
ar
X

iv
:2

10
7.

10
54

0v
1 

 [
m

at
h.

L
O

] 
 2

2 
Ju

l 2
02

1

Counting finite linearly ordered involutive

bisemilattices

Stefano Bonzio1, Michele Pra Baldi2, and Diego Valota3

1 Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle
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m.prabaldi@gmail.com

3 Dipartimento di Informatica, Università degli Studi di Milano,
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Abstract. The class of involutive bisemilattices plays the role of the
algebraic counterpart of paraconsistent weak Kleene logic. Involutive
bisemilattices can be represented as P lonka sums of Boolean algebras,
that is semilattice direct systems of Boolean algebras. In this paper we
exploit the P lonka sum representation with the aim of counting, up to
isomorphism, finite involutive bisemilattices whose direct system is given
by totally ordered semilattices.
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1 Introduction

The class of involutive bisemilattices plays the role of the algebraic counterpart
among one of the three-valued logics introduced by Kleene in [22], namely para-
consistent weak Kleene logic – PWK for short. PWK, essentially introduced by
Halldén [16], can be defined as the logic induced by a matrix given by the weak
Kleene tables with {1, n} as truth set:

∧ 0 n 1

0 0 n 0

n n n n

1 0 n 1

∨ 0 n 1

0 0 n 1

n n n n

1 1 n 1

¬

1 0

n n

0 1

Equivalently (see [13,8]), PWK can be obtained out of (propositional) clas-
sical logic (CL) imposing the following syntactical restriction:

Γ ⊢PWK ϕ⇐⇒ there is ∆ ⊆ Γ s.t. Var(∆) ⊆ Var(ϕ) and ∆ ⊢CL ϕ,

http://arxiv.org/abs/2107.10540v1


2 S. Bonzio et al.

where Var(ϕ) is the set of variables really occurring in ϕ.
Involutive bisemilattices consist of a regular variety, namely one satisfying

identities of the form ε ≈ τ , where Var(ε) = Var(τ). More precisely, involutive
bisemilattices satisfy only the regular identities holding in Boolean algebras. Due
to the general theory of regular varieties, which traces back to the pioneering
work of P lonka [26], involutive bisemilattices can be represented as P lonka sums
of Boolean algebras, that is, a sum over semilattice direct systems of Boolean
algebras. Over the years, P lonka sums and (some) regular varieties have been
studied in depth both from a purely algebraic perspective [3,21,17,18] and in
connection with their topological duals [31,32,6]. The machinery of P lonka sums
has also found useful applications in the study of the constraint satisfaction
problem [4] and in database semantics [23,29]. Recently, thanks to the exten-
sion of this formalism to logical matrices [10,11], P lonka sums have turned out
to play a useful role in the investigation of logics featuring the presence of a
non-sensical, infectious truth-value. This family of logics – including PWK and
Bochvar logic [5] – provides valuable formal instruments to model computer-
programs affected by errors [14]. In this paper we exploit the P lonka sum rep-
resentation for the purpose of counting the finite members of a specific subclass
of involutive bisemilattices, whose representation consists of a linearly ordered
semilattice. In particular, we provide an algorithm offering a solution to the fine
spectrum problem [34] for the class of linearly ordered involutive bisemilattices.
In order to achieve this goal, we use the categorical apparatus developed in [9].
We believe that the application of the above-mentioned algebraic methods allows
us to develop algorithms that are more efficient than “brute-force” procedures.
This is confirmed by the computational experiments. In particular, a comparison
between the efficiency of the algorithm introduced in this paper and of Mace4 is
briefly discussed in Section 5.

2 Preliminaries

A semilattice is an algebra A = 〈A,∨〉, where ∨ is a binary commutative, as-
sociative and idempotent operation. Given a semilattice A and a, b ∈ A, we set
a ≤ b⇐⇒ a ∨ b = b. It is easy to see that ≤ is a partial order on A.

We briefly recall the category of semilattice direct systems, introduced in
[9,6]. Intuitively, they consists of a specialization of direct (and inverse) systems
of an arbitrary category, obtained by assuming the index set to be a semilattice
instead of a (directed) pre-ordered set. For any unexplained notion in category
theory, the reader is referred to [24].

Definition 1. Let C be an arbitrary category. A semilattice direct system in C

is a triple X = 〈Xi, pii′ , I〉 such that

1. I is a semilattice.
2. {Xi}i∈I forms an indexed family of objects in C with disjoint universes;
3. pii′ : Xi → Xi′ is a morphism of C, for each pair i 6 i′ (i, i′ ∈ I), satisfying

that pii is the identity in Xi and such that i ≤ i′ ≤ i′′ implies pi′i′′◦pii′ = pii′′ .
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We refer to I, Xi and pii′ as the index set, the terms and the transition
morphisms, respectively, of the (semilattice direct) system.

A morphism between two semilattice direct systems X = 〈Xi, pii′ , I〉 and
Y = 〈Yj , pjj′ , J〉 is a pair (ϕ, {fi}i∈I) : X → Y such that

i) ϕ : I → J is a semilattice homomorphism
ii) fi : Xi → Yϕ(i) is a morphism in C, making the following diagram commuta-

tive, for each i, i′ ∈ I, i ≤ i′.

Xi

pii′ //

fi

��

Xi′

fi′

��
Yϕ(i)

qϕiϕi′ // Yϕ(i′)

It is easy to check that the semilattice direct systems of a category C form a
category, which we denote by Sem-dir-C. Semilattice inverse systems of an arbi-
trary category are obtained analogously, by, intuitively, reversing the directions
of transition morphisms (see [9] for precise details). Moreover, provided that two
categories C and D are dually equivalent, the duality can be lifted to Sem-dir-
C and Sem-inv-D (see [9, Remark 3.6]). The class of involutive bisemilattices
has been introduced in [8] as the most suitable candidate to be the algebraic
counterpart of the logic PWK.

Definition 2. An involutive bisemilattice is an algebra B = 〈B,∨,∧,¬, 0, 1〉 of
type (2, 2, 1, 0, 0) satisfying:

I1. x ∨ x ≈ x;
I2. x ∨ y ≈ y ∨ x;
I3. x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z;
I4. ¬(¬x) ≈ x;

I5. x ∧ y ≈ ¬(¬x ∨ ¬y);
I6. x ∧ (¬x ∨ y) ≈ x ∧ y;
I7. 0 ∨ x ≈ x;
I8. 1 ≈ ¬0.

Involutive bisemilattices form an equational class denoted by IBSL. Ex-
amples of involutive bisemilattices include any Boolean algebra, as well as any
semilattice with zero. In the latter case, the two binary operations coincide and
the unary operation is the identity. The variety IBSL is the regularization4 of
the variety BA, of Boolean algebras (see [27,8]), i.e. IBSL |= ε ≈ τ if and only
if BA |= ε ≈ τ and Var(ϕ) = Var(τ). Involutive bisemilattices can be connected
to semilattice direct systems, in a way that we sketch. It is always possible to
construct an algebra out of a semilattice direct system in an algebraic category.
The construction we have in mind is called P lonka sum and is due to J. P lonka
[26]. For standard information on P lonka sums we refer the reader to [28].

Definition 3. Let A = 〈Ai, pii′ , I〉 be a semilattice direct system of algebras
of a fixed type ν. The P lonka sum over A is the algebra Pl(A) = 〈

⊔
I Ai, g

P〉,
whose universe is the disjoint union of the algebras Ai and the operations gP are

4 For the theory of regular varieties and regularizations we refer the reader to [28].
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defined as follows: for every n-ary g ∈ ν, and a1, . . . , an ∈
⊔
I Ai, where n > 1

and ar ∈ Air , we set j = i1 ∨ · · · ∨ in and define5

gP(a1, . . . , an) = gAj (pi1j(a1), . . . , pinj(an)).

P lonka sums provide a useful tool to represent algebras belonging to regular
varieties. We recall here the representation theorem for involutive bisemilattices.

Involutive bisemilattices, as well as bisemilattices admit a representation as
P lonka sums over a semilattice system of Boolean algebras. From [8, Thm. 46]
we know that, if A is a semilattice direct system of Boolean algebras, then
Pl(A) is an involutive bisemilattice, and if B is an involutive bisemilattice, then
B ∼= Pl(A), where A is a semilattice direct system of Boolean algebras. The
above facts can be strengthened to a full categorical equivalence.

Theorem 4 ([9, Thm. 4.5]). The categories IBSL and Sem-dir-BA are equiv-
alent.

The equivalence is proved by the functors associating to each involutive
bisemilattice the semilattice direct system of Boolean algebras corresponding
to its P lonka sum representation. Conversely, to each semilattice direct system
(of Boolean algebras), it is associated the P lonka sum. Upon considering Stone
duality [33] between Boolean algebras and Stone spaces, SA for short, namely
compact totally disconnected Hausdorff topological spaces (see e.g. [20]), we have
that

Theorem 5 ([9, Thm. 4.6]). The categories IBSL and Sem-inv-SA are du-
ally equivalent.

For the purpose of the present work, we restrict Stone duality to the finite
setting, which reduces to the well-known duality between the category of finite
Boolean algebras and their homomorphisms FBA, and the category of finite
sets and set-functions FS. The functor implementing such duality maps any
Boolean algebra A to the set Â given by the atoms of A. Thanks to the previous
considerations, the problem of counting finite involutive bisemilattices coincides
with counting semilattice direct systems (with finite index set) of finite Boolean
algebras.

3 Linearly ordered IBSL

We confine our concern to a specific class of involutive bisemilattices, namely
those ones whose corresponding direct system has a linearly ordered index set.
We call this class linearly ordered involutive bisemilattices, L-IBSL for short.

5 In case ν contains constants, then, it is necessary to assume that I has a least
element, see [27] for details.
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Remark 6. The class L-IBSL is closed under subalgebras and homomorphic
images but not under products. Closure under subalgebras is obvious. For ho-
momorphic images, it is enough to observe that any homomorphism between
elements in L-IBSL corresponds to a morphism between the equivalent semi-
lattice direct systems, which, restricted to the index sets, is a homomorphism of
semilattices. Moreover, any homomorphic image of a totally ordered semilattice
is totally ordered. As regards products, it is clear that the product of (semilattice
direct) systems whose index set is linearly order may, in general, be a system
whose index set is not linearly ordered.

In the following part, we provide a first-order characterization of the class
L-IBSL. Recall from [8] that, given an involutive bisemilattice B, an element
a ∈ B is called positive if a ∨ ¬a = a. We denote by P (B) the set of positive
elements of B.

Remark 7. The set P (B) of positive elements of an involutive bisemilattice B
coincides with the set of the constants 1 of each Boolean algebra in the P lonka de-
composition of B. In other words, B ∼= Pl(A), with A = 〈Ai, pii′ , I〉 a semilattice
direct system of Boolean algebras, then P (B) =

⋃
i∈I{1i}, where 1i denotes the

element 1 in the Boolean algebra Ai. Checking that 1i is positive for each i ∈ I is
immediate. On the other hand, suppose that a ∈ P (B), i.e. a∨ ¬a = a. Clearly,
a ∈ Ai, for some i ∈ I, hence ¬a ∈ Ai. Therefore a = a ∨Pl ¬a = a ∨Ai ¬a = 1i.

In the following result, we refer (with a slight abuse of notation) to the
semilattice of indexes of a P lonka sum as 〈I,≤〉 and to the semilattice formed by
the positive elements of an involutive bisemilattice with respect to the reducts
∧ (∨, respectively) as 〈P (B),∧〉 (〈P (B),∨〉, respectively).

Proposition 8. Let B ∈ IBSL and let P (B) be the set of positive elements.
Then

1. 〈P (B),∧〉 ∼= 〈P (B),∨〉; 2. 〈P (B),∨〉 ∼= 〈I,≤〉.

Proof. 1. The isomorphism is given by the identity map. We just check that,
for any a, b ∈ P (B), a∧ b = a∨ b. In virtue of Remark 7, we can assume that
a = 1i and b = 1j, for some i, j ∈ I. Let k = i ∨ j, then: a ∧ b = 1i ∧

Pl 1j =
pik(1i) ∧

Ak pjk(1j) = 1k ∧
Ak 1k = 1k = 1k ∨

Ak 1k = pik(1i) ∨Ak
pjk(1j) =

1i ∨
Pl 1j = a ∨ b.

2. We again assume the identification highlighted in Remark 7. Consider the
map f : I → P (B), defined as f(i) := 1i. The map is invertible (with inverse
g : P (B) → I, g(1i) = i). Moreover, we check that f is a homomorphism
(of semilattices). Let i, j ∈ I and i ∨ j = k. Then f(i ∨ j) = f(k) = 1k =
1k ∨ 1k = pik(1i) ∨ pjk(1j) = 1i ∨ 1j = f(i) ∨ f(j). ⊓⊔

The above results shows that any consideration about the index set of the
P lonka sum representation of an involutive bisemilattice can be expressed over
the (partially ordered) set of its positive elements. This turns out to be con-
venient since the subset of positive elements is equationally definable. Observe,
moreover that the two partial orders induced by the binary operations of an



6 S. Bonzio et al.

involutive bisemilattice (see [8] for details) coincide over the set of positive ele-
ments.

Corollary 9. Let B ∈ IBSL and 〈P (B),≤〉 the poset of its positive elements.
The following are equivalent:

1. B ∈ L-IBSL; 2. either x ≤ y or y ≤ x, for any x, y ∈ P (B).

We provide a useful criteria to detect isomorphic copies of linearly ordered
involutive bisemilattices.

Lemma 10. Let A = 〈Ai, pii′ , I〉 and B = 〈Bi, qii′ , I〉 be two finite semilattice
direct systems of Boolean algebras, with I linearly ordered and containing no
trivial algebras. Then, the following statements are equivalent:

1. A ∼= B
2. Ai

∼= Bi, for every i ∈ I, and | Âi′/ker(p̂ii′ ) | = | B̂i′/ker(q̂ii′ ) |, for every
i < i′.

Proof. (⇒) Assume that A ∼= B via an isomorphism (ϕ, fi), for each i ∈ I. Since
A and B share the same, linearly ordered, index setI, we necessarily have that
ϕ = id. Moreover, for each i ∈ I, Ai

∼= Bi via the Boolean isomorphism fi, and
the following diagram on the left (we deliberately drop indexes from p and q to
make notation less cumbersome) is commutative, for each i < i′, and in virtue
of the duality established in Theorem 5 and the definition of inverse systems,
the following diagram on the right is also commutative:

Ai

p //

fi

��

Ai′

fi′

��
Bi

q // B′
i

Âi

f̂
−1

i

��

Âi′
p̂oo

f̂
−1

i′

��

B̂i B̂′
i

q̂
oo

By the first isomorphism theorem (for sets), we have that there exist two

(unique) embeddings ψ : Âi′/ker(p̂ ) → Âi and χ : B̂i′/ker(q̂ ) → B̂i such that
p̂ = ψ◦π

Âi′
and q̂ = χ◦π

B̂i′
, where π

Âi′
and π

B̂i′
indicate the natural projections

onto the quotients Âi′/ker(p̂ ), B̂i′/ker(q̂ ), respectively. The above diagram can
therefore be split into the following:

Âi′
f̂
−1

i′ //

π
Â

i′

��

B̂i′

π
B̂

i′

��
Âi′/ker(̂(p)

Φ //❴❴❴❴❴❴❴❴

ψ

��

B̂i′/ker(q̂)

χ

��
Âi

f̂
−1

i

// B̂i
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We define the map Φ : Âi′/ker(p̂ ) → B̂i′/ker(q̂ ) as Φ([a]p) := [f̂−1
i′ (a)]q.

We claim that Φ is a bijection and this would conclude this part of the proof.
In order to show the claim, let [b] ∈ B̂i′/ker(q), then [b] = π

B̂i′
(b), for some b ∈

B̂i′ . By surjectivity of f̂−1
i′ , there exists an element a ∈ Âi′ such that b = f̂−1

i′ (a).

Therefore [b]q = [f̂−1
i′ (a)]q = Φ([a]p), i.e. Φ is surjective. To show that Φ is also

injective, assume [a]p 6= [b]p, i. e. a 6= b, with a, b ∈ Âi′ . Suppose, in view of a

contradiction, that Φ([a]p) = Φ([b]p), i. e. [f̂−1
i′ (a)]q = [f̂−1

i′ (b)]q. By assumption
and the fact that ψ is an embedding, we have that ψ ◦ π

Âi′
(a) 6= ψ ◦ π

Âi′
(b),

i.e. p(a) 6= p(b), whence f̂−1
i ◦ p(a) 6= f̂−1

i ◦ p(b), since f̂−1
i is a bijection. On the

other hand, q ◦ f̂−1
i′ (a) = χ◦π

B̂i′
◦ f̂−1

i′ (a) = χ◦π
B̂i′

◦ f̂−1
i′ (b) = q ◦ f̂−1

i′ (b), which

is in contradiction with the commutativity of the above diagram. This shows our
claim.

(⇐) Assume that Ai
∼= Bi, by the family of isomorphisms fi : Ai → Bi, for each

i ∈ I, and that there exists a bijection Φ : Âi′/ker(p̂) → B̂i′/ker(q̂). Then, it is
easy to check that (id, fi) gives the desired isomorphism. ⊓⊔

Example 11. The two linearly ordered involutive bisemilattices in the following
picture (lines indicate orders in the Boolean components, dashed lines indicate
Boolean homomorphisms) are isomorphic (this is an consequence of Lemma 10).

11 11

01 01

10 10

a

⑧⑧⑧⑧
a′

❆❆❆❆

b

����
b′

❆❆❆❆

00

⑥⑥⑥⑥

❄❄❄❄

00

⑥⑥⑥⑥

❃❃❃❃

In order to exhibit a concrete isomorphism, observe that the two algebras are
constructed using the very same index set (the two element lattice). An isomor-
phism is given by considering the identity map id on the lattice of indexes, the
unique isomorphism on the two elements Boolean algebras and the Boolean iso-
morphism given by ϕ(a) = ¬b (and ϕ(¬a) = b) between the 4-elements Boolean
algebras.

The graphical convention adopted in the above example (dotted lines for homo-
morphisms between algebras in the P lonka sum, black lines for the usual order
relation in a Boolean algebra) will be used throughout the paper.

Remark 12. Notice that the non-triviality assumption in Lemma 10 is crucial as
witnessed by the following example, where we consider the two semilattice direct
systems 〈{A0,11,12}, pii′ , {0, 1, 2}〉 and 〈{A0,11,12}, qii′ , {0, 1, 2}〉.
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•2

$$❍
❍❍

❍❍
❍❍

❍❍
•1

•1

::✈✈✈✈✈✈✈✈✈
•2

Φ

A0
// A0

The map Φ depicted between the two systems is not an isomorphism (as it
is clearly not an isomorphism on the index set), however 12/ker(p̂12

) = 12 =
12/ker(q̂12).

We denote by Api−1,i
the family {〈Ai, pi−1,i, I〉}i∈I of all finite semilattice di-

rect systems of Boolean algebras obtainable from the family of algebras {Ai}i∈I ,
indexed over the linearly ordered index set I. When clear from the context, we
will write Ap instead of Api−1,i

.
We are interested in the following question: what is the number of non-

isomorphic elements in the family Ap? This, in turn, will provide an answer to
the question about how many linearly ordered involutive bisemilattices have the
cardinality

⋃
i∈I | Ai |, up to isomorphism.

In the light of Theorem 5 and Lemma 10, the answer to is provided by
considering the dual semilattice inverse systems Âp̂.

Lemma 13. Let Ap
01

= 〈{A0,A1}, p, {0 < 1}〉 be a family of linearly ordered
semilattice direct system of Boolean algebras. The number of non-isomorphic
involutive bisemilattices obtained over Ap01 is the number of non-isomorphic
involutive bisemilattices of cardinality | A0 | + | A1 | and is equal to

N(Ap
01

) := N(A0, A1) = min(| Â0 |, | Â1 |),

where Â0 (Â1, resp.) is the dual space of A0 (A1, resp.)

Proof. At first observe that two elements in the family Ap
01

differ only for the
Boolean homomorphism from A0 to A1. Therefore, by Lemma 10, two involutive
bisemilattices constructed over the system Ap

01
are not isomorphic if and only if

| Â1/ker(p̂) | 6= | Â0/ker(q̂) | (where p and q are the Boolean homomorphisms).
In other words, this means that the kernels of p̂ and q̂ generate two partitions,
over | Â1 |, with a different number of equivalence classes. It is known that the
number of equivalence classes partitioning a finite algebra A into a different
number of blocks is equal to | A |. Therefore, if | A1 |≤| A0 | then N(A0, A1) =

| Â1 |. Differently, since we only consider (the number of) partitions induced by

(kernels of) maps from | Â1 | to | Â0 |, we have that N(A0, A1) = | Â0 |. ⊓⊔

Remark 14. It is easily checked that the function N(Ap01), counting the number
of involutive bisemilattices obtained over Ap01 , can be generalized to the family
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Ap
0m

of semilattice direct systems of Boolean algebras 〈{A0, . . . , Am}, pi−1,i, I〉.
More precisely,

N(Ap
0m

) = N(Ap
01

) ·N(Ap
12

) ·... ·N(Ap
m−1m

) =

m−1∏

i=0

N(Ap
ii+1

).

•

•

• •

• • •

• • •

• •

•

• •

• •

• •

• • •

• •

•

• •

• •

⑧⑧⑧⑧⑧ •

❄❄❄❄❄

•

⑧⑧⑧⑧⑧ •

❄❄❄❄❄
• •

⑧⑧⑧⑧⑧

❄❄❄❄❄

•

⑧⑧⑧⑧⑧

❄❄❄❄❄
•

•

•

•

•

⑧⑧⑧⑧⑧ •

❄❄❄❄❄

•

⑧⑧⑧⑧⑧

❄❄❄❄❄

Fig. 1. The linearly ordered non-isomorphic IBSLs of cardinality 6.

4 Generating and counting L-IBSL

The previous section provides sufficient and necessary conditions in order to
identify the non-isomorphic L-IBSL obtained over direct systems sharing both
the index set and the family of Boolean algebras. In general, the elements of
such a family of direct systems Ap differ at most with respect to the definition
of their homomorphisms. It is easy to check that, given X = 〈Ai, pii′ , I〉 and
Pl(X) ∈ L-IBSL, we can always single out the family of direct systems Ap =
{〈Ai, pi−1,i, I〉}. As this fact is central in the rest of the paper, we introduce the
following definition

Definition 15. Let X = 〈Ai, pii′ , I〉 be a semilattice direct system of Boolean
algebras and B ∼= Pl(X) ∈ L-IBSL. We define the shape of B as XB = 〈Ai, I〉.

Clearly, two L-IBSL, A ∼= Pl(X),B ∼= Pl(Y) have the same shape if and
only if the semilattice direct systems X and Y differ at most with respect to
their homomorphisms, i.e. they belong to the same family Ap. So, with this
terminology at hand, Lemma 13 and Remark 14 tell us the number of non-
isomorphic L-IBSL of a fixed shape. Moreover, as a consequence of Lemma 10,
two L-IBSL with different shapes are non-isomorphic.

Therefore, in order to answer our question concerning the number of finite
algebras in L-IBSL it only remains to count, for a given n ∈ N, the number of
shapes that an L-IBSL of order n can have. The present section is devoted to
this issue.
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Let n ∈ N+, and e,mi ∈ N for 0 ≤ i ≤ e. A binary partition of n is a
decomposition of n into powers of two, that is

n = me · 2e +me−1 · 2e−1 + · · · +m0 · 20. (1)

Hence, the number b(n) of binary partitions6 of n is the number of solutions of
(1). In general, binary partitions which differs by the orders of summands are
considered identical.

Knowing that each finite linearly ordered IBSL B can be decomposed as a
P lonka sum of Boolean algebras Ai whose direct system is indexed by a totally
ordered set I, it follows that the cardinality n of B is always given by a solution
of a binary partition (1) where 2i = |Ai| and |I| =

∑e
i=0mi.

The fact that binary partitions cannot differ only for the order of summands,
together with (iii) in Definition 1 and Remark 14, implies that b(n) cannot
account for the number of shapes that an L-IBSL of order n can assume. Indeed,
given a certain shape 〈Ai, I〉 of B ∈ L-IBSL, every permutation φ over I that
moves at least two indexes i, j such that | Ai | 6= 1, | Aj | 6= 1 defines a new
shape 〈Ai, φ(I)〉. Notice that the condition about | Ai | 6= 1, | Aj | 6= 1 is
justified by the fact that for any non-trivial Boolean algebra A there are no
homomorphisms from a trivial Boolean algebra to A. Hence, we can remove
from the permutations φ(I) of I all the algebras whose cardinality is 20. The
number of such algebras is expressed in (1) as m0. Now, looking at 〈Ai, I〉 and
〈Ai, φ(I)〉 as binary partitions, it is immediate to observe that they only differ
for the order of summands.

Define I+ = I \ {0}. For these reasons, we have to consider the permutations
with repetitions of |I| −m0 =

∑
i∈I+ mi, knowing that each Ai is repeated mi

times. The number of such permutations is given by the multinomial coefficient
[15]

pr(|I| −m0) =

(
|I| −m0

{mi}i∈I+

)
=

(
∑

i∈I+ mi)!∏
i∈I+ mi!

, (2)

We now start by introducing a routine procedure that generates all the binary
partitions of n in a form that makes the ensuing computations easy to handle.

Definition 16. A sequence is a list of pairs of the form s = (me1 , 2
e1) → · · · →

(mep , 2
ep). We define its presentation as

P (s) = (2e11 → · · · → 2e1me1
) → · · · → (2

ep
1 → · · · → 2epmep

).

Given a set S of sequences, we denote by P (S) the set of the presentations
of sequences in S, that is P (S) = {P (s) | s ∈ S}.

Definition 17. Given a natural number n ∈ N+ we define

L(n) = {(me1 , 2
e1) → (me2 , 2

e2) → · · · → (mek , 2
ek) | n =

k∑

i=1

(mei · 2ei)},

6 See sequence http://oeis.org/A018819 at The On-Line Encyclopedia of Integer Se-

quences, published electronically at https://oeis.org.

http://oeis.org/A018819
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such that e1 > e2 > · · · > ek, that is the set of sequences that give all decompo-
sitions of n into powers of two, such as in (1).

For any sequence l(n) ∈ L(n), define F (l(n)) = {mei | (mei , 2
ei) ∈ l(n)} as

the set of the multiplicities in l(n), and F+(l(n)) = {mei ∈ F (l(n)) | ei 6= 0} as
the subset of F (l(n)) given by the positive multiplicities in l(n).

Observe that the above definition of multiplicity and positive multiplicity
in l(n) can be equally defined by looking at the presentation P (l(n)). More-
over, given a sequence l(n) = (me1 , 2

e1) → · · · → (mep , 2
ep) with positive

factors me1 , ...,mez , we denote by P+(l(n)) the presentation of the sequence
(me1 , 2

e1) → ...→ (mez , 2
ez).

Definition 18. Let n, n1, n2 ∈ N and E(n) = {2e, . . . , 20} the set of powers of
two such that 2i ≤ log2 n, for any i = 0, . . . , e. The map d : N × N → E(n)
defined as

d(n1, n2) :=

{
max{m ∈ E(n) : m < n1, n2} if n1, n2 6∈ {0, 1}
1 otherwise.

is called the division map of (n1, n2) with respect to n.

By a forest we mean a disjoint union ⊔ of trees.
Given two sequences l(n) = (me1 , 2

e1) → · · · → (mek , 2
ek), l′(n) = (mf1 , 2

f1) →
· · · → (mfh , 2

fh) in L(n), we say that they share a common prefix when for some
i ≤ min(k, h), we have ej = fj , for 1 ≤ j ≤ i. We write l(n) = P → s and
l′(n) = P → s′ to denote the fact that P is the common prefix of l(n) and l′(n).

Given a set of sequences S, we construct a forest Γ (S) in the following way.
Let l and l′ be two chains in S, such that P is their longest common prefix, that
is l = P → s and l′ = P → s′. Then, the tree P → (s ⊔ s′) belongs to Γ (S). For
each sequence s in S there is a unique branch of Γ (S) that is a unique copy of
s, and every branch of Γ (S) is a copy of a unique chain in S.

The pseudocode in Algorithm 1 introduces a couple of functions that, for
any given n ∈ N+, produce the set Γ (L(n)), that is the set of trees whose
branches are binary partitions of n expressed as sequences of Definition 17.
Notice that, to better follow the construction of sequences of Γ (L(n)), in the
pseudocode of Algorithm 1 we repeatedly use expressions like 2e. Obviously, a
real-world implementation of the algorithm does not need such a level of detail,
and exponents e can be used instead.

Theorem 19. Γ (L(n)) = GenForest(n).

Proof. ⊇. This inclusion follows by direct inspection.
⊆. We prove this inclusion by an induction on n.
(B). n = 1. If n = 1 then Γ (l(n)) = {(1, 20)}. As E(1) = {20} by Line 6 the

algorithm calculates GenSeq(1, 20) which by Line 13 has as output exactly the
sequence {(1, 20)}.

(IND). Assume the statement holds for any {1, . . . , n} and consider a se-
quence l(n + 1) = (m1, 2

e1) → ... → (mp, 2
ep) ∈ Γ (l(n + 1)). Clearly 2e1 ∈
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Algorithm 1

1: function GenForest(n)
2: e = ⌊log

2
n⌋

3: E = {2e, 2e−1, . . . , 20}
4: F empty list of trees
5: for each 2e in E do

6: Te = GenSeq(n, 2e) ⊲ Te is a list of trees.
7: add Te to F
8: end for

9: return F
10: end function

11: function GenSeq(n,2e)
12: if e == 0 then

13: return a tree with root (n, 20)
14: end if

15: q = n/2e

16: if q > 1 then

17: for each i ∈ {1, . . . , q} do

18: create a tree Pi with root (i, 2e)
19: m = n− i · 2e

20: if m > 0 then

21: if m = 2x and x < e then

22: di = m
23: else

24: di = d(m, 2e) ⊲ d refers to the division map of Definition 18
25: end if

26: for each 2j in {20, . . . , di} do

27: T = GenSeq(n− i · 2e, 2j) ⊲ T is a list of trees.
28: for every t ∈ T , add t as a child of Pi

29: end for

30: end if

31: end for

32: end if

33: if q == 1 then

34: create a tree Pi with root (1, 2e)
35: r = n mod 2e

36: if r > 0 then

37: T = GenForest(r) ⊲ T is a list of trees.
38: for every t ∈ T , add t as a child of Pi

39: end if

40: end if

41: return Pi

42: end function
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E(n+ 1), then in GenSeq(n+ 1, 2e1) at Lines 15 we obtain (n+ 1)/2e1 = q. We
have two cases (a) m1 = 1 or (b) m1 
 1. In the first case (a), Lines 17-18 entails
that (1, 2e1) is generated as root of the sequence in case q > 1. Similarly, when
q = 1, Lines 34-35 generate (1, 2e1) as a root of the sequence. For the second
case (b), we have m1 ∈ {1, ..., q} and by Line 18 the algorithm gives (m1, 2

e1) as
a root of the sequence.

Now, clearly l(n + 1) r (m1, 2
e1) ∈ Γ (l((n + 1) −m1 · 2e1)), i.e. l(n + 1) r

(m1, 2
e1) is a sequence for (n+ 1)−m1 · 2

e1 . By induction hypothesis l(n+ 1)r
(m1, 2

e1) ∈GenForest((n+1)−m1·2
e1). To complete the proof we have to show

that the second pair (m2, 2
e2) in l(n+1) is generated as child of the root (m1, 2

e1)
is some branch. In order to simplify the notation we fix k = (n+ 1) −m1 · 2e1 .

We distinguish two cases:
(1). m2 = 1. Then either (a) 2e2 = k or (b) 2e2 ∈ {20, ..., d(21, k)}. In the

first case (a) we have that k is a power of 2 strictly smaller than 21, and by
Line 21,25,26,27, follows that the computation of GenSeq(k, 20) returns (1, k)
as child of (m1, 2

e1) (by Lines 12-13). In the second case (b), by Lines 26,27 the
algoritm computes GenSeq(2e2 , k). So, it is immediate to verify that for any
k/2e2 computed at Line 15, by Lines 17,18 and 33,34 we obtain (1, 2e2) as child
of (m1, 2

e1).
(2). m2 > 1. This implies 2e2 < 2e2 and therefore 2e2 ∈ {20, ..., d(k, 2e1)}. By

Line 26 we have the computation of GenSeq(k, 2e2). Clearly m2 ≤ k/2e2 and
this, together with the assumption m2 > 1 implies k/2e2 > 1. So, by Lines 17,18
(m2, 2

e2) is a child of (m1, 2
e1).

So, as (m2, 2
e2) is the root of the sequence l(n+1)r(m1, 2

e1) and by induction
hypothesis l(n + 1) r (m1, 2

e1) is generated by the algorithm, the fact that
(m2, 2

e2) is generated as child of (m1, 2
e1) entails that l(n + 1) is generated by

the algorithm, as desired. ⊓⊔

Example 20. For n = 10 the output of GenForest(10) is depicted in Figure 2.

(8, 20) (6, 20) (4, 20) (2, 20)

(10, 20) (1, 21)

OO

(2, 21)

OO

(3, 21)

OO

(4, 21)

OO

(5, 21)

(4, 20) (2, 20)

(6, 20) (1, 21)

OO

(2, 21)

OO

(3, 21) (2, 20) (1, 21) (2, 20) (1, 21)

(1, 22)

OOee❑❑❑❑
99ssss

44✐✐✐✐✐✐✐✐✐✐
(2, 22)

OO 99ssss
(1, 23)

OO 99ssss

Fig. 2. The forest of sequences generated by GenForest(10), see Example 20.
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Remark 21. It is worth noticing that, given a sequence s = (me1 , 2
e1) → · · · →

(mep , 2
ep) such that ei 6= 0 for any e1 ≤ ei < ep, its presentation P (s) =

(2e11 → · · · → 2e1me1
) → · · · → (2

ep
1 → · · · → 2

ep
mep

) always describe a shape

XB of an L-IBSL B. More precisely, XB = 〈Ai, I〉 where I = {1e1 , . . . ,me1} ∪
{1e2 , . . . ,me2} ∪ · · · ∪ {1ep , . . . ,mep} and for each kei ∈ I, Akei

is a Boolean
Algebra of order 2ei . Dually, given an L-IBSL B ∼= Pl(X), its shape XB can
always be described by the presentation of an appropriate sequence.

Notation. In what follows we adopt the following notation. Given l(n) ∈ L(n),
we denote by π(l(n)) = {s1, . . . , sc(l(n))} the set of sequences obtained by a
permutation with repetition over P+(l(n)).

Example 22. Let l′(10) = (1, 22) → (2, 21) → (2, 20) be a sequence in L(10)
(compare with the branches in the biggest tree in Figure 2). The only permuta-
tion in P+(l′(10)) is (2, 21) → (1, 22) → (2, 20).

Theorem 23. Let n ∈ N+, l(n) = (me1 , 2
e1) → ... → (meq , 2

eq ) ∈ L(n) with
k = me1 + ...+meq and let also me1 , ...,mez be the members of F+(l(n)). Then,
there are

c(l(n)) =
(me1 + ...+mez)!

me1 ! · ... ·mez !

shapes 〈I1,A
1
i 〉, . . . , 〈Ic(l(n)),A

c(l(n))
i 〉 of finite L-IBSL of order n such that, for

each 1 ≤ j ≤ c(l(n)), | Ij |= k and Aj
i is a family of Boolean Algebras whose

cardinalities correspond to the members of P (l(n)).

Proof. Observe that the above formula is an instance of (2), counting the per-
mutations with repetitions of a set of cardinality me1 + ... + mez knowing that
each 1 ≤ i ≤ z object is repeated mei times. By Remark 21, each s ∈ π(l(n))
describes a shape of an L-IBSL of cardinality n.

Now consider s, s′ ∈ π(l(n)), with s 6= s′ and let ≤s,≤s′ be the order of
their presentations. The fact that s 6= s′ implies that for at least two elements

2eix , 2
e′i
x′ ∈ P+(s), P+(s′) (with ei 6= e′i) it holds 2eix ≤s 2

e′i
x′ ⇐⇒ 2

e′i
x′ ≤s′ 2eix .

This, by applying Remark 21, proves that the shapes described by P (s), P (s′)
are different. Finally, consider XB = 〈Ai, I〉 a shape of an L-IBSL B ∼= Pl(X)
with cardinality n such that | I |= k and such that Ai is a family of Boolean
algebras whose cardinalities are exactly the members of P (l(n)). By Remark
21, XB can be described by the presentation P (r) of an appropriate sequence
r. Moreover, the fact that the cardinalities of the algebras in the family Ai are
all and only the members of P (l(n)), implies that r can be obtained from l(n)

by permuting at least one element 2eix ∈ P+(l(n)) with another 2
e′i
x′ ∈ P+(l(n))

such that ei 6= e′i. By construction, this implies r ∈ π(l(n)), as desired. ⊓⊔

Corollary 24. Let l1(n), ..., lp(n) be the elements of L(n). Then the number of
shapes of L-IBSL of order n is equal to

∑p
i=1 c(li(n)).
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Algorithm 2

1: function L-IBSL(n)
2: F =GenForest(n)
3: for each tree T in F do

4: for each branch B in T do ⊲ Notice that B is a list of couples (i, 2e)
5: B′ = B without all the couples (i, 20)
6: for each permutation P of B′ do

7: for each (i, 2ei) → (j, 2ej ) in P do

8: t = t×N(2ei , 2ej )
9: end for

10: end for

11: end for

12: end for

13: return t
14: end function

Theorem 25. The number of all the non-isomorphic L-IBSL of cardinality n
is given by L-IBSL(n).

Proof. Let B be one of the branches of a tree in F , as computed in Line 2.
By Theorem 19, B is exactly a sequence l(n) ∈ L(n). Each one of the c(l(n))
permutations (see Theorem 23) of l(n) are computed in Line 6. Consider s ∈
π(l(n)). In the light of Lemma 13, for every pair 2ei , 2ej such that 2ei → 2ej ∈ s
the number

∏
i,j N(2ei , 2ej ) gives us all the non-isomorphic L-IBSL of the shape

described by s, as computed in Line 8. ⊓⊔

5 Conclusions

The following results have been obtained on a GNU/Linux Debian 4.9.82-1 sys-
tem with an Intel Core i7-5500U CPU and 8GB of RAM 7.

To study the effectiveness of our algorithm, we have used Mace4 [25] to
compute the number of finite linearly ordered IBSLs, relying on the first-order
theory provided in Section 3. We point out that using this FO theory, in the
LIBSL given by the P lonka sum of n trivial Boolean algebras we have 0 = 1.
Mace4 assumes 0 6= 1, and hence such type of LIBSLs are not generated by it. To
obtain P lonka sums of trivial Boolean algebras, we have to replace 1 for another
constants in the FO theory.

Mace4 produces in reasonable time the algebraic structures of cardinality
up to 11. For cardinality 12, Mace4 exits reaching its internal time limit. After
running the isofilter program associated to Mace4, we obtain a file containing
the non-isomorphic LIBLs of cardinality 2 ≤ n ≤ 11 generated by Mace4.

The procedure introduced in the previous section has been implemented in
Python and has been used to compute the number of all the non-isomorphic

7 The Python implementation, the Mace4 input and output files can be downloaded
from: https://homes.di.unimi.it/~valota/code/libsl.zip

https://homes.di.unimi.it/~valota/code/libsl.zip
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LIBSLs of cardinality 1 ≤ n ≤ 23, the results are reported in Table 2. For
cardinality n = 24, the script uses too much RAM and was automatically killed
by the system. To measure the running times of both experiments we have used
the Debian GNU/Linux command-line tool time, the results are summarized in
the following table.

Running Times Algorithm 2 Mace4 interpformat isofilter

real 0m1.331s 1m1.115s 0m40.891s 0m43.611s

user 0m1.176s 1m0.008s 0m40.484s 0m43.524s

sys 0m0.156s 0m0.908s 0m0.232s 0m0.068s

Table 1. The running times of our experiments as calculated by the tool time. The
second column reports the total time used by the Python implementation of our al-
gorithm to count all the non-isomorphic LIBSLs of cardinality 1 ≤ n ≤ 23. The third
column reports the time used by Mace4 to generate the first-order models of cardinality
2 ≤ n ≤ 11. The fourth column reports the time used by interpformat to transform
the Mace4 models in a format useful for isofilter. The fifth column reports the time
used by isofilter to produce a file with all the non-isomorphic LIBSLs of cardinality
2 ≤ n ≤ 11.

Comparing these running times, it is clear that also a non-optimized imple-
mentation of our algorithm is more efficient than the brute-force approach of
Mace4, for counting purposes. We should point out, however, that Mace4 gen-
erates full models with tables for each operation, whereas our algorithm only
produces shapes of LIBSLs and then it performs counting computations. As re-
ported above, our Python script is memory consuming. Hence, it would be inter-
esting to improve our implementation with a better memory management, and
with additional options to generate also the algebraic structure of the counted
LIBSLs. Moreover, computational complexity study and asymptotic analysis of
our algorithm seems to be within reach, allowing us to establish upper and lower
bounds on the number of LIBSLs of cardinality n. These research directions are
outside the scope of this paper, and are left as future work.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

L-IBSL(n) 1 2 2 4 4 7 7 14 14 26 26 52 52 99 99 199 199 386 386 772 772 1508 1508

Table 2. The numbers of L-IBSL with n elements for 1 ≤ n ≤ 23.

The set of cardinalities of the finite members of a variety of algebras V , goes
by the name of fine spectrum of V and it has been introduced by Taylor in
[34]. According to Quackenbush, when dealing with ordered structures, “the fine
spectrum problem is usually hopeless” [30]. In this note we have introduced a
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procedure to count a specific subclass, namely linearly ordered IBSL: this rep-
resents a first step to solve the fine spectrum problem for the variety IBSL.
As our approach relies on the algebraic representation theorem, it can possibly
be extended to different subclasses of IBSL. An option is considering, for in-
stance, the quasi-variety of IBSL whose maps, in the P lonka representation, are
injective (this class appears to be useful in the study of probability measures
[7]). Since the index set of the P lonka sum representation of a finite IBSL is a
finite semilattice, and finite semilattices coincides with finite lattices, our next
step is to improve our approach with the algorithm to generates finite lattices
established in [19]. Finally, we notice that our approach is heavily grounded on
the duality of Theorem 5. Hence, it appears that spectra problems are easier to
handle when restated in dual terms. Indeed, in literature one can find several
duality-based solutions to the free spectrum problem (counting the number of
k-generated free algebras) for varieties related to many-valued logics8 [2,12], and
very recently this dual approach has been used to compute the fine spectrum of
the variety of prelinear Heyting algebras [35].

Acknowledgments: the authors wish to thank the anonymous referees for their
helpful comments.
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