV pays the price of degraded
performance compared to DYMO to remain loop-free.

There are other studies providing formal frameworks for modelling and ver-
ifying MANETSs. Liu et al. [18] presented a formal modelling framework for
MANETS consisting of several mobility models together with wireless communi-
cation applying Real-Time Maude [20]. They analysed the AODV protocol using
their framework and their mobility models. Their framework mainly focuses only
on integrating a number of mobility models together with wireless communi-
cation. Yousefi et al. [22] have modelled MANETS using the extension of an
actor-based modelling language bRebeca. They provided a framework to detect
malfunctioning of MANET protocols, addressing local broadcast and topology
changes. They have modelled the core functionality of AODV protocol and found
some malfunctioning of this protocol (loop existence).

Our work differs from the other previous works in the sense that it models the
core functionality of WMN routing protocols, considering wireless communica-
tion, topology, message loss, message queuing, link failure, etc. It is also possible
to model timing aspects of protocols (both reactive and proactive) and to allow
probabilities to have both qualitative and quantitative analysis.

In addition, networks of timed automata as the specification language used
for introducing our generic framework (the main common components of routing
protocols) are more manageable to alter based on the protocols specifications.
It means that adapting our framework allows protocol designers to have an
insight of the system before the deployment since timed automata is an easy-
to-understand specification language and Uppaal SMC simulator provides the
means to validate the system which later can be also used for verification. Pro-
tocol designers can simply modify the C-like code in the declarations based on

Adaptive Formal Framework for WMN Routing Protocols 193

the protocol specification where the general structure of networks of different
automata remains unchanged.

7 Conclusion

This paper presented an adaptive, generic and reusable framework as well as
crucial generic properties to model and verify WMN routing protocols. This
framework uses Uppaal SMC to capture timing aspect of protocols, communi-
cation between nodes, and probabilities to model message loss, link breakage,
etc.

This paper discussed the general structure of Uppaal models, and how this
influences the design of models for network routing protocols. It described how
to build reusable components within the constraints imposed by the Uppaal
modelling language. It identified the main components that routing protocols
have in common, and how to map them to data structures, processes, channels,
and timed automata in the Uppaal language. We demonstrated the applicability
of the approach by implementing three different protocols in this framework:
AODVv2, OLSR and BATMAN.

One of the characteristics of these models is that they move much of the logic
to functions inside of the Uppaal model. They rely less on the subtle interplay
of channels, urgent locations, or committed locations. Instead, they standardise
proven patterns that have been used in the community to model routing proto-
cols. This also means that the core of the protocol resides as code fragments in
the model, and becomes available to be standard code reviewing practices.

An observation that was made is that Uppaal as modelling language would
benefit if it would adopt more mechanisms to structure code. It would be bene-
ficial if the model could reflect that a number of templates share access to data
structures to the exclusion of others. Often the workaround for sharing informa-
tion is to make data global, without mechanisms to enforce its consistent use.
Furthermore, code that is included for verification is currently scattered across
the model. It might be worth to consider verification as a cross-cutting concern,
similarly to how these are dealt with in aspect-oriented programming.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200-236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_-7

3. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538-576 (2002)

4. Chaudhary, K., Fehnker, A., Mehta, V.: Modelling, verification, and comparative
performance analysis of the B.A. T.M.A.N. protocol. In: Hermanns, H., Hoéfner, P.
(eds.) MARS 2017, vol. 244, pp. 53-65 (2017)

https://doi.org/10.1007/978-3-540-30080-9_7

194

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Kamali and A. Fehnker

Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC3626
(2003). http://www.ietf.org/rfc/rfc3626

Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of ad hoc
routing protocols in lossy grid networks. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 112-126. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9_9

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397-415 (2015)

Fehnker, A., van Glabbeek, R., Héfner, P., Mclver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., Konig, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173-187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5_13

Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253-272. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73210-5_14

Fehnker, A., Hofner, P., Kamali, M., Mehta, V.: Topology-based mobility models
for wireless networks. In: Joshi, K., Siegle, M., Stoelinga, M., D’ Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 389-404. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1_32

van Glabbeek, R., Hofner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279-315 (2016)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and
Abstract Interpretation, pp. 73-84. Springer, Berlin (2004)

Hofner, P., Mclver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322-336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
422

Kamali, M., Petre, L.: Modelling link state routing in event-B. In: Wang, H.,
Mokhtari, M. (eds.) ICECCS 2016, pp. 207-210. IEEE (2016)

Kamali, M., Hofner, P., Kamali, M., Petre, L.: Formal analysis of proactive, dis-
tributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 175-189. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-
0-13

Kamali, M., Merro, M., Dal Corso, A.: AODVv2: performance vs. loop freedom.
In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.)
SOFSEM 2018. LNCS, vol. 10706, pp. 337-350. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73117-9_24

Kamali, M., Petre, L.: Improved recovery for proactive, distributed routing. In:
ICECCS 2015, pp. 178-181. IEEE (2015)

Liu, S., Olveczky, P.C., Meseguer, J.: A framework for mobile ad hoc networks in
real-time maude. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 162-177.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4_9

Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better approach to mobile
ad-hoc networking (BATMAN). Internet draftO0 (2008). https://tools.ietf.org/
html/draft-wunderlich-openmesh-manet-routing-00

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
High.-Order Symb. Comput. 20(1), 161-196 (2007)

http://www.ietf.org/rfc/rfc3626
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-540-73210-5_14
https://doi.org/10.1007/978-3-540-73210-5_14
https://doi.org/10.1007/978-3-642-40196-1_32
https://doi.org/10.1007/978-3-642-40196-1_32
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-73117-9_24
https://doi.org/10.1007/978-3-319-73117-9_24
https://doi.org/10.1007/978-3-319-12904-4_9
https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00

Adaptive Formal Framework for WMN Routing Protocols 195

21. Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: Ad hoc on-demand
distance vector version 2 (AODVv2) routing. Internet Draft 16 (2016). https://
datatracker.ietf.org/doc/draft-ietf-manet-aodvv2

22. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of wire-
less ad hoc networks. Form. Asp. Comput. 29(6), 1051-1086 (2017)

https://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2
https://datatracker.ietf.org/doc/draft-ietf-manet-aodvv2

	Adaptive Formal Framework for WMN Routing Protocols
	1 Introduction
	2 Modelling Language
	2.1 Uppaal Timed Automata
	2.2 Uppaal Stochastic Timed Automata

	3 Overview Uppaal Model of WMN Routing Protocols
	4 Generic Uppaal Framework
	4.1 Communication
	4.2 Topology
	4.3 Node
	4.4 Verification

	5 Experiments
	5.1 Better Approach to Mobile Ad-hoc Networking (BATMAN)
	5.2 Optimised Link State Routing (OLSR)
	5.3 Ad-Hoc On-Demand Distance Vector Version2 (AODVv2)
	5.4 Discussion on BATMAN, OLSR and AODVv2 Models

	6 Related Work
	7 Conclusion
	References

