
FINITE RELATION ALGEBRAS

WITH NORMAL REPRESENTATIONS

MANUEL BODIRSKY

Abstract. One of the traditional applications of relation algebras is to provide a set-
ting for infinite-domain constraint satisfaction problems. Complexity classification for
these computational problems has been one of the major open research challenges of this
application field. The past decade has brought significant progress on the theory of con-
straint satisfaction, both over finite and infinite domains. This progress has been achieved
independently from the relation algebra approach. The present article translates the re-
cent findings into the traditional relation algebra setting, and points out a series of open
problems at the interface between model theory and the theory of relation algebras.

1. Introduction

One of the fundamental computational problems for a relation algebra A is the network
satisfaction problem for A, which is to determine for a given A-network N whether it
is satisfiable in some representation of A (for definitions, see Sections 2 and 3). Robin
Hirsch named in 1995 the Really Big Complexity Problem (RBCP) for relation algebras,
which is to ‘clearly map out which (finite) relation algebras are tractable and which are
intractable’ [Hir96]. For example, for the Point Algebra the network satisfaction problem
is in P and for Allen’s Interval Algebra it is NP-hard. One of the standard methods to show
that the network satisfaction problem for a finite relation algebra is in P is via establishing
local consistency. The question whether the network satisfaction problem for A can be
solved by local consistency methods is another question that has been studied intensively
for finite relation algebras A (see [BJ17] for a survey on the second question).

If A has a fully universal square representation (we follow the terminology of Hirsch [Hir96])
then the network satisfaction problem for A can be formulated as a constraint satisfaction
problem (CSP) for a countably infinite structure. The complexity of constraint satisfaction
is a research direction that has seen quite some progress in the past years. The dichotomy
conjecture of Feder and Vardi from 1993 states that every CSP for a finite structure is in
P or NP-hard; the tractability conjecture [BKJ05] is a stronger conjecture that predicts
precisely which CSPs are in P and which are NP-hard. Two independent proofs of these
conjectures appeared in 2017 [Bul17, Zhu17], based on concepts and tools from universal
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2 MANUEL BODIRSKY

algebra. An earlier result of Barto and Kozik [BK09] gives an exact characterisation of
those finite-domain CSPs that can be solved by local consistency methods.

Usually, the network satisfaction problem for a finite relation algebra A cannot be for-
mulated as a CSP for a finite structure. However, suprisingly often it can be formulated
as a CSP for a countably infinite ω-categorical structure B. For an important subclass
of ω-categorical structures we have a tractability conjecture, too. The condition that sup-
posedly characterises containment in P can be formulated in many non-trivially equivalent
ways [BKO+17, BP16, BOP17] and has been confirmed in numerous special cases, see for
instance the articles [BK08, BMPP16, KP17, BJP17, BMM18, BM16] and the references
therein.

In the light of the recent advances in constraint satisfaction, both over finite and infi-
nite domains, we revisit the RBCP and discuss the current state of the art. In particu-
lar, we observe that if A has a normal representation (again, we follow the terminology
of Hirsch [Hir96]), then the network satisfaction problem for A falls into the scope of
the infinite-domain tractability conjecture. We also show that there is an algorithm that
decides for a given finite relation algebra A with a fully universal square representation
whether A has a normal representation. (In other words, there is an algorithm that decides
for a given A whether the class of atomic A-networks has the amalgamation property.)
The scope of the tractability conjecture is larger, though. We describe an example of a
finite relation algebra which has an ω-categorical fully universal square representation (and
a polynomial-time tractable network satisfaction problem) which is not normal, but which
does fall into the scope of the conjecture.

Whether the infinite-domain tractability conjecture might contribute to the resolution
of the RBCP in general remains open; we present several questions in Section 7 whose
answer would shed some light on this question. These questions concern the existence of
ω-categorical fully universal square representations and are of independent interest, and in
my view they are central to the theory of representable finite relation algebras.

2. Relation Algebras

A proper relation algebra is a set B together with a set R of binary relations over B
such that

(1) Id := {(x, x) | x ∈ B} ∈ R;
(2) If R1 and R2 are from R, then R1 ∨R2 := R1 ∪R2 ∈ R;
(3) 1 :=

⋃
R∈RR ∈ R;

(4) 0 := ∅ ∈ R;
(5) If R ∈ R, then −R := 1 \R ∈ R;
(6) If R ∈ R, then R` := {(x, y) | (y, x) ∈ R} ∈ R;
(7) If R1 and R2 are from R, then R1 ◦R2 ∈ R; where

R1 ◦R2 := {(x, z) | ∃y((x, y) ∈ R1 ∧ (y, z) ∈ R2)} .

We want to point out that in this standard definition of proper relation algebras it is not
required that 1 denotes B2. However, in most examples, 1 indeed denotes B2; in this case
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◦ = < >

= = < >
< < < 1
> > 1 >

Figure 1. The composition table for the basic relations in the point algebra.

we say that the proper relation algebra is square. The inclusion-wise minimal non-empty
elements of R are called the basic relations of the proper relation algebra.

Example 1 (The Point Algebra). Let B = Q be the set of rational numbers, and consider

R = {∅,=, <,>,≤,≥, 6=,Q2} .
Those relations form a proper relation algebra (with the basic relations <,>,=, and where
1 denotes Q2) which is known under the name point algebra. �

The relation algebra associated to (B,R) is the algebra A with the domain A := R
and the signature τ := {∨,−, 0, 1, ◦,` , Id} obtained from (B,R) in the obvious way. An
abstract relation algebra is a τ -algebra that satisfies some of the laws that hold for the
respective operators in a proper relation algebra. We do not need the precise definition
of an abstract relation algebra in this article since we deal exclusively with representable
relation algebras: a representation of an abstract relation algebra A is a relational structure
B whose signature is A; that is, the elements of the relation algebra are the relation symbols
of B. Each relation symbol a ∈ A is associated to a binary relation aB over B such that
the set of relations of B induces a proper relation algebra, and the map a 7→ aB is an
isomorphism with respect to the operations (and constants) {∨,−, 0, 1, ◦,` , Id}. In this
case, we also say that A is the abstract relation algebra of B. An abstract relation algebra
that has a representation is called representable. For x, y ∈ A, we write x ≤ y as a shortcut
for the partial order defined by x ∨ y = y. The minimal elements of A \ {0} with respect
to ≤ are called the atoms of A. In every representation of A, the atoms denote the basic
relations of the representation. We mention that there are abstract finite relation algebras
that are not representable [Lyn50], and that the question whether a finite relation algebra
is representable is undecidable [HH01].

Example 2. The (abstract) point algebra is a relation algebra with 8 elements and 3
atoms, =, <, and >, and can be described as follows. The values of the composition
operator for the atoms of the point algebra are shown in the table of Figure 1. Note that
this table determines the full composition table. The inverse (<)` of < is >, and Id denotes
= which is its own inverse. This fully determines the relation algebra. The proper relation
algebra with domain Q presented in Example 1 is a representation of the point algebra. �

3. The network satisfaction problem

Let A be a finite relation algebra with domain A. An A-network N = (V ; f) consists
of a finite set of nodes V and a function f : V × V → A.
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A network N is called

• atomic if the image of f only contains atoms of A and if

f(a, c) ≤ f(a, b) ◦ f(b, c) for all a, b, c ∈ V (1)

(here we follow again the definitions in [Hir96]);
• satisfiable in B, for a representation B of A, if there exists a map s : V → B (where
B denotes the domain of B) such that for all x, y ∈ V

(s(x), s(y)) ∈ f(x, y)B;

• satisfiable if N is satisfiable in some representation B of A.

The (general) network satisfaction problem for a finite relation algebra A is the com-
putational problem to decide whether a given A-network is satisfiable. There are finite
relation algebras A where this problem is undecidable [Hir99]. A representation B of A is
called

• fully universal if every atomic A-network is satisfiable in B;
• square if its relations form a proper relation algebra that is square.

The point algebra is an example of a relation algebra with a fully universal square repre-
sentation. Note that if A has a fully universal representation, then the network satisfaction
problem for A is decidable in NP: for a given network (V, f), simply select for each x ∈ V 2

an atom a ∈ A with a ≤ f(x), replace f(x) by a, and then exhaustively check condition (1).
Also note that a finite relation algebra has a fully universal representation if and only if
the so-called path-consistency procedure decides satisfiability of atomic A-networks (see,
e.g., [BJ17, HLR13]).

However, not all finite relation algebras have a fully universal representation. An example
of a relation algebra with 4 atoms which has a representation with seven elements but
where path consistency of atomic networks does not imply consistency, called B9, has been
given in [LKRL08]. A representation of B9 with domain {0, 1, . . . , 6} is given by the basic
relations {R0, R1, R2, R3} where Ri = {(x, y) : |x − y| = i mod 7}, for i ∈ {0, 1, 2, 3}.
In fact, every representation of B9 is isomorphic to this representation. Let N be the
network (V, f) with V = {a, b, c, d}, f(a, b) = f(c, d) = R3, f(a, d) = f(b, c) = R2,
f(a, c) = f(b, d) = R1, f(i, i) = R0 for all i ∈ V , and f(i, j) = f(j, i) for all i, j ∈ V . Then
N is atomic but not satisfiable.

4. Constraint Satisfaction Problems

Let B be a structure with a (finite or infinite) domain B and a finite relational signature
ρ. Then the constraint satisfaction problem for B is the computational problem of deciding
whether a finite ρ-structure E homomorphically maps to B. Note that if B is a square
representation of A, then the input E can be viewed as an A-network N . The nodes of N
are the elements of E. To define f(x, y) for variables x, y of the network, let a1, . . . , ak be
a list of all elements a ∈ A such that (x, y) ∈ aE. Then define f(x, y) = (a1 ∧ · · · ∧ ak);
if k = 0, then f(x, y) = 1. Observe that E has a homomorphism to B if and only if N is
satisfiable in B (here we use the assumption that B is a square representation).
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Conversely, when N is an A-network, then we view N as the A-structure E whose
domain are the nodes of N , and where (x, y) ∈ rE if and only if r = f(x, y). Again, E has
a homomorphism to B if and only if N is satisfiable in B.

Proposition 3. Let B be a fully universal square representation of a finite relation algebra
A. Then the network satisfaction problem for A equals the constraint satisfaction problem
for B (up to the translation between A-networks and finite A-structures presented above).

Proof. We have to show that a network is satisfiable if and only if it has a homomorphism
to B. Clearly, if N has a homomorphism to B then it is satisfiable in B, and hence
satisfiable. For the other direction, suppose that the A-network N = (V, f) is satisfiable
in some representation of A. Then there exists for each x ∈ V 2 an atomic a ∈ A such
that a ≤ f(x) and such that the network N ′ obtained from N by replacing f(x) by a
satisfies (1); hence, N ′ is atomic and satisfiable in B since B is fully universal. Hence, N
is satisfiable in B, too. �

For general infinite structures B a systematic understanding of the computational com-
plexity of CSP(B) is a hopeless endeavour [BG08]. However, if B is a first-order reduct
of a finitely bounded homogeneous structure (the definitions can be found below), then the
universal-algebraic tractability conjecture for finite-domain CSPs can be generalised. This
condition is sufficiently general so that it includes fully universal square representations
of almost all the concrete finite relation algebras studied in the literature, and the condi-
tion also captures the class of finite-domain CSPs. As we will see, the concepts of finite
boundedness and homogeneity are conditions that have already been studied in the relation
algebra literature.

4.1. Finite boundedness. Let ρ be a relational signature, and let F be a set of ρ-
structures. Then Forb(F) denotes the class of all finite ρ-structures A such that no
structure in F embeds into A. For a ρ-structure B we write Age(B) for the class of
all finite ρ-structures that embed into B. We say that B is finitely bounded if B has a
finite relational signature and there exists a finite set of finite τ -structures F such that
Age(B) = Forb(F). A simple example of a finitely bounded structure is (Q;<). It is easy
to see that the constraint satisfaction problem of a finitely bounded structure B is in NP.

Proposition 4. Let A be a finite relation algebra with a fully universal square represen-
tation B. Then B is finitely bounded.

Proof sketch. Besides some bounds of size at most two that make sure that the atomic
relations partition B2, it suffices to include appropriate three-element structures into F
that can be read off from the composition table of A. �

4.2. Homogeneity. A relational structure B is homogeneous (or ultra-homogeneous [Hod97])
if every isomorphism between finite substructures of B can be extended to an automor-
phism of B. A simple example of a homogeneous structure is (Q;<).

A representation of a finite relation algebra A is called normal if it is square, fully univer-
sal, and homogeneous [Hir96]. The following is an immediate consequence of Proposition 3
and Proposition 4.
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Corollary 5. Let A be a finite relation algebra with a normal representation B. Then the
network satisfaction problem for A equals the constraint satisfaction problem for a finitely
bounded homogeneous structure.

A versatile tool to construct homogeneous structures from classes of finite structures is
amalgamation à la Fräıssé. We present it for the special case of relational structures; this
is all that is needed here. An embedding of A into B is an isomorphism between A and
a substructure of B. An amalgamation diagram is a pair (B1,B2) where B1,B2 are τ -
structures such that there exists a substructure A of both B1 and B2 such that all common
elements of B1 and B2 are elements of A. We say that (B1,B2) is a 2-point amalgamation
diagram if |B1 \ A| = |B2 \ A| = 1. A τ -structure C is an amalgam of (B1,B2) over A
if for i = 1, 2 there are embeddings ei of Bi to C such that e1(a) = e2(a) for all a ∈ A.
In the context of relation algebras A, the amalgamation property can also be formulated
with atomic A-networks, in which case it has been called the patchwork property [HLR13];
we stick with the model-theoretic terminology here since it is older and well-established.

Definition 1. An isomorphism-closed class C of τ -structures has the amalgamation prop-
erty if every amalgamation diagram of structures in C has an amalgam in C. A class of
finite τ -structures that contains at most countably many non-isomorphic structures, has
the amalgamation property, and is closed under taking induced substructures and isomor-
phisms is called an amalgamation class.

Note that since we only look at relational structures here (and since we allow structures
to have an empty domain), the amalgamation property of C implies the joint embedding
property (JEP) for C, which says that for any two structures B1,B2 ∈ C there exists a
structure C ∈ C that embeds both B1 and B2.

Theorem 6 (Fräıssé [Fra54, Fra86]; see [Hod97]). Let C be an amalgamation class. Then
there is a homogeneous and at most countable τ -structure C whose age equals C. The
structure C is unique up to isomorphism, and called the Fräıssé-limit of C.

The following is a well-known example of a finite relation algebra which has a fully
universal square representation, but not a normal one.

Example 7. The left linear point algebra (see [Hir97, Dün05]) is a relation algebra with
four atoms, denoted by =, <, >, and |. Here we imagine that ‘x < y’ signifies that x
is earlier in time than y. The idea is that at every point in time the past is linearly
ordered; the future, however, is not yet determined and might branch into different worlds;
incomparability of time points x and y is denoted by x|y. We might also think of x < y as
x is to the left of y if we draw points in the plane, and this motivates the name left linear
point algebra. The composition operator on those four basic relations is given in Figure 2.
The inverse (<)` of < is >, Id denotes =, and | is its own inverse, and the relation algebra
is uniquely given by this data. It is well known (for details, see [Bod04]) that the left linear
point algebra has a fully universal square representation. On the other hand, the networks
drawn in Figure 3 show the failure of amalgamation.
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◦ = < > |
= = < > |
< < < {<,=, >} {<, |}
> > 1 > |
| | | {>, |} 1

Figure 2. The composition table for the basic relations in the left linear
point algebra.

x y z

x xy y zz

Figure 3. Example showing that atomic networks for the left linear point
algebra do not have the amalgamation property. A directed edge from x to
y signifies x < y, and a dashed edge between x and y signifies x|y.

An algorithm to test whether a finite relation algebra has a normal representation can
be found in Section 6.

4.3. The infinite-domain dichotomy conjecture. The infinite-domain dichotomy con-
jecture applies to a class which is larger than the class of homogeneous finitely bounded
structures. To introduce this class we need the concept of first-order reducts.

Suppose that two relational structures A and B have the same domain, that the signature
of a structure A is a subset of the signature of B, and that RA = RB for all common relation
symbols R. Then we call A a reduct of B, and B an expansion of A. In other words, A is
obtained from B by dropping some of the relations. A first-order reduct of B is a reduct
of the expansion of B by all relations that are first-order definable in B. The CSP for
a first-order reduct of a finitely bounded homogeneous structure is in NP (see [Bod12]).
An example of a structure which is not homogeneous, but a reduct of finitely bounded
homogeneous structure is the representation of the left-linear point algebra (Example 7)
given in [Bod04].

Conjecture 8 (Infinite-domain dichotomy conjecture). Let B be a first-order reduct of a
finitely bounded homogeneous structure. Then CSP(B) is either in P or NP-complete.
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Hence, the infinite-domain dichotomy conjecture implies the RBCP for finite relation
algebras with a normal representation. In Section 5 we will see a more specific conjecture
that characterises the NP-complete cases and the cases that are in P.

5. The Infinite-Domain Tractability Conjecture

To state the infinite-domain tractability conjecture, we need a couple of concepts that
are most naturally introduced for the class of all ω-categorical structures. A theory is
called ω-categorical if all its countably infinite models are isomorphic. A structure is
called ω-categorical if its first-order theory is ω-categorical. Note that finite structures
are ω-categorical since their first-order theories do not have countably infinite models.
Homogeneous structures B with finite relational signature are ω-categorical. This follows
from a very useful characterisation of ω-categoricity given by Engeler, Svenonius, and Ryll-
Nardzewski (Theorem 9). The set of all automorphisms of B is denoted by Aut(B). The
orbit of a k-tuple (t1, . . . , tn) under Aut(B) is the set {(a(t1), . . . , a(tn)) | a ∈ Aut(B)}.
Orbits of pairs (i.e., 2-tuples) are also called orbitals.

Theorem 9 (see [Hod97]). A countable structure B is ω-categorical if and only if Aut(B)
has only finitely many orbits of n-tuples, for all n ≥ 1.

The following is an easy consequence of Theorem 9.

Proposition 10. First-order reducts of ω-categorical structures are ω-categorical.

First-order reducts of homogeneous structures, on the other hand, need not be homo-
geneous. An example of an ω-categorical structure which is not homogeneous is the ω-
categorical representation of the left linear point algebra given in [Bod04] (see Example 7).
Note that every ω-categorical structure B, and more generally every structure with finitely
many orbitals, gives rise to a finite relation algebra, namely the relation algebra associated
to the unions of orbitals of B (see [BJ17]); we refer to this relation algebra as the orbital
relation algebra of B.

We first present a condition that implies that an ω-categorical structure has an NP-hard
constraint satisfaction problem (Section 5.1). The tractability conjecture says that every
reduct of a finitely bounded homogeneous structure that does not satisfy this condition
is NP-complete. We then present an equivalent characterisation of the condition due to
Barto and Pinsker (Section 5.2), and then yet another condition due to Barto, Opršal, and
Pinsker, which was later shown to be equivalent (Section 5.3).

5.1. The original formulation of the conjecture. Let B be an ω-categorical structure.
Then B is called

• a core if all endomorphisms of B (i.e., homomorphisms from B to B) are embed-
dings (i.e., are injective and also preserve the complement of each relation).
• model complete if all self-embeddings of B are elementary, i.e., preserve all first-

order formulas.

Clearly, if B is a representation of a finite relation algebra A, then B is a core. However,
not all representations of finite relation algebras are model complete. A simple example is
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the orbital relation algebra of the structure (Q+
0 ;<) where Q+

0 denotes the non-negative
rationals: its representation with domain Q+

0 has self-embeddings that do not preserve the
orbital {(0, 0)}.

Let τ be a relational signature. A τ -formula is called primitive positive if it is of the form
∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm) where ψi is of the form y1 = y2 or of the form R(y1, . . . , yk) for
R ∈ τ of arity k. The variables y1, . . . , yk can be free or from x1, . . . , xn. Clearly, primitive
positive formulas are preserved by homomorphisms.

Theorem 11 ([Bod07, BHM10]). Every ω-categorical structure B is homomorphically
equivalent to a model-complete core C, which is unique up to isomorphism, and again ω-
categorical. All orbits of k-tuples are primitive positive definable in C.

The (up to isomorphism unique) structure C from Theorem 11 is called the model-
complete core of B. Let B and A be structures, let D ⊆ Bn, and let I : D → A be a
surjection. Then I is called a primitive positive interpretation if the pre-image under I of
A, of the equality relation =A on A, and of all relations of A is primitive positive definable
in A. In this case we also say that B interprets A primitively positively. The complete
graph with three vertices (but without loops) is denoted by K3.

Theorem 12 ([Bod08]). Let B be an ω-categorical structure. If the model-complete core
of B has an expansion by finitely many constants so that the resulting structure interprets
K3 primitively positively, then CSP(B) is NP-hard.

We can now state the infinite-domain tractability conjecture.

Conjecture 13. Let B be a first-order reduct of a finitely bounded homogeneous structure.
If B does not satisfy the condition from Theorem 12 then CSP(B) is in P.

This conjecture has been verified in numerous special cases (see, for instance, the ar-
ticles [BK08, BMPP16, KP17, BJP17, BMM18, BM16]), including the class of finite-
structures [Bul17, Zhu17].

5.2. The theorem of Barto and Pinsker. The tractability conjecture has a funda-
mentally different, but equivalent formulation: instead of the non-existence of a hardness-
condition, we require the existence of a polymorphism satisfying a certain identity; the
concept of polymorphisms is fundamental to the resolution of the Feder-Vardi conjecture
in both [Bul17] and [Zhu17].

Definition 2. A polymorphism of a structure B is a homomorphism from Bk to B, for
some k ∈ N. We write Pol(B) for the set of all polymorphisms of B.

An operation f : B6 → B is called

• Siggers if it satisfies

f(x, y, x, z, y, z) = f(z, z, y, y, x, x)

for all x, y, z ∈ B;
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• pseudo-Siggers modulo e1, e2 : B → B if

e1(f(x, y, x, z, y, z)) = e2(f(z, z, y, y, x, x))

for all x, y, z ∈ B.

Theorem 14 ([BP16]). Let B be an ω-categorical model-complete core. Then either

• B can be expanded by finitely many constants so that the resulting structure inter-
prets K3 primitively positively, or
• B has a pseudo-Siggers polymorphism modulo endomorphisms of B.

5.3. The wonderland conjecture. A weaker condition that implies that an ω-categorical
structure has an NP-hard CSP has been presented in [BOP17]. For reducts of homogeneous
structures with finite signature, however, the two conditions are equivalent [BKO+17].
Hence, we obtain yet another different but equivalent formulation of the tractability con-
jecture. The advantage of the new formulation is that it does not require that the structure
is a model-complete core.

Let B be a countable structure. A map µ : Pol(B)→ Pol(A) is called minor-preserving
if for every f ∈ Pol(B) of arity k and all k-ary projections π1, . . . , πk we have µ(f) ◦
(π1, . . . , πk) = µ(f ◦(π1, . . . , πk)) where ◦ denotes composition of functions. The set Pol(B)
is equipped with a natural complete ultrametric d (see, e.g., [BS16]). To define d, suppose
that B = N. For f, g ∈ Pol(B) we define d(f, g) = 1 if f and g have different arity;
otherwise, if both f, g have arity k ∈ N, then

d(f, g) := 2−min{n∈N|∃s∈{1,...,n}k:f(s)6=g(s)}.

Theorem 15 (of [BOP17]). Let B be ω-categorical. Suppose that Pol(B) has a uniformly
continuous minor-preserving map to Pol(K3). Then CSP(B) is NP-complete.

We mention that there are ω-categorical structures where the condition from Theorem 15
applies, but not the condition from Theorem 12 [BKO+17].

Theorem 16 (of [BKO+17]). If B is a reduct of a homogeneous structure with finite rela-
tional signature, then the conditions given in Theorem 12 and in Theorem 15 are equivalent.

6. Testing the Existence of Normal Representations

In this section we present an algorithm that tests whether a given finite relation algebra
has a normal representation. This follows from a model-theoretic result that seems to be
folklore, namely that testing the amalgamation property for a class of structures that has
the JEP and a signature of maximal arity two which is given by a finite set of forbidden
substructures is decidable. We are not aware of a proof of this in the literature.

Theorem 17. There is an algorithm that decides for a given finite relation algebra A which
has a fully universal square representation whether A also has a normal representation.

Proof. First observe that the class C of all atomic A-networks, viewed as A-structures,
has the JEP: if N1 and N2 are atomic networks, then they are satisfiable in B since B is
fully universal, and hence embed into B when viewed as structures. Since B is square the
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substructure of B induced by the union of the images of N1 and N2 is an atomic network,
too, and it embeds N1 and N2.

Let k be the number of atoms of A. It clearly suffices to show the following claim, since
the condition given there can be effectively checked exhaustively.

Claim. C has the AP if and only if all 2-point amalgamation diagrams of size at most
k + 2 amalgamate.

So suppose that D = (B1,B2) is an amalgamation diagram without amalgam. Let B′1
be a maximal substructure of B1 that contains B1∩B2 such that (B′1,B2) has an amalgam.
Let B′2 be a maximal substructure of B2 that contains B1 ∩B2 such that (B′1,B

′
2) has an

amalgam. Then Bi 6= B′i for some i ∈ {1, 2}; let C1 be a substructure of Bi that extends
B′i by one element, and let C2 := B′3−i. Then (C1,C2) is a 2-point amalgamation diagram
without an amalgam. Let C0 := C1 ∩ C2. Let C1 \ C0 = {p} and C2 \ C0 = {q}. For each
a ∈ A there exists an element ra ∈ C0 such that the network ({r, p, q}, f) with f(p, q) = a,
f(p, r) = fB1(p, r), f(r, q) = fB2(r, q) fails the atomicity property (1). Let C′1 be the
substructure of C1 induced by {p}∪{ra | a ∈ A} and A′1 be the substructure of C2 induced
by {q} ∪ {ra | a ∈ A}. Then the amalgamation diagram (C′1,C

′
2) has no amalgam, and has

size at most k + 2. �

7. Conclusion and Open Problems

Hirsch’s Really Big Complexity Problem (RBCP) for finite relation algebras remains
really big. However, the network satisfaction problem of every finite relation algebra known
to the author can be formulated as the CSP of a structure that falls into the scope of
the infinite-domain tractability conjecture. Most of the classical examples even have a
normal representation, and therefore the RBCP for those is implied by the infinite-domain
tractability conjecture (Corollary 5). We presented an algorithm that tests whether a given
finite relation algebra has a normal representation.

To better understand the RBCP in general, or at least for finite relation algebras with
fully universal square representation, we need a better understanding of representations of
finite relation algebras with good model-theoretic properties. We mention some concrete
open questions; also see Figure 4.

(1) Is there a finite relation algebra with a fully universal square representation, but
without an ω-categorical fully universal square representation?

(2) Is there a finite relation algebra with an ω-categorical fully universal square repre-
sentation but without a fully universal square representation which is not a first-
order reduct of a finitely bounded homogeneous structure?

(3) Find a finite relation algebra A such that there is no ω-categorical structure B
such that the general network satisfaction problem for A equals the constraint
satisfaction problem for B. (Note that we do not insist on B being a representation
of A.)

(4) Find a finite relation algebra A with an ω-categorical fully universal square repre-
sentation which is not the orbital relation algebra of an ω-categorical structure.
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E: Finite representable relation algebras

C: Finite relation algebras with 
an !-categorical fully universal square representation

(1)(2)

A: Finite relation algebras with
a normal representation

D: Finite relation algebras with 
a fully universal square representation

B: Finite relation algebras with
a fully universal square representation 
which is a reduct of 
a finitely bounded homogeneous structure

Figure 4. Subclasses of finite representable relation algebras. Member-
ship of relation algebras from D to the innermost box A is decidable (Theo-
rem 17). Example 7 separates Box A and Box B. The finite relation algebra
from [Hir99] separates Box D and E. Box B falls into the scope of the
infinite-domain tractability conjecture. Boxes C and D might also fall into
the scope of this conjecture (see Problem (1) and Problem (2)).
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[Fra86] Roland Fräıssé. Theory of Relations. Elsevier Science Ltd, North-Holland, 1986.
[HH01] R. Hirsch and I. Hodkinson. Representability is not decidable for finite relation algebras. Trans-

actions of the American Mathematical Society, 353(4):1387–1401), 2001.
[Hir96] Robin Hirsch. Relation algebras of intervals. Artificial Intelligence Journal, 83:1–29, 1996.
[Hir97] Robin Hirsch. Expressive power and complexity in algebraic logic. Journal of Logic and Com-

putation, 7(3):309 – 351, 1997.
[Hir99] Robin Hirsch. A finite relation algebra with undecidable network satisfaction problem. Logic

Journal of the IGPL, 7(4):547–554, 1999.
[HLR13] Jinbo Huang, Jason Jingshi Li, and Jochen Renz. Decomposition and tractability in qualitative

spatial and temporal reasoning. Artif. Intell., 195:140–164, 2013.



14 MANUEL BODIRSKY

[Hod97] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.
[KP17] Michael Kompatscher and Trung Van Pham. A Complexity Dichotomy for Poset Constraint

Satisfaction. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),
volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47:1–47:12, 2017.

[LKRL08] Jason Jingshi Li, Tomasz Kowalski, Jochen Renz, and Sanjiang Li. Combining binary constraint
networks in qualitative reasoning. In ECAI 2008 - 18th European Conference on Artificial In-
telligence, Patras, Greece, July 21-25, 2008, Proceedings, pages 515–519, 2008.

[Lyn50] R. Lyndon. The representation of relational algebras. Annals of Mathematics, 51(3):707–729,
1950.

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
331–342, 2017.

Institut für Algebra, TU Dresden, 01062 Dresden, Germany
E-mail address: Manuel.Bodirsky@tu-dresden.de

URL: http://www.math.tu-dresden.de/~bodirsky/


	1. Introduction
	2. Relation Algebras
	3. The network satisfaction problem
	4. Constraint Satisfaction Problems
	4.1. Finite boundedness
	4.2. Homogeneity
	4.3. The infinite-domain dichotomy conjecture

	5. The Infinite-Domain Tractability Conjecture
	5.1. The original formulation of the conjecture
	5.2. The theorem of Barto and Pinsker
	5.3. The wonderland conjecture

	6. Testing the Existence of Normal Representations
	7. Conclusion and Open Problems
	References

