
ar
X

iv
:1

80
7.

02
73

5v
2

 [
cs

.L
O

]
 2

2
O

ct
 2

02
1

Coalgebraic Tools for
Randomness-Conserving Protocols

Dexter Kozen, Matvey Soloviev

Cornell University

Abstract

We propose a coalgebraic model for constructing and reasoning about state-
based protocols that implement efficient reductions among random processes.
We provide basic tools that allow efficient protocols to be constructed in a
compositional way and analyzed in terms of the tradeoff between state and
loss of entropy. We show how to use these tools to construct various entropy-
conserving reductions between processes.

Keywords: Randomness, entropy, protocol, reduction, transducer, coalgebra

1. Introduction

In low-level performance-critical computations—for instance, data-forwarding
devices in packet-switched networks—it is often desirable to minimize local
state in order to achieve high throughput. But if the situation requires access
to a source of randomness, say to implement randomized routing or load-
balancing protocols, it may be necessary to convert the output of the source
to a form usable by the protocol. As randomness is a scarce resource to be con-
served like any other, these conversions should be performed as efficiently as
possible and with a minimum of machinery.

In this paper we propose a coalgebraic model for constructing and reason-
ing about state-based protocols that implement efficient reductions among ran-
dom processes. By “efficient” we mean with respect to loss of entropy. Entropy
is a measure of the amount of randomness available in a random source. For
example, a fair coin generates entropy at the rate of one random bit per flip; a
fair six-sided die generates entropy at the rate of log 6 ≈ 2.585 random bits per
roll. We view randomness as a limited computational resource to be conserved,
like time or space.

Unfortunately, converting from one random source to another generally in-
volves a loss of entropy, as measured by the ratio of the rate of entropy pro-

Email addresses: kozen@cs.cornell.edu (Dexter Kozen), msoloviev@cs.cornell.edu
(Matvey Soloviev)

Preprint submitted to Elsevier October 26, 2021

http://arxiv.org/abs/1807.02735v2

duced to the rate of entropy consumed. This quantity is called the efficiency
of the conversion protocol. For example, if we wish to simulate a coin flip by
rolling a die and declaring heads if the number on the die is even and tails if it
is odd, then the ratio of entropy production to consumption is 1/2.585 ≈ .387,
so we lose about .613 bits of entropy per trial. The efficiency cannot exceed
the information-theoretic bound of unity, but we would like it to be as close
to unity as can be achieved with simple state-based devices. For example, we
could instead roll the die and if the result is 1, 2, 3, or 4, output two bits 00,
01, 10, or 11, respectively—the first bit can be used now and the second saved
for later—and if the result is 5 or 6, output a single bit 0 or 1, respectively. The
efficiency is much better, about .645.

In this paper we introduce a coalgebraic model for the analysis of reduc-
tions between discrete processes. A key feature of the model is that it facilitates
compositional reasoning. In §3 we prove several results that show how the effi-
ciency and state complexity of a composite protocol depend on the same prop-
erties of its constituent parts. This allows efficient protocols to be constructed
and analyzed in a compositional way. We are able to cover a full range of in-
put and output processes while preserving asymptotic guarantees about the
relationship between memory use and conservation of entropy.

In §4 we use the model to construct the following reductions between pro-
cesses, where k is a tunable parameter roughly proportional to the logarithm
of the size of the state space:

• d-uniform to c-uniform with efficiency 1 − Θ(k−1);

• d-uniform to arbitrary rational with efficiency 1 − Θ(k−1);

• d-uniform to arbitrary with efficiency 1 − Θ(k−1);

• arbitrary to c-uniform with efficiency 1 − Θ(log k/k);

• (1/r, (r − 1)/r) to c-uniform with efficiency 1 − Θ(k−1).

Thus choosing a larger value of k (that is, allowing more state) results in greater
efficiency, converging to the optimal of 1 in the limit. Here “d-uniform” refers
to an independent and identically distributed (i.i.d.) process that produces a
sequence of letters from an alphabet of size d, each chosen independently with
uniform probability 1/d; “arbitrary rational” refers to an i.i.d. process with
arbitrary rational probabilities; and “arbitrary” refers to an i.i.d. process with
arbitrary real probabilities. In the last item, the input distribution is a coin flip
with bias 1/r. The notation Θ(·) is the usual notation for upper and lower
asymptotic bounds. These results quantify the dependence of efficiency on
state complexity and give explicit bounds on the asymptotic rates of conver-
gence to the optimal.

1.1. Related Work

Since von Neumann’s classic paper showing how to simulate a fair coin
with a coin of unknown bias [1], many authors have studied variants of this

2

problem. Our work is heavily inspired by the work of Elias [2], who studies
entropy-optimal generation of uniform distributions from known sources. The
definition of conservation of entropy is given there.

Mossel, Peres, and Hillar [3] show that there is a finite-state protocol to
simulate a q-biased coin with a p-biased coin when p is unknown if and only if
q is a rational function of p.

Peres [4] shows how to iterate von Neumann’s procedure for producing a
fair coin from a biased coin to approximate the entropy bound. Blum [5] shows
how to extract a fair coin from a Markov chain.

Another line of work by Pae and Loui [6–8] focuses on emitting samples
from a variety of rational distributions given input from an unknown distri-
bution, as in von Neumann’s original problem. In [6], the authors introduce
a family of von-Neumann-like protocols that approach asymptotic optimality
as they consume more input symbols before producing output, and moreover
can be shown to be themselves optimal among all such protocols.

In [9], Han and Hoshi present a family of protocols for converting between
arbitrary known input and output distributions, based on an interval-refinement
approach. These protocols exhibit favorable performance characteristics and
are comparable to the ones we present according to multiple metrics, but re-
quire an infinite state space to implement.

Finally, there is a large body of related work on extracting randomness from
weak random sources (e.g. [10–14]). These models typically work with imper-
fect knowledge of the input source and provide only approximate guarantees
on the quality of the output. Here we assume that the statistical properties of
the input and output are known completely, and simulations must be exact.

2. Definitions

A (discrete) random process is a finite or infinite sequence of discrete random
variables. We will view the process as producing a stream of letters from some
finite alphabet Σ. We will focus mostly on independent and identically distributed
(i.i.d.) processes, in which successive letters are generated independently ac-
cording to a common distribution on Σ.

Informally, a reduction from a random process X with alphabet Σ to another
random process Y with alphabet Γ is a deterministic protocol that consumes
a stream of letters from Σ and produces a stream of letters from Γ. To be a
valid reduction, if the letters of the input stream are distributed as X, then the
letters of the output stream must be distributed as Y. In particular, for i.i.d.
processes X and Y in which the letters are generated independently according
to distributions µ on Σ and ν on Γ, respectively, we say that the protocol is a
reduction from µ to ν. Most (but not all) of the protocols considered in this
paper will be finite-state.

To say that the protocol is deterministic means that the only source of ran-
domness is the input process. It makes sense to talk about the expected number
of input letters read before halting or the probability that the first letter emitted

3

is a, but any such measurements are taken with respect to the distribution on
the space of inputs.

There are several ways to formalize the notion of a reduction. One ap-
proach, following [4], is to model a reduction as a map f : Σ∗ → Γ∗ that is
monotone with respect to the prefix relation on strings; that is, if x, y ∈ Σ∗

and x is a prefix of y, then f (x) is a prefix of f (y). Monotonicity implies that
f can be extended uniquely by continuity to domain Σ∗ ∪ Σω and range
Γ∗ ∪ Γω . The map f would then constitute a reduction from the random
process X = X0X1X2 . . . to f (X0X1X2 . . .) = Y0Y1Y2 . . ., where the random
variable Xi gives the ith letter of the input stream and Yi the ith letter of the
output stream. To be a reduction from µ to ν, it must hold that if the Xi are
independent and identically distributed as µ, then the Yi are independent and
identically distributed as ν.

In this paper we propose an alternative state-based approach in which pro-
tocols are modeled as coalgebras δ : S × Σ → S × Γ∗, where S is a (possibly
infinite) set of states.1 We can view a protocol as a deterministic stream au-
tomaton with output. In each step, depending on its current state, the protocol
samples the input process, emits zero or more output letters, and changes state,
as determined by its transition function δ. The state-based approach has the ad-
vantage that it is familiar to computer scientists, is easily programmable, and
supports common constructions such as composition.

2.1. Protocols and Reductions

Let Σ, Γ be finite alphabets. Let Σ∗ denote the set of finite words and Σω the
set of ω-words (streams) over Σ. We use x, y, . . . for elements of Σ∗ and α, β, . . .
for elements of Σω . The symbols � and ≺ denote the prefix and proper prefix
relations, respectively.

If µ is a probability measure on Σ, we endow Σω with the product measure
in which each symbol is distributed as µ. The notation Pr(A) for the proba-
bility of an event A refers to this measure. The measurable sets of Σω are the
Borel sets of the Cantor space topology whose basic open sets are the intervals
{α ∈ Σω | x ≺ α} for x ∈ Σ∗, and µ({α ∈ Σω | x ≺ α}) = µ(x), where
µ(a1a2 · · · an) = µ(a1)µ(a2) · · · µ(an); see [15].

A protocol is a coalgebra (S, δ) where δ : S × Σ → S × Γ∗. Intuitively,
δ(s, a) = (t, x) means that in state s, it consumes the letter a from its input
source, emits a finite, possibly empty string x, and transitions to state t.

We can immediately extend δ to domain S × Σ∗ by coinduction:

δ(s, ε) = (s, ε)

δ(s, ax) = let (t, y) = δ(s, a) in let (u, z) = δ(t, x) in (u, yz).

1This is a coalgebra with respect to the endofunctor (−× Γ∗)Σ on Set. Normally, as the structure
map for such a coalgebra, δ would be typed as δ : S → (S × Γ∗)Σ, but we have recurried it here to
align more with the intuition of δ as the transition map of an automaton.

4

Since the two functions agree on S × Σ, we use the same name. It follows that

δ(s, xy) = let (t, z) = δ(s, x) in let (u, w) = δ(t, y) in (u, zw).

By a slight abuse, we define the length of the output as the length of its second
component as a string in Γ∗ and write |δ(s, x) | for |z |, where δ(s, x) = (t, z).

A protocol δ also induces a partial map δω : S × Σω ⇀ Γω by coinduction:2

δω(s, aα) = let (t, z) = δ(s, a) in z · δω(t, α).

It follows that

δω(s, xα) = let (t, z) = δ(s, x) in z · δω(t, α).

Given α ∈ Σω , this defines a unique infinite string in δω(s, α) ∈ Γω except in the
degenerate case in which only finitely many output letters are ever produced.

A protocol is said to be productive (with respect to a given probability mea-
sure on input streams) if, starting in any state, an output symbol is produced
within finite expected time. It follows from this assumption that infinitely
many output letters are produced with probability 1. The supremum over all
states s of the expected time before an output symbol is produced starting from
s is called the latency of the protocol. We will restrict attention to protocols with
finite latency.

Now let ν be a probability measure on Γ. Endow Γω with the product mea-
sure in which each symbol is distributed as ν, and define

ν(a1a2 · · · an) = ν(a1)ν(a2) · · · ν(an), ai ∈ Γ.

We say that a protocol (S, δ, s) with start state s ∈ S is a reduction from µ to ν if
for all y ∈ Γ∗,

Pr(y � δω(s, α)) = ν(y), (2.1)

where the probability Pr is taken with respect to the product measure µ on
Σω. This implies that the symbols of δω(s, α) are independent and identically
distributed as ν.

2.2. Restart Protocols

A prefix code is a subset A ⊆ Σ∗ such that every element of Σω has at
most one prefix in A. Thus the elements of a prefix code are pairwise �-
incomparable. A prefix code is exhaustive (with respect to a given probabil-
ity measure on input streams) if Pr(α ∈ Σω has a prefix in A) = 1. By König’s
lemma, if every α ∈ Σω has a prefix in A, then A is finite and exhaustive, but
exhaustive codes need not be finite; for example, under the uniform measure
on binary streams, the prefix code {0n1 | n ≥ 0} is infinite and exhaustive.

2The definition is coinductive in the sense that it involves the greatest fixpoint of a monotone
map. We must take the greatest fixpoint to get the infinite behaviors as well as the finite behaviors.

5

We often think of prefix codes as representing their infinite extensions. By
a slight abuse of notation, if µ is a probability measure on Σω and A ⊆ Σ∗ is a
prefix code, we define

µ(A) = µ({α ∈ Σω | ∃x ∈ A x ≺ α}). (2.2)

A restart protocol is a protocol (S, δ, s) of a special form determined by a
function f : A → Γ∗, where A is an exhaustive prefix code, A 6= {ε}, and s is a
designated start state. Intuitively, starting in s, we read symbols of Σ from the
input stream until encountering a string x ∈ A, output f (x), then return to s
and repeat. Note that we are not assuming A to be finite.

Formally, we can take the state space to be

S = {u ∈ Σ∗ | x 6� u for any x ∈ A}

and define δ : S × Σ → S × Γ∗ by

δ(u, a) =

{

(ua, ε), ua 6∈ A,

(ε, z), ua ∈ A and f (ua) = z

with start state ε. Then for all x ∈ A, δ(ε, x) = (ε, f (x)).
As with the more general protocols, we can extend to a partial function on

streams, but here the definition takes a simpler form:

δω(ε, xα) = f (x) · δω(ε, α), x ∈ A, α ∈ Σω.

A restart protocol is positive recurrent (with respect to a given probability
measure on input streams) if, starting in the start state s, the expected time
before the next visit to s is finite. All finite-state restart protocols are positive
recurrent, but infinite-state ones need not be.

If a restart protocol is positive recurrent, then the probability of eventually
restarting is 1, but the converse does not always hold. For example, consider a
restart protocol that reads a sequence of coin flips until seeing the first heads.
If the number of flips it read up to that point is n, let it read 2n more flips and
output the sequence of all flips it read, then restart. The probability of restarting
is 1, but the expected time before restarting is infinite.

2.3. Convergence

We will have the occasion to discuss the convergence of random variables.
There are several notions of convergence in the literature, but for our purposes
the most useful is convergence in probability. Let X and Xn, n ≥ 0 be bounded
nonnegative random variables. We say that the sequence Xn converges to X in

probability and write Xn
Pr
−→ X if for all fixed δ > 0,

Pr(|Xn − X | > δ) = o(1).

Let E(X) denote the expected value of X and V(X) its variance.

6

Lemma 2.1.

(i) If Xn
Pr
−→ X and Xn

Pr
−→ Y, then X = Y with probability 1.

(ii) If Xn
Pr
−→ X and Yn

Pr
−→ Y, then Xn +Yn

Pr
−→ X + Y and XnYn

Pr
−→ XY.

(iii) If Xn
Pr
−→ X and X is bounded away from 0, then 1/Xn

Pr
−→ 1/X.

(iv) If V(Xn) = o(1) and E(Xn) = e for all n, then Xn
Pr
−→ e.

Proof. For (iv), by the Chebyshev bound Pr(|X − E(X) | > k
√

V(X)) < 1/k2,
for all fixed δ > 0,

Pr(|Xn − e | > δ) < δ−2
V(Xn),

and the right-hand side is o(1) by assumption.

See [16–22] for a more thorough introduction.

2.4. Efficiency

The efficiency of a protocol is the long-term ratio of entropy production to
entropy consumption. Formally, for a fixed protocol δ : S × Σ → S × Γ∗, s ∈ S,
and α ∈ Σω, define the random variables

En(α) =
|δ(s, αn) |

n
·

H(ν)

H(µ)
, (2.3)

where H is the Shannon entropy

H(p1, . . . , pn) = −
n

∑
i=1

pi log pi

(logarithms are base 2 if not otherwise annotated), µ and ν are the input and
output distributions, respectively, and αn is the prefix of α of length n. Intu-
itively, the Shannon entropy of a distribution measures the amount of random-
ness in it, where the basic unit of measurement is one fair coin flip. For exam-
ple, as noted in the introduction, one roll of a fair six-sided die is worth about
2.585 coin flips. The random variable En measures the ratio of entropy produc-
tion to consumption after n steps of δ starting in state s. Here |δ(s, αn) | · H(ν)
(respectively, n · H(µ)) is the contribution along α to the production (respec-

tively, consumption) of entropy in the first n steps. We write Eδ,s
n when we

need to distinguish the En associated with different protocols and start states.
In most cases of interest, En converges in probability to a unique constant

value independent of start state and history. When this occurs, we call this con-
stant value the efficiency of the protocol δ and denote it by Eff δ. Notationally,

En
Pr
−→ Eff δ.

7

One must be careful when analyzing infinite-state protocols: The efficiency is
well-defined for finite-state protocols, but may not exist in general. For positive
recurrent restart protocols, it is enough to measure the ratio for one iteration of
the protocol.

In §3.3 we will give sufficient conditions for the existence of Eff δ that are
satisfied by all protocols considered in §4.

2.5. Capacity

After reading some fixed number n of random input symbols, the automa-
ton implementing the protocol δ will have emitted a string of outputs yn and
will also be in some random state sn, where (sn, yn) = δ(s, a1a2 · · · an). The
state sn will be distributed according to some distribution σn, which is induced
by the distribution µ on inputs, therefore contains information H(σn). We re-
gard this quantity as information that is stored in the current state, later to
be emitted as output or discarded. Any subsequent output entropy produced
by the protocol is bounded by the sum of this stored entropy and additional
entropy from further input.

Restart protocols operate by gradually consuming entropy from the input
and storing it in the state, then emitting some fraction of the stored entropy as
output all at once and returning to the start state. The stored entropy drops to
0 at restart, reflecting the fact that no information is retained; any entropy that
was not emitted as output is lost.

For finite-state protocols, the stored entropy is bounded by the base-2 loga-
rithm of the size of the state space, the entropy of the uniform distribution. We
call this quantity the capacity of the protocol:

Cap δ = log2 |S |. (2.4)

The capacity is a natural measure of the complexity of δ, and we will take it
as our complexity measure for finite-state protocols. In §4, we will construct
families of protocols for various reductions indexed by a tunable parameter k
proportional to the capacity. The efficiency of the protocols is expressed as a
function of k; by choosing larger k, greater efficiency can be achieved at the cost
of a larger state space. The results of §4 quantify this tradeoff.

2.6. Entropy and Conditional Entropy

In this subsection we review a few elementary facts about entropy and con-
ditional entropy that we will need. These are well known; the reader is referred
to [23, 24] for a more thorough treatment.

Let p = (pn : n ∈ N) be any discrete finite or countably infinite subproba-
bility distribution (that is, all pn ≥ 0 and ∑n∈N pn ≤ 1) with finite entropy

H(p) = H(pn : n ∈ N) = − ∑
n∈N

pn log pn < ∞.

8

For E ⊆ N, define pE = ∑n∈E pn. The conditional entropy with respect to the
event E is defined as

H(p | E) = H(
pn

pE
: n ∈ E) = − ∑

n∈E

pn

pE
log

pn

pE
. (2.5)

It follows that

H(pn : n ∈ E) = pEH(p | E)− pE log pE. (2.6)

A partition of N is any finite or countable collection of nonempty pairwise dis-
joint subsets of N whose union is N.

Lemma 2.2 (Conditional entropy rule; see [23, §2.2]). Let p = (pn : n ∈ N) be
a discrete subprobability distribution with finite entropy, and let E be any partition of
N. Then

H(p) = H(pA : A ∈ E) + ∑
A∈E

pAH(p | A).

Proof. From (2.6),

∑
A∈E

pAH(p | A) = ∑
A∈E

H(pn : n ∈ A) + ∑
A∈E

pA log pA

= H(p)− H(pA : A ∈ E).

It is well known that the probability distribution on d letters that maximizes
entropy is the uniform distribution with entropy log d (see [23]). A version of
this is also true for subprobability distributions:

Lemma 2.3. The uniform subprobability distribution (s/d, . . . , s/d) on d letters with
total mass s and entropy s log(d/s) maximizes entropy among all subprobability dis-
tributions on d letters with total mass s.

Proof. For any subprobability distribution (p1, . . . , pd) with s = ∑
d
i=1 pi, it fol-

lows from the definitions that

H(p1, . . . , pd) = sH(
p1

s
, . . . ,

pd

s
)− s log s

≤ sH(
1

d
, . . . ,

1

d
)− s log s = H(

s

d
, . . . ,

s

d
) = s log

d

s
.

3. Basic Results

Let δ : S × Σ → S × Γ∗ be a protocol reducing µ to ν. We can associate with
each y ∈ Γ∗ and state s ∈ S a prefix code in Σ∗, namely

pcδ(s, y) = {≺-minimal strings x ∈ Σ∗ such that y � δ(s, x)}. (3.1)

9

The string y is generated as a prefix of the output if and only if exactly one
x ∈ pcδ(s, y) is consumed as a prefix of the input. These events must occur
with the same probability, so

ν(y) = Pr(y ≺ δω(s, α)) = µ(pcδ(s, y)), (3.2)

where µ(pcδ(s, y)) is defined in (2.2). Note that pcδ(s, y) need not be finite.

Lemma 3.1. If A ⊆ Γ∗ is a prefix code, then so is
⋃

y∈A pcδ(s, y) ⊆ Σ∗, and

ν(A) = µ(
⋃

y∈A

pcδ(s, y)).

If A ⊆ Γ∗ is exhaustive, then so is
⋃

y∈A pcδ(s, y) ⊆ Σ∗.

Proof. We have observed that each pcδ(s, y) is a prefix code. If y1 and y2 are
�-incomparable, and if y1 � δ(s, x1) and y2 � δ(s, x2), then x1 and x2 are
�-incomparable, thus

⋃

y∈A pcδ(s, y) is a prefix code. By (3.2), we have

ν(A) = ∑
y∈A

ν(y) = ∑
y∈A

µ(pcδ(s, y)) = µ(
⋃

y∈A

pcδ(s, y)).

If A ⊆ Γ∗ is exhaustive, then so is
⋃

y∈A pcδ(s, y), since the events both occur
with probability 1 in their respective spaces.

Lemma 3.2.

(i) The partial function δω(s,−) : Σω ⇀ Γω is continuous, thus Borel measurable.

(ii) δω(s, α) is almost surely infinite; that is, µ(dom δω(s,−)) = 1.

(iii) The measure ν on Γω is the push-forward measure ν = µ ◦ δω(s,−)−1.

Proof. (i) Let y ∈ Γ∗. The preimage of {β ∈ Γω | y ≺ β}, a basic open set of Γω,
is open in Σω :

δω(s,−)−1({β | y ≺ β}) = {α | y ≺ δω(s, α)} =
⋃

x∈pcδ(s,y)

{α | x ≺ α}.

(ii) We have assumed finite latency; that is, starting from any state, the ex-
pected time before the next output symbol is generated is finite. Thus the prob-
ability that infinitely many symbols are generated is 1.

(iii) From (i) and (3.2) we have

(µ ◦ δω(s,−)−1)({β | y ≺ β}) = µ(
⋃

x∈pcδ(s,y)

{α | x ≺ α})

= µ(pcδ(s, y)) = ν(y) = ν({β | y ≺ β}).

Since µ ◦ δω(s,−)−1 and ν agree on the basic open sets {β | y ≺ β}, they are
equal.

10

Lemma 3.3. If δ is a reduction from µ to ν, then the random variables En defined in
(2.3) are continuous and uniformly bounded by an absolute constant R > 0 depending
only on µ and ν.

Proof. For x ∈ Σ∗, let y be the string of output symbols produced after con-
suming x. The protocol cannot produce y from x with greater probability than
allowed by ν, thus

(min
a∈Σ

µ(a))| x | ≤ µ(x) ≤ ν(y) ≤ (max
b∈Γ

ν(b))| y |.

Taking logs, |y | ≤ |x | log mina∈Σ µ(a)/ log maxb∈Γ ν(b), thus we can choose

R =
H(ν) log mina∈Σ µ(a)

H(µ) log maxb∈Γ ν(b)
.

To show continuity, for r ∈ R,

E−1
n ({x | x < r}) = {α | |δ(s, αn) | < nrH(µ)/H(ν)}

=
⋃

{{α | x ≺ α} | |x | = n, |δ(s, x) | < nrH(µ)/H(ν)},

an open set.

3.1. Composition

Protocols can be composed sequentially as follows. If

δ1 : S × Σ → S × Γ∗ δ2 : T × Γ → T × ∆∗,

then

(δ1 ; δ2) : S × T × Σ → S × T × ∆∗

(δ1 ; δ2)((s, t), a) = let (u, y) = δ1(s, a) in let (v, z) = δ2(t, y) in ((u, v), z).

Intuitively, we run δ1 for one step and then run δ2 on the output of δ1. The fol-
lowing theorem shows that the partial map on infinite strings induced by the
sequential composition of protocols agrees almost everywhere with the func-
tional composition of the induced maps of the component protocols.

Theorem 3.4. The partial map δω
2 (t, δω

1 (s,−)) of type Σω ⇀ ∆ω is defined on all
but a µ-nullset and agrees with (δ1 ; δ2)

ω((s, t),−) on its domain of definition.

Proof. We restrict inputs to the subset of Σω on which δω
1 (s,−) is defined and

produces a string in Γω on which δω
2 (t,−) is defined. This set is of measure 1:

if δω
1 reduces µ to ν and δω

2 reduces ν to ρ, then by Lemma 3.2(iii),

µ(dom δω
2 (t, δω

1 (s,−))) = µ(δω
1 (s,−)−1(δω

2 (t,−)−1(∆ω)))

= ν(δω
2 (t,−)−1(∆ω)) = ρ(∆ω) = 1.

11

Thus we only need to show that

(δ1 ; δ2)
ω((s, t), α) = δω

2 (t, δω
1 (s, α)) (3.3)

for inputs α in this set.
We show (3.3) by coinduction. A bisimulation on infinite streams is a binary

relation R such that if R(β, γ), then there exists a finite nonnull string z such
that

β = zβ′ γ = zγ′ R(β′, γ′). (3.4)

That is, β and γ agree on a finite nonnull prefix z, and deleting z from the front
of β and γ preserves membership in the relation R. The coinduction principle
on infinite streams says that if there exists a bisimulation R such that R(β, γ),
then β = γ.

We will apply this principle with the binary relation

R(β, γ) ⇔ ∃α ∈ Σω ∃s ∈ S ∃t ∈ T β = (δ1 ; δ2)
ω((s, t), α)∧ γ = δω

2 (t, δω
1 (s, α))

on ∆ω. To show that this is a bisimulation, suppose R(β, γ) with

β = (δ1 ; δ2)
ω((s, t), aα) γ = δω

2 (t, δω
1 (s, aα)),

where a ∈ Σ and α ∈ Σω . Unwinding the definitions,

β = (δ1 ; δ2)
ω((s, t), aα)

= let ((u, v), z) = (δ1 ; δ2)((s, t), a) in z · (δ1 ; δ2)
ω((u, v), α)

= let (u, y) = δ1(s, a) in let (v, z) = δ2(t, y) in z · (δ1 ; δ2)
ω((u, v), α)

γ = δω
2 (t, δω

1 (s, aα))

= let (u, y) = δ1(s, a) in let ζ = δω
1 (u, α) in δω

2 (t, yζ)

= let (u, y) = δ1(s, a) in let ζ = δω
1 (u, α) in let (v, z) = δ2(t, y) in z · δω

2 (v, ζ)

= let (u, y) = δ1(s, a) in let (v, z) = δ2(t, y) in z · δω
2 (v, δω

1 (u, α)),

so if (u, y) = δ1(s, a) and (v, z) = δ2(t, y), then

β = (δ1 ; δ2)
ω((s, t), aα) = z · (δ1 ; δ2)

ω((u, v), α) = zβ′

γ = δω
2 (t, δω

1 (s, aα)) = z · δω
2 (v, δω

1 (u, α)) = zγ′,

where

β′ = (δ1 ; δ2)
ω((s, t), α) γ′ = δω

2 (t, δω
1 (s, α)) R(β′, γ′).

We almost have (3.4), except that z may be the null string, in which case β = β′

and γ = γ′, and we cannot conclude yet that R is a bisimulation. But in this
case we unwind again in the same way, and continue to unwind until we get a
nonnull z, which must happen after finitely many steps by Lemma 3.2(ii). Thus
R is a bisimulation.

By the principle of coinduction, we can conclude (3.3) for all α in the domain
of definition of δω

2 (t, δω
1 (s,−)).

12

Corollary 3.5. If δ1(s,−) is a reduction from µ to ν and δ2(t,−) is a reduction from
ν to ρ, then (δ1 ; δ2)((s, t),−) is a reduction from µ to ρ.

Proof. By the assumptions in the statement of the corollary, ν = µ ◦ δω
1 (s,−)−1

and ρ = ν ◦ δω
2 (t,−)−1. By Theorem 3.4,

ρ = µ ◦ δω
1 (s,−)−1 ◦ δω

2 (t,−)−1 = µ ◦ (δω
2 (t,−) ◦ δω

1 (s,−))−1

= µ ◦ (δω
2 (t, δω

1 (s,−)))−1 = µ ◦ ((δ1 ; δ2)
ω((s, t),−))−1.

Theorem 3.6. If δ1(s,−) is a reduction from µ to ν and δ2(t,−) is a reduction from
ν to ρ, and if Eff δ1 and Eff δ2 exist, then Eff δ1 ; δ2 exists and

Eff δ1 ; δ2 = Eff δ1 · Eff δ2.

Proof. Let α ∈ dom(δ1 ; δ2)
ω((s, t),−), say δω

1 (s, α) = β ∈ Γω with β ∈
dom δω

2 (t,−). Let n ∈ N. The second component of δ1(s, αn) is βm for some m,
and |βm | = m = |δ1(s, αn) |. Then

|(δ1 ; δ2)((s, t), αn) |

n
·

H(ρ)

H(µ)
=

|δ2(t, βm) |

n
·

H(ρ)

H(µ)

=
|δ2(t, βm) |

|βm |
·
|βm |

n
·

H(ρ)

H(ν)
·

H(ν)

H(µ)

= (
|δ1(s, αn) |

n
·

H(ν)

H(µ)
)(
|δ2(t, βm) |

m
·

H(ρ)

H(ν)
)

= Eδ1,s
n (α) · Eδ2,t

m (β).

By Lemma 2.1(ii), this quantity converges in probability to Eff δ1 · Eff δ2, so this
becomes Eff δ1 ; δ2.

The capacity of the composition is additive:

Theorem 3.7. For finite-state protocols, Cap δ1 ; δ2 = Cap δ1 + Cap δ2.

Proof. Immediate from the definition.

3.2. Protocol Families

In §4, we will present families of reductions between concrete pairs of distri-
butions. The families are indexed by a parameter k, which controls the tradeoff
between the capacity of the protocol, proportional to k, and its efficiency, typi-
cally expressed in the form 1 − Θ(f (k)). Higher efficiency comes at the cost of
higher capacity. Asymptotically optimal reductions were known to exist for all
finite distributions ([1–4, 6–8], cf. Theorem 3.12); however, by considering the
rate of convergence as a function of k, we obtain a natural measure of quality
for a family of protocols that allows a finer-grained comparison.

A key consequence of our composition theorems (Theorems 3.6 and 3.7) is
that this notion of quality is preserved under composition. To make this notion
precise, we first formalize protocol families.

13

Definition 3.8. We say that a sequence P = (Pk : k ∈ N) is a capacity-indexed
family of reductions (cfr) from µ to ν if

• each Pk is a reduction from µ to ν;

• each Pk has capacity Θ(k), that is, there exist constants c1, c2 independent
of k such that c1k ≤ Cap Pk ≤ c2k.

The notion of efficiency of a single reduction naturally generalizes to capacity-
indexed families, as we can take the efficiency Eff P of a family P to be the
function from the index k to the efficiency of the kth protocol.

Theorem 3.9. Suppose P = (Pk : k ∈ N) is a cfr from µ to ν with efficiency 1− f (k)
and Q = (Qk : k ∈ N) is a cfr from ν to ρ with efficiency 1 − g(k), where f (k) and
g(k) are non-negative real-valued functions. Then P ; Q = (Pk ; Qk : k ∈ N) is a
cfr, and its efficiency is Eff(P ; Q)(k) = (1− f (k))(1− g(k)) ≥ 1− (f (k) + g(k)).

Proof. By Corollary 3.5, each component of P ; Q is a reduction from µ to
ρ, and by Theorem 3.7, its capacity is again Θ(k). That the efficiency of the
composition exists and satisfies the stated bounds follows immediately from
Theorem 3.6.

In other words, protocol families can be composed, and the resulting proto-
col family is asymptotically no worse than the worst of the two input families.

Example 3.10. In Section 4.2, we construct a cfr from c-uniform to arbitrary
rational distributions with efficiency 1 − Θ(k−1), and in Section 4.4, we con-
struct a cfr from an arbitrary distributions to a c-uniform one with efficiency
1 − Θ(log k/k). These two families can be composed to obtain a cfr from an
arbitrary distribution to an arbitrary rational distribution. By Theorem 3.9, the
resulting cfr has efficiency 1 − Θ(log k/k).

3.3. Serial Protocols

Consider an infinite sequence (S0, δ0, s0), (S1, δ1, s1), . . . of positive recurrent
restart protocols defined in terms of maps fk : Ak → Γ∗, where the Ak are
exhaustive prefix codes, as described in §2.2. These protocols can be combined
into a single serial protocol δ. Intuitively, the serial protocol starts in s0, makes δ0-
steps in S0 accumulating the consumed letters until the consumed string x is in
A0, then produces f0(x) and transitions to s1, where it then repeats these steps
for protocol (S1, δ1, s1), then for (S2, δ2, s2), and so on. Formally, the states of δ
are the disjoint union of the Sk, and δ is defined so that δ(sk, x) = (sk+1, fk(x))
for x ∈ Ak, and within Sk behaves like δk.

Let Ck be a random variable representing the entropy consumption of the
component protocol δk starting from sk during the execution of the serial pro-
tocol; that is, Ck is the number of input symbols consumed by δk scaled by
H(µ). This is a random variable whose values depend on the input sequence
α ∈ Σω . Note that Ck may be partial, but is defined with probability one by the

14

assumption of bounded latency. Similarly, let Pk be the number of output sym-
bols written during the execution of δk scaled by H(ν). Let e(n) be the index of
the component protocol δe(n) in which the n-th step of the combined protocol

occurs. Like Ck, Pk and e(n) are random variables whose values depend on the
input sequence α ∈ Σω. Let ck = E(Ck) and pk = E(Pk).

To derive the efficiency of serial protocols, we need a form of the law of
large numbers (see [16, 17]). Unfortunately, the law of large numbers as usually
formulated does not apply verbatim, as the random variables in question are
bounded but not independent, or (under a different formulation) independent
but not bounded. Our main result, Theorem 3.12 below, can be regarded as a
specialized version of this result adapted to our needs.

Our version requires that the variances of certain random variables vanish
in the limit. We need to impose mild conditions (3.5) on the growth rate of mn,
the maximum consumption in the nth component protocol, and the growth
rate of production relative to consumption. These conditions hold for all serial
protocols considered in this paper. The left-hand condition of (3.5) is satis-
fied by all serial protocols in which either mn is bounded or mn = O(n) and
lim infn cn = ∞.

Lemma 3.11. Let V(X) denote the variance of X. Let mn = maxx∈An |x | · H(µ)
and suppose that mn is finite for all n. If

mn = o(
n−1

∑
i=0

ci)
n

∑
i=0

pi = Ω(
n

∑
i=0

ci), (3.5)

then

V(
∑

n
i=0 Ci

∑
n
i=0 ci

) = o(1) V(
Cn

∑
n−1
i=0 ci

) = o(1) (3.6)

V(
∑

n
i=0 Pi

∑
n
i=0 pi

) = o(1) V(
Pn

∑
n−1
i=0 pi

) = o(1). (3.7)

Proof. The properties (3.6) require only the left-hand condition of (3.5). Let
ε > 0 be arbitrarily small. Choose m such that mi/ ∑j<i cj < ε for all i ≥ m,

then choose n > m such that mi/ ∑
n
j=0 cj < ε for all i < m. As the Ci are

15

independent,

V(
∑

n
i=0 Ci

∑
n
i=0 ci

) =
n

∑
i=0

V(Ci)

(∑n
j=0 cj)2

≤
n

∑
i=0

E(C2
i)

(∑n
j=0 cj)2

=
m−1

∑
i=0

E(
Ci

∑
n
j=0 cj

·
Ci

∑
n
j=0 cj

) +
n

∑
i=m

E(
Ci

∑
n
j=0 cj

·
Ci

∑
n
j=0 cj

)

≤
m−1

∑
i=0

E(
mi

∑
n
j=0 cj

·
Ci

∑
n
j=0 cj

) +
n

∑
i=m

E(
mi

∑
i−1
j=0 cj

·
Ci

∑
n
j=0 cj

)

≤
m−1

∑
i=0

E(
εCi

∑
n
j=0 cj

) +
n

∑
i=m

E(
εCi

∑
n
j=0 cj

) =
n

∑
i=0

εci

∑
n
j=0 cj

= ε

V(
Cn

∑
n−1
i=0 ci

) ≤
E(C2

n)

(∑n−1
j=0 cj)2

≤
m2

n

(∑n−1
j=0 cj)2

≤ ε2.

As ε was arbitrarily small, (3.6) holds.
If in addition the right-hand condition of (3.5) holds, then by Lemma 3.3,

mn = o(∑n−1
i=0 pi) for all n. Then (3.7) follows by the same proof with Pi, pi, and

Rmi substituted for Ci, ci, and mi, respectively.

The following theorem, in conjunction with the constructions of §4, shows
that optimal efficiency is achievable in the limit. The result is mainly of theo-
retical interest, since the protocols involve infinitely many states.

Theorem 3.12. Let δ be a serial protocol with finite-state components δ0, δ1, . . . satis-
fying (3.5). If the limit

ℓ = lim
n

∑
n
i=0 pi

∑
n
i=0 ci

(3.8)

exists, then the efficiency of the serial protocol exists and is equal to ℓ.

Proof. The expected time in each component protocol is finite, thus e(n) is un-
bounded with probability 1. By definition of e(n), we have

e(n)−1

∑
i=0

Ci ≤ n · H(µ) ≤
e(n)

∑
i=0

Ci

e(n)−1

∑
i=0

Pi ≤ |δ(s, αn) | · H(ν) ≤
e(n)

∑
i=0

Pi,

therefore

∑
e(n)−1
i=0 Pi

∑
e(n)
i=0 Ci

≤
|δ(s, αn) |

n
·

H(ν)

H(µ)
= En(α) ≤

∑
e(n)
i=0 Pi

∑
e(n)−1
i=0 Ci

. (3.9)

By Lemma 3.11, the variance conditions (3.6) and (3.7) hold. Then by Lemma
2.1(iv),

∑
n
i=0 Ci

∑
n
i=0 ci

Pr
−→ 1

∑
n
i=0 Pi

∑
n
i=0 pi

Pr
−→ 1

Cn

∑
n−1
i=0 ci

Pr
−→ 0

Pn

∑
n−1
i=0 pi

Pr
−→ 0.

16

Using Lemma 2.1(i)-(iii), we have

∑
n
i=0 Pi

∑
n−1
i=0 Ci

= (
Pn

∑
n−1
i=0 pi

+
∑

n−1
i=0 Pi

∑
n−1
i=0 pi

) ·
∑

n−1
i=0 pi

∑
n−1
i=0 ci

·
∑

n−1
i=0 ci

∑
n−1
i=0 Ci

Pr
−→ ℓ

and similarly ∑
n−1
i=0 Pi/ ∑

n
i=0 Ci

Pr
−→ ℓ. The conclusion En

Pr
−→ ℓ now follows

from (3.9).

4. Reductions

In this section we present a series of reductions between distributions of
certain forms. Each example defines a capacity-indexed family of reductions
(§3.2) given as positive recurrent restart protocols (§2.2) with efficiency tending
to 1 as the parameter k grows. By Theorem 3.12, each family can be made into a
single serial protocol (§3.3) with asymptotically optimal efficiency, and by The-
orem 3.9, any two compatible reduction families with asymptotically optimal
efficiency can be composed to form a family of reductions with asymptotically
optimal efficiency.

4.1. Uniform ⇒ Uniform

Let c, d ≥ 2, the sizes of the output and input alphabets, respectively. In this
section we construct a family of restart protocols with capacity proportional to
k mapping d-uniform streams to c-uniform streams with efficiency 1− Θ(k−1).
The Shannon entropy of the input and output distributions are log d and log c,
respectively.

Let m = ⌊k logc d⌋. Then cm ≤ dk < cm+1. It follows that

1

c
<

cm

dk
≤ 1 1 −

log c

k log d
<

m log c

k log d
≤ 1. (4.1)

Let the c-ary expansion of dk be

dk =
m

∑
i=0

aic
i, (4.2)

where 0 ≤ ai ≤ c − 1, am 6= 0.
Intuitively, the protocol Pk operates as follows. Do k calls on the d-uniform

distribution. For each 0 ≤ i ≤ m, for aic
i of the possible outcomes, emit a c-ary

string of length i, every possible such string occurring exactly ai times. For
a0 outcomes, nothing is emitted, and this is lost entropy, but this occurs with
probability a0d−k. After that, restart the protocol.

Formally, this is a restart protocol with prefix code A consisting of all d-ary
strings of length k. For each of the dk strings x ∈ A, we specify an output string
f (x) to emit. Partition A into ∑

m
i=0 ci disjoint sets Aiy, one for each 0 ≤ i ≤ m

and c-ary string y of length i, such that |Aiy | = ai. The total number of strings
in all partition elements is given by (4.2). Set f (x) = y for all x ∈ Aiy.

17

By elementary combinatorics,

m−1

∑
i=0

(m − i)aic
i ≤

m−1

∑
i=0

(m − i)(c − 1)ci =
c(cm − 1)

c − 1
− m ≤

c(dk − 1)

c − 1
− m.

(4.3)

In each run of Pk, the expected number of c-ary digits produced is

m

∑
i=0

iaic
id−k = d−k(

m

∑
i=0

maic
i −

m

∑
i=0

(m − i)aic
i)

≥ m − d−k(
c(dk − 1)

c − 1
− m) by (4.2) and (4.3)

= m(1 + d−k)−
c

c − 1
(1 − d−k)

≥ m −
c

c − 1
, (4.4)

thus the entropy production is at least m log c − Θ(1). The number of d-ary
digits consumed is k, thus the entropy consumption is k log d, which is also the
capacity. By (4.1) and (4.4), the efficiency is at least

(m − c
c−1) log c

k log d
≥ 1 − Θ(k−1).

The output is uniformly distributed, as there are ∑
m
i=ℓ

aic
i equal-probability

outcomes that produce a string of length ℓ or greater, and each output letter
a appears as the ℓth output letter in equally many strings of the same length,
thus is output with equal probability.

Example 4.1. For d = 3 and c = k = 2, the prefix code A would contain the
nine ternary strings of length two. The binary expansion of 9 is 1001, which
indicates that { f (x) | x ∈ A} should contain the eight binary strings of length
three and the null string. The expected number of binary digits produced is
8/9 · 3 + 1/9 · 0 = 8/3 and the expected number of ternary digits consumed is
2, so the production entropy is 8/3 and the consumption entropy is 2 log 3 for
an efficiency of about .841.

4.2. Uniform ⇒ Rational

Let c, d ≥ 2. In this section, we will present a family of restart protocols
Dk mapping d-uniform streams over Σ to streams over a c-symbol alphabet
Γ = {1, . . . , c} with rational probabilities with a common denominator e, that
is, pi = ai/e for i ∈ Γ. By composing with a protocol of §4.1 if necessary, we can
assume without loss of generality that e = d, thus we assume that pi = ai/d
for i ∈ Γ.

Unlike the protocols in the previous section, here we emit a fixed number
k of symbols in each round while consuming a variable number of input sym-
bols according to a particular prefix code S ⊆ Σ∗. The protocol Dk will have

18

capacity at most k log d and efficiency 1 − Θ(k−1), exhibiting a similar tradeoff
to the family of §4.1.

To define Dk, we will construct a finite exhaustive prefix code S over the
source alphabet. The codewords of this prefix code will be partitioned into
pairwise disjoint nonempty sets Sy ⊆ Σ∗ associated with each k-symbol output

word y ∈ Γk. All input strings in the set Sy will map to the output string y.
Intuitively, the protocol operates as follows. Starting in the start state s, it

reads input symbols until it has read an entire codeword, which must happen
eventually since the code is exhaustive. If that codeword is in Sy, it emits y and
restarts. An example is given at the end of this section.

Let py denote the probability of the word y = e1 · · · ek in the output process,
where ei ∈ Γ, 1 ≤ i ≤ k. Since the symbols ei are chosen independently, py is
the product of the probabilities of the individual symbols. It is therefore of the
form py = ayd−k, where ay = ae1 · · · aek

is an integer.
Let my = ⌊logd ay⌋ and let

ay =
my

∑
j=0

ayjd
j

be the d-ary expansion of ay. We will choose a set of ∑y∈Γk ∑
my

j=0 ayj prefix-

incomparable codewords and assign them to the Sy so that each Sy contains ayj

codewords of length k − j for each 0 ≤ j ≤ my. This is possible by the Kraft
inequality (see [23, Theorem 5.2.1] or [24, Theorem 1.6]), which in this instance
is

∑
y∈Γk

my

∑
j=0

ayjd
−(k−j) ≤ 1. (4.5)

In fact, equality holds:

∑
y∈Γk

my

∑
j=0

ayjd
−(k−j) = ∑

y∈Γk

ayd−k = ∑
y∈Γk

py = 1. (4.6)

Each codeword in Sy is of length at most k, therefore the capacity is at most

log dk = k log d.
Since the d symbols of the input process are distributed uniformly, the prob-

ability that the input stream begins with a given string of length n is d−n. So

Pr(y ≺ δω
k (s, α)) = Pr(∃x ∈ Sy x ≺ α) = ∑

x∈Sy

d−|x| =
my

∑
j=0

ayjd
−(k−j) = py

as required, and Dk is indeed a reduction. Moreover, by (4.6), the probability
that a prefix is in some Sy is 1, so the code is exhaustive.

To analyze the efficiency of the simulation, we will use the following lemma.

19

Lemma 4.2. Let the d-ary expansion of a be ∑
m
i=0 aid

i, where m = ⌊logd a⌋. Then

(

logd a −
2d − 1

d − 1

)

a <

(

m −
d

d − 1

)

a <

m

∑
i=0

iaid
i ≤ ma.

Proof. By elementary combinatorics,

m−1

∑
i=0

(m − i)aid
i ≤

m−1

∑
i=0

(m − i)(d − 1)di =
d(dm − 1)

d − 1
− m <

da

d − 1
.

Then

ma =
m

∑
i=0

maid
i ≥

m

∑
i=0

iaid
i = ma −

m−1

∑
i=0

(m − i)aid
i

>

(

m −
d

d − 1

)

a =

(

⌊logd a⌋ −
d

d − 1

)

a

>

(

logd a − 1 −
d

d − 1

)

a =

(

logd a −
2d − 1

d − 1

)

a.

The expected number of symbols consumed leading to the output y is

∑
x∈Sy

d−| x | · |x | =
my

∑
j=0

ayjd
j−k(k − j) = kpy −

my

∑
j=0

jayjd
j−k = kpy − d−k

my

∑
j=0

jayjd
j

< kpy − d−k

(

logd ay −
2d − 1

d − 1

)

ay by Lemma 4.2

=
2d − 1

d − 1
ayd−k − py logd d−k − ayd−k logd ay

=
2d − 1

d − 1
py − py logd py.

Thus the expected number of input symbols consumed in one iteration is

∑
y∈Γk

∑
x∈Sy

d−| x | · |x | < ∑
y∈Γk

(

2d − 1

d − 1
py − py logd py

)

=
2d − 1

d − 1
+

H(py : y ∈ Γk)

log d

and as the uniform distribution has entropy log d, the expected consumption
of entropy is at most

H(py : y ∈ Γk) + log d ·
2d − 1

d − 1
= kH(p1, . . . , pc) + Θ(1). (4.7)

The number of output symbols is k, so the production of entropy is kH(p1, . . . , pc).
Thus the efficiency is at least

kH(p1, . . . , pc)

kH(p1, . . . , pc) + Θ(1)
=

1

1 + Θ(k−1)
= 1 − Θ(k−1).

20

Example 4.3. Suppose the input distribution is uniform over an alphabet of
size d = 24 and the output alphabet is u, v, w with probabilities 5/24, 7/24,
and 1/2 (= 12/24), respectively. For k = 2, there are nine output strings uu,
uv, uw, vu, vv, vw, wu, wv, ww. The string y should be emitted with probability
ay/242, where the values of ay are 25, 35, 60, 35, 49, 84, 60, 84, 144, respectively.
Writing the ay in base 24 gives

1 1 1 11 2 12 1 11 2 1 3 12 2 12 3 12 6 0

respectively. Summing the base-24 digits in 24’s place and in 1’s place, we
obtain 21 and 72, respectively, which means that we need 21 input strings of
length one and 72 input strings of length two. As guaranteed by the Kraft
inequality (4.5), we can construct an exhaustive prefix code with these param-
eters, say by taking all 72 strings of length two extending some three strings of
length one, along with the remaining 21 strings of length one.

Now we can apportion these to the output strings to achieve the desired
probabilities. For example, uv should be emitted with probability auv/242 =
35/576, and 35 is 1 11 in base 24, which means it should be allocated one input
string of length one and 11 input strings of length two. This causes uv to be
emitted with the desired probability 1 · 24−1 + 11 · 24−2 = 35/576.

The expected number of input letters consumed in one round is 2 · 3/24 +
1 · 21/24 = 9/8 and the entropy of the input distribution is log2 24 ≈ 4.59
for a total entropy consumption of 5.16 bits. The expected number of output
letters produced is 2 and the entropy of the output distribution is − 5

24 log2
5

24 −
7
24 log2

7
24 − 1

2 log2
1
2 ≈ 1.49 for a total entropy production of 2.98 bits. The

efficiency is the ratio 2.98/5.16 ≈ 0.58.

4.3. Uniform ⇒ Arbitrary

Now suppose the target distribution is over an alphabet Γ = {1, . . . , c} with

arbitrary real probabilities p
(0)
1 , . . . , p

(0)
c . It is of course hopeless in general to

construct a finite-state protocol with the correct output distribution, as there are
only countably many finite-state protocols but uncountably many distributions
on c symbols. However, we are able to construct a family of infinite-state restart
protocols Dk that map the uniform distribution over a d-symbol alphabet Σ to

the distribution (p
(0)
i : 1 ≤ i ≤ c) with efficiency 1−Θ(k−1). If the probabilities

p
(0)
i are rational, the resulting protocols Dk will be finite.

Although our formal notion of capacity does not apply to infinite-state pro-
tocols, we can still use k as a tunable parameter to characterize efficiency. The
restart protocols Dk constructed in this section consist of a serial concatenation

of infinitely many component protocols D
(n)
k , each of capacity k. Moreover, Dk

is computable if the p
(0)
i are, or under the assumption of unit-time real arith-

metic; that is, allowing unit-time addition, multiplication, and comparison of
arbitrary real numbers.

We assume that d > c, which implies that maxi p
(0)
i > 1/d. This will ensure

that each component has a nonzero probability of emitting at least one output

21

symbol. If d is too small, we can precompose with a protocol from §4.1 to
produce a uniform distribution over a larger alphabet. By Theorem 3.6, this
will not result in a significant loss of efficiency.

The nth component D
(n)
k of Dk is associated with a real probability distri-

bution (p
(n)
y : y ∈ Γk) on k-symbol output strings. These distributions will be

defined inductively. As there are countably many components, in general there
will be countably many such distributions, although the sequence will cycle if

the original probabilities p
(0)
i are rational. The initial component D

(0)
k is asso-

ciated with the target distribution extended to k-symbol strings (p
(0)
y : y ∈ Γk)

with p
(0)
e1···ek

= p
(0)
e1

· · · p
(0)
ek

.

Intuitively, D
(n)
k works the same way as in §4.2 using a best-fit rational

subprobability distribution (q
(n)
y : y ∈ Γk) with denominator dk such that

q
(n)
y ≤ p

(n)
y . If a nonempty string is emitted, the protocol restarts. Otherwise, it

passes to D
(n+1)
k to handle the residual probabilities. We show that the proba-

bility of output in every component is bounded away from 0, so in expectation
a finite number of components will be visited before restarting.

Formally, we define a
(n)
y = ⌊p

(n)
y dk⌋ and q

(n)
y = a

(n)
y d−k ≤ p

(n)
y . The round-

ing error is p
(n)
y − q

(n)
y < d−k. The q

(n)
y may no longer sum to 1, and the differ-

ence is the residual probability r(n) = 1 − ∑y∈Γk q
(n)
y < (c/d)k.

Let m(n) = r(n)dk. As in §4.2, since

r(n) + ∑
y∈Γk

q
(n)
y = m(n)d−k + ∑

y∈Γk

a
(n)
y d−k = 1,

by the Kraft inequality (4.6), we can construct an exhaustive prefix code based

on the d-ary expansions of m(n) and the a
(n)
y for y ∈ Γk and apportion the code-

words to sets Sy and Sm such that the probability of encountering a codeword

in Sy is q
(n)
y and the probability of encountering a codeword in Sm is r(n). If

the protocol encounters a codeword in Sy, it emits y and restarts at the start

state of D
(0)
k . If the protocol encounters a codeword in Sm, it emits nothing and

transitions to the start state of D
(n+1)
k . The component D

(n+1)
k works the same

way using the residual distribution (p
(n+1)
y : y ∈ Γk), where

p
(n+1)
y =

p
(n)
y − q

(n)
y

r(n)
,

the (normalized) probability lost when rounding down earlier. An example is
given at the end of this section.

To show that the protocol is correct, we need to argue that the string y is

emitted with probability p
(0)
y . It is emitted in D

(n)
k with probability q

(n)
y ∏

n−1
j=0 r(j),

22

and these are disjoint events, so the probability that y is emitted in any compo-

nent is ∑n≥0 q
(n)
y ∏

n−1
j=0 r(j). Using the fact that q

(n)
y = p

(n)
y − r(n)p

(n+1)
y ,

∑
n≥0

q
(n)
y

n−1

∏
j=0

r(j) = ∑
n≥0

(p
(n)
y − r(n)p

(n+1)
y)

n−1

∏
j=0

r(j)

= ∑
n≥0

p
(n)
y

n−1

∏
j=0

r(j) − ∑
n≥0

p
(n+1)
y

n

∏
j=0

r(j) = p
(0)
y .

We now analyze the production and consumption in one iteration of Dk. As

just argued, each iteration produces y ∈ Γk with probability p
(0)
y , therefore the

entropy produced in one iteration is H(p
(0)
y : y ∈ Γk) = kH(p

(0)
1 , . . . , p

(0)
c).

To analyze the consumption, choose k large enough that (c/d)k ≤ e−1 and

(maxi p
(0)
i)k ≤ e−1. These assumptions will be used in the following way. If

q ≤ p ≤ e−1, then −q log q ≤ −p log p, which can be seen by observing that the
derivative of −p log p is positive below e−1. Thus for any pair of subprobability
distributions (qn : n ∈ N) and (pn : n ∈ N) such that qn ≤ pn ≤ e−1 for all
n ∈ N,

H(qn : n ∈ N) ≤ H(pn : n ∈ N). (4.8)

Let s be the start state of Dk. Let V(n) ⊆ Σω be the event that the protocol

visits the nth component D
(n)
k , and let U(n) = V(n) \ V(n+1), the event that

the protocol emits a string during the execution of D
(n)
k . Let Ck be a random

variable representing the total consumption in one iteration of Dk, and let Ckn

be a random variable for the portion of Ck that occurs during the execution of

D
(n)
k ; that is, Ckn(α) is H(µ) times the number of input symbols read during

the execution of D
(n)
k on input α ∈ Σω. Note that Ckn(α) = 0 if α ∈ U(m) and

n > m, since on input α, the single iteration of Dk finishes before stage n; thus

for n > m, the conditional expectation E(Ckn | U(m)) = 0.
The expected consumption during a single iteration of Dk is

E(Ck) = ∑
m≥0

Pr(U(m))E(Ck | U(m)) = ∑
m≥0

Pr(U(m)) ∑
n≥0

E(Ckn | U(m))

= ∑
n≥0

∑
m≥n

Pr(U(m))E(Ckn | U(m))

= ∑
n≥0

Pr(
⋃

m≥n

U(m))E(Ckn |
⋃

m≥n

U(m))

= ∑
n≥0

Pr(V(n))E(Ckn | V(n)).

23

Since r(n) ≤ (c/d)k,

Pr(V(n)) =
n−1

∏
j=0

r(j) ≤ (
c

d
)kn.

The quantity E(Ckn | V(n)) is the expected consumption during the execution

of D
(n)
k , conditioned on the event that D

(n)
k is visited. By (4.7), this is at most

H(q
(n)
y : y ∈ Γk)− r(n) log r(n) + Θ(1) = H(q

(n)
y : y ∈ Γk) + Θ(1),

since r(n) ≤ (c/d)k ≤ e−1, therefore −r(n) log r(n) ≤ −e−1 log e−1 = Θ(1).

Using the naive upper bound H(q
(n)
y : y ∈ Γk) ≤ k log c from the uniform

distribution for n ≥ 1, we have

·E(Ck) = ∑
n≥0

Pr(V(n))E(Ckn | V(n))

≤ ∑
n≥0

(
c

d
)kn(H(q

(n)
y : y ∈ Γk) + Θ(1))

= ∑
n≥1

(
c

d
)knH(q

(n)
y : y ∈ Γk) + H(q

(0)
y : y ∈ Γk) + Θ(1)

≤
(c/d)k

(1 − (c/d)k)
k log c + H(q

(0)
y : y ∈ Γk) + Θ(1)

≤ kH(p
(0)
1 , . . . , p

(0)
c) + Θ(1).

The last inference holds because

H(q
(0)
y : y ∈ Γk) ≤ H(p

(0)
y : y ∈ Γk) = kH(p

(0)
1 , . . . , p

(0)
c)

as justified by (4.8).
The efficiency is the ratio of production to consumption, which is at least

kH(p
(0)
1 , . . . , p

(0)
c)

kH(p
(0)
1 , . . . , p

(0)
c) + Θ(1)

=
1

1 + Θ(k−1)
= 1 − Θ(k−1).

There is still one issue to resolve if we wish to construct a serial protocol
with kth component Dk. As Dk is not finite-state, its consumption is not uni-
formly bounded by any mk, as required by Lemma 3.11. However, one iteration
of Dk visits a series of components, and the consumption in each component
is uniformly bounded. In each component, if output is produced, the protocol
restarts from the first component, otherwise the computation proceeds to the
next component. Each component, when started in its start state, consumes at
most k digits and produces exactly k digits with probability at least 1 − (c/d)k

and produces no digits with probability at most (c/d)k. The next lemma shows
that this is enough to derive the conclusion of Lemma 3.11.

24

Lemma 4.4. Let mk be a uniform bound on the consumption in each component D
(n)
k

of one iteration of Dk. If the mk satisfy (3.5), then the variances (3.6) and (3.7) vanish
in the limit.

Proof. As above, let Ck be a random variable for the consumption in one iter-

ation of Dk, let Ckn be a random variable for the consumption in D
(n)
k , and let

U(n) be the event that D
(n)
k produces a nonnull string. Again using the fact that

Ckn restricted to U(m) is 0 for n > m,

E(C2
k | U(m)) = E((∑

n≥0

Ckn)
2 | U(m))

= E(∑
n≥0

C2
kn | U(m)) + 2E(∑

0≤n<ℓ≤m

CknCkℓ | U(m))

≤ mkE(Ck | U(m)) + 2m2
k

(

m + 1

2

)

.

Then Pr(U(m)) ≤ Pr(V(m)) ≤ (c/d)km and

E(C2
k) = ∑

m≥0

Pr(U(m)) · E(C2
k | U(m))

≤ mk ∑
m≥0

Pr(U(m))E(Ck | U(m)) + 2m2
k ∑

m≥0

Pr(U(m))

(

m + 1

2

)

≤ mkE(Ck) + 2m2
k ∑

m≥0

(
c

d
)km (m + 1)m

2

= mkck + 2m2
k(c/d)k(1 − (c/d)k)−3 = mkck + o(1),

V(
∑

n
k=0 Ck

∑
n
k=0 ck

) =
∑

n
k=0 V(Ck)

(∑n
k=0 ck)2

≤
∑

n
k=0 E(C2

k)

(∑n
k=0 ck)2

≤
mn

∑
n
k=0 ck

·
∑

n
k=0 ck

∑
n
k=0 ck

+ o(1) = o(1).

Example 4.5. Consider the case d = 6, c = 2, and k = 1 in which the output
letters u, v should be emitted with probability p and 1 − p, respectively. The
input distribution is a fair six-sided die. We will try to find a best-fit rational
distribution with denominator 6.

In the first component, we roll the die with result n ∈ {1, . . . , 6} and emit u
if n/6 ≤ p and v if (n− 1)/6 ≥ p. Thus u is emitted with probability ⌊6p⌋/6 ≤
p and v with probability 1 − ⌈6p⌉/6 ≤ 1 − p. If p ∈ {1/6, 2/6, . . . , 6/6}, then
exactly one of those two events occurs. In this case there are no further compo-
nents, as u and v have been emitted with the desired probabilities p and 1 − p,
respectively; the residual probabilities are 0. The protocol restarts in the start
state of the first component.

25

Otherwise, if p 6∈ {1/6, 2/6, . . . , 6/6}, then u and v are emitted with proba-
bility ⌊6p⌋/6 < p and 1 − ⌈6p⌉/6 < 1 − p respectively, and nothing is emitted
with probability 1/6, which happens when n = ⌈6p⌉. In the event nothing is
emitted, we move on to the second component, which is exactly like the first
except with the residual probabilities p′ = 6(p − ⌊6p⌋/6) = 6p − ⌊6p⌋ and
1 − p′ = 6(⌈6p⌉/6 − p) = 6⌈6p⌉ − 6p. The factor 6 appears because we are
conditioning on the event that no symbol was emitted in the first component,
which occurs with probability 1/6. We continue in this fashion as long as there
is nonzero residual probability.

For a concrete instance, suppose p = 16/215 and 1 − p = 199/215. Since
p falls in the open interval (0, 1/6), we will emit v if the die roll is 2, 3, 4, 5,
or 6 and emit nothing if the die roll is 1. In the latter event, we move on to
the second component using the residual probabilities p′ = 6 · 16/215 − ⌊6 ·
16/215⌋ = 96/215 and 1 − p′ = 119/215. Since p′ ∈ (1/3, 1/2), we will emit u
if the die roll is 1 or 2, v if it is 4, 5, or 6, and nothing if it is 3. In the last event,
we move on to the third component using the residual probabilities p′′ = 6 ·
96/215− ⌊6 · 96/215⌋ = 146/215 and 1 − p′ = 69/215. Since p′′ ∈ (2/3, 5/6),
we will emit u if the die roll is 1, 2, 3, or 4, v if it is 6, and nothing if it is 5. In the
last event, we move on to the fourth component using the residual probabilities
p′′′ = 6 · 146/215− ⌊6 · 146/215⌋ = 16/215 and 1 − p′′′ = 199/215.

Note that after three components, we have p′′′ = p, so the fourth com-
ponent is the same as the first. We are are back to the beginning and can
return to the first component. In general, the process will eventually cycle
iff the probabilities are rational. This gives an alternative to the construc-
tion of §4.2. Note also that at this point, u has been emitted with proba-
bility (1/6)(2/6) + (1/62)(4/6) = 2/17 = 16/216 and v with probability
5/6 + (1/6)(3/6) + (1/62)(1/6) = 199/216. These numbers are proportional
to p and 1 − p, respectively, out of 215/216, the probability that some symbol
has been emitted.

4.4. Arbitrary ⇒ c-Uniform with Efficiency 1 − Θ(log k/k)

In this section, we describe a family of restart protocols Bk for transform-
ing an arbitrary d-ary distribution with real probabilities p1, . . . , pd to a c-ary
uniform distribution with Θ(log k/k) loss. Unlike the other protocols we have
seen so far, these protocols do not depend on knowledge of the input distri-
bution; perhaps as a consequence of this, the convergence is asymptotically
slower by a logarithmic factor.

Let D = {1, . . . , d} be the input alphabet. Let Gk be the set of all sequences
σ ∈ N

D such that ∑i∈D σi = k. Each string y ∈ Dk is described by some σ ∈ Gk,
where σi is the number of occurrences of i ∈ D in y. Let Vσ be the set of strings
in Dk whose letter counts are described by σ in this way.

The protocol Bk works as follows. Make k calls on the input distribution
to obtain a d-ary string of length k. The probability that the string is in Vσ is

26

qσ = |Vσ |pσ, where

|Vσ | =

(

k

σ1 . . . σd

)

pσ = ∏
i∈D

p
σi
i ,

as there are |Vσ | strings in Dk whose letter counts are described by σ, each
occurring with probability pσ. Thus the strings in Vσ are distributed uniformly.
For each σ, apply the protocol Pk of §4.1 to the elements of Vσ to produce c-ary
digits, thereby converting the |Vσ |-uniform distribution on Vσ to a c-uniform
distribution. The states then just form the d-ary tree of depth k that stores the
input, so the capacity of Bk is approximately k log d.

To analyze the efficiency of Bk, we can reuse an argument from §4.1, with
the caveat that the size of the input alphabet was a constant there, whereas
|Vσ | is unbounded. Nevertheless, we were careful in §4.1 that the part of the
argument that we need here did not depend on that assumption.

For each σ, let m = ⌊logc |Vσ |⌋ and let the c-ary expansion of |Vσ | be

|Vσ | =
m

∑
i=0

aic
i,

where 0 ≤ ai ≤ c − 1 and am 6= 0. It was established in §4.1, equation (4.4), that
the expected number of c-ary digits produced by strings in Vσ is at least

⌊logc |Vσ |⌋ −
c

c − 1
≥ (logc |Vσ | − 1)−

c

c − 1
= logc |Vσ | −

2c − 1

c − 1
,

thus the expected number of c-ary digits produced in all is at least

∑
σ

qσ logc |Vσ | −
2c − 1

c − 1
.

The total entropy production is this quantity times log c, or

∑
σ

qσ log2 |Vσ | − b,

where b = (2c − 1) log c/(c − 1).
The total entropy consumption is kH(p1, . . . , pd). This can be viewed as

the composition of a random choice that chooses the number of occurrences of
each input symbol followed by a random choice that chooses the arrangement
of the symbols. Using the conditional entropy rule (Lemma 2.2),

kH(p1, . . . , pd) = H(qσ | σ ∈ Gk) +∑
σ

qσ log |Vσ |

≤ log

(

k + d − 1

k

)

+∑
σ

qσ log |Vσ | (4.9)

≤ d log k +∑
σ

qσ log |Vσ |, (4.10)

27

for sufficiently large k. The inequality (4.9) comes from the fact that the entropy
of the uniform distribution exceeds the entropy of any other distribution on
the same number of letters. The inequality (4.10) comes from the fact that the
binomial expression is bounded by (k + 1)d−1, which is bounded by kd for all
k such that k ln k ≥ d − 1.

Dividing, the production/consumption ratio is

∑σ qσ log |Vσ | − b

kH(p1, . . . , pd)
=

d log k + ∑σ qσ log |Vσ |

kH(p1, . . . , pd)
−

d log k + b

kH(p1, . . . , pd)

≥
d log k + ∑σ qσ log |Vσ |

d log k + ∑σ qσ log |Vσ |
−

d log k + b

kH(p1, . . . , pd)

= 1 − Θ(log k/k).

Example 4.6. Consider the case d = 3, c = 2, and k = 5 in which the three-letter
input alphabet is u, v, w with probabilities p, q, r respectively, and the output
distribution is a fair coin. We partition the input strings of length five into dis-
joint classes Vσ depending on the number of occurrences of each input symbol.

There are (5+2
2) = 21 classes represented by the patterns in the following table:

pattern no. of instances no. of classes production probability

1 4, 1 5 6 8/5 30 · 3−5

2 3, 2 10 6 13/5 60 · 3−5

3 3, 1, 1 20 3 18/5 60 · 3−5

4 2, 2, 1 30 3 49/15 90 · 3−5

5 5 1 3 0 3 · 3−5

Row 1 represents classes consisting of all strings with four occurrences of one
letter and one occurrence of another. Each such class has five instances, de-
pending on the arrangement of the letters. For example, the five instances of
strings containing four occurrences of u and one of v are uuuuv, uuuvu, uuvuu,
uvuuu, and vuuuu. Each of these five instances occurs with the same proba-
bility p4q, so this class can be used as a uniformly distributed source over a
five-letter alphabet. There are six classes of this form, corresponding to the six
choices of two letters.

Similarly, row 2 represents classes with three occurrences of one letter and

two of another. Each such class has (5
3 2) = 10 instances, all of which occur with

the same probability, so each such class can be used as a uniformly distributed
source over a ten-letter alphabet. There are six such classes. The classes of
rows 3 and 4 can be used as uniformly distributed sources over 20- and 30-
letter alphabets, respectively. The classes in row 5 have only one instance and
are not usable.

In each round of the protocol, we sample the input distribution five times.
Depending on the class of the resulting string, we apply one of the protocols of
§4.1 to convert to fair coin flips. For example, if the string is in one of the classes

from row 3 above, which is a uniform source on (5
3 1 1) = 20 letters, writing 20

28

in binary gives 10100, indicating that 16 of the 20 instances should emit the 16
binary strings of length four, and the remaining four instances should emit 00,
01, 10, and 11, respectively. The expected production is 4 · 16/20 + 2 · 4/20 =
18/5. This will be the production for any class in row 3, which will transpire
with probability

20(p3qr + pq3r + pqr3),

the probability that the input string falls in a class in row 3.
The last column of the table lists these values for the case p = q = r = 1/3.

In that case, the total consumption is 5 log 3 ≈ 7.92. The production is

30 · 3−5 · 8/5 + 60 · 3−5 · 13/5 + 60 · 3−5 · 18/5 + 90 · 3−5 · 49/15 ≈ 2.94,

for an efficiency of 2.94/7.92 ≈ 0.37.

There is much wasted entropy with this scheme for small values of k. The
sampling can be viewed as a composition of a first stage that selects the class,
followed by a stage that selects the string within the class. All of the entropy
consumed in the first stage is wasted, as it does not contribute to production.

4.5. (1
r , r−1

r) ⇒ (r − 1)-Uniform with Efficiency 1 − Θ(k−1)

Let r ∈ N, r ≥ 3. In this section we show that a coin with bias 1/r can
generate an (r− 1)-ary uniform distribution with Θ(k−1) loss of efficiency. This
improves the result of the previous section in this special case.

Dirichlet’s approximation theorem (see [25–27]) states that for irrational u,
there exist infinitely many pairs of integers k, m > 0 such that |ku − m | < 1/k.
We need the result in a slightly stronger form.

Lemma 4.7. Let u be irrational. For infinitely many integers k > 0, ku − ⌊ku⌋ <
1

k+1 .

Proof. The numbers ku − ⌊ku⌋, k ≥ 1, are all distinct since u is irrational. In the
following, we use real arithmetic modulo 1, thus we write iu for iu − ⌊iu⌋ and
0u for both 0 and 1.

Imagine placing the elements u, 2u, 3u, . . . in the unit interval one at a time,
iu at time i. At time k, we have placed k elements, which along with 0 and
1 partition the unit interval into k + 1 disjoint subintervals. We make three
observations:

(i) At time k, the smallest interval is of length less than 1
k+1 .

(ii) An interval of minimum length always occurs adjacent to 0 or 1.

(iii) Let k0, k1, k2, . . . be the times at which the minimum interval length strictly
decreases. For all i, the new smallest interval created at time ki is adjacent
to 0 iff the new smallest interval created at time ki+1 is adjacent to 1.

29

For (i), the average interval length is 1
k+1 , so there must be one of length less

than that. It cannot be exactly 1
k+1 because u is irrational.

For (ii), suppose [iu, ju] is a minimum-length interval. If i < j, then the
interval [0, (j− i)u] is the same length and was created earlier. If i > j, then the
interval [(i − j)u, 1] is the same length and was created earlier. Thus the first
time a new minimum-length interval is created, it is created adjacent to either
0 or 1.

For (iii), we proceed by induction. The claim is certainly true after one step.
Now consider the first time a new minimum-length interval is created, say at
time k. Let [iu, 1] be the interval adjacent to 1 and [0, ju] the interval adjacent
to 0 just before time k. Suppose that [iu, 1] is the smaller of the two intervals
(the other case is symmetric). By the induction hypothesis, j < i. By (ii), either
iu < ku < 1 or 0 < ku < ju. But if the former, then ku − iu = (k − i)u and
0 < (k − i)u < ju, a contradiction, since then [0, (k − i)u] would be a smaller
interval adjacent to 0.

By (i)–(iii), every other time k that a new minimum-length interval is cre-

ated, it is adjacent to 0 and its length is less than 1
k+1 .

Choose k ≥ r − 2 and m = ⌊k logr−1 r⌋. Note that logr−1 r is irrational: if
logr−1 r = p/q then rq = (r − 1)p, which is impossible because r and r − 1 are

relatively prime. Then (r − 1)m < rk and m > k for sufficiently large k. We

have two representations of rk−1
r−1 as a sum:

rk − 1

r − 1
=

k−1

∑
i=0

ri =
k−1

∑
i=0

(

k

i + 1

)

(r − 1)i.

Moreover, every integer in the interval [0, rk−1
r−1] can be represented by a sum of

the form ∑
k−1
i=0 ai(r − 1)i, where 0 ≤ ai ≤ (k

i+1). (We might call this a binomi-

alary representation.) To see this, let t be any number less than rk−1
r−1 with such

a representation, say t = ∑
k−1
i=0 ai(r − 1)i. We show that t + 1 also has such a

representation. Let i be the smallest index such that ai < (k
i+1). Then

t =

(

i−1

∑
j=0

(

k

j + 1

)

(r − 1)j

)

+

(

k−1

∑
j=i

aj(r − 1)j

)

1 = (r − 1)i −
i−1

∑
j=0

(r − 2)(r − 1)j.

Adding these, we have

t + 1 =

(

i−1

∑
j=0

(

(

k

j + 1

)

− r + 2)(r − 1)j

)

+ (ai + 1)(r − 1)i +

(

k−1

∑
j=i+1

aj(r − 1)j

)

,

and this is of the desired form.
It follows that every multiple of r − 1 in the interval [0, rk − 1] can be rep-

resented by a sum of the form ∑
k
i=0 ai(r − 1)i with 0 ≤ ai ≤ (k

i). In particular,

30

(r − 1)m can be so represented. Thus

(r − 1)m =
k

∑
i=0

ai(r − 1)i, (4.11)

where 0 ≤ ai ≤ (k
i).

Pick k > ln(r − 1)− 1, which ensures that 0 < ln(r − 1)/(k + 1) < 1, and
also large enough that

k logr−1 r − ⌊k logr−1 r⌋ <
1

k + 1
, (4.12)

which is possible by Lemma 4.7. Using the fact that ln x ≤ x − 1 for all x > 0,

k logr−1 r − m = k logr−1 r − ⌊k logr−1 r⌋ <
1

k + 1
=

logr−1 e · ln(r − 1)

k + 1

≤ − logr−1 e · ln(1 −
ln(r − 1)

k + 1
) = − logr−1(1 −

ln(r − 1)

k + 1
).

Rearranging terms and exponentiating, we obtain

(r − 1)m

rk
≥ 1 −

ln(r − 1)

k + 1
= 1 − Θ(k−1). (4.13)

From (4.11), we have 1 = ∑
k
i=0 ai(r − 1)i−m. Thus we can find an exhaustive

prefix code A over the (r − 1)-ary target alphabet with exactly ai words of
length m − i, 0 ≤ i ≤ k. Assign a distinct word over the binary source alphabet
of length k and probability (r − 1)i/rk to each codeword of length m − i so that
the mapping from input words to codewords is injective. There are enough
input words to do this, as we need ai input words of probability (r − 1)i/rk,

and there are (k
i) ≥ ai such input words in all.

There are (r − 1)m words over the source alphabet with a target word as-
signed to them. If one of these source words comes up in the protocol, output
its associated target word. For the remaining rk − (r − 1)m source words, do
not output anything. This is lost entropy.

To argue that the output distribution is uniform, we first show that for every
prefix x of a codeword in A, x appears as a prefix of an emitted codeword with

probability (r − 1)m−| x |/rk.
We proceed by reverse induction on |x |. The claim is true for codewords

x ∈ A by construction. Since A is exhaustive, for every proper prefix x of a
codeword and every letter c, xc is also a prefix of a codeword. Each such xc

is emitted as a prefix with probability (r − 1)m−| xc |/rk by the induction hy-
pothesis, and these events are disjoint, therefore x is emitted as a prefix with
probability

∑
c

(r − 1)m−| xc |

rk
= (r − 1)

(r − 1)m−| x |−1

rk
=

(r − 1)m−| x |

rk
.

31

It follows that every letter c appears as the nth letter of an emitted code-
word with the same probability |An−1 | · (r − 1)m−n/rk, where An−1 is the set
of length-(n− 1) proper prefixes of target codewords, therefore the distribution
is uniform.

To calculate the efficiency, by elementary combinatorics, we have

k

∑
i=0

iai(r − 1)ir−k ≤
k

∑
i=0

i

(

k

i

)

(r − 1)ir−k = k
r − 1

r
.

Using (4.13), the expected number of target symbols produced is

k

∑
i=0

(m − i)ai(r − 1)ir−k =
k

∑
i=0

mai(r − 1)ir−k −
k

∑
i=0

iai(r − 1)ir−k

≥ m(r − 1)mr−k − k
r − 1

r

≥ m(1 − Θ(k−1))− k
r − 1

r
= m − k

r − 1

r
− Θ(1),

as m is Θ(k). The number of source symbols consumed is k.
The information-theoretic bound on the production/consumption ratio is

the quotient of the source and target entropies:

1
r log r + r−1

r log r
r−1

log(r − 1)
= logr−1 r −

r − 1

r
.

We also have

m

k
=

⌊k logr−1 r⌋

k
>

k logr−1 r − 1

k
> logr−1 r − Θ(k−1).

The production/consumption ratio is thus

m

k
−

r − 1

r
− Θ(k−1) > logr−1 r −

r − 1

r
− Θ(k−1),

which is within Θ(k−1) of optimal.

Example 4.8. Consider the case r = k = 4 in which the input alphabet is
u, v with probabilities 1/4 and 3/4 respectively, and the output distribution
is uniform on the ternary alphabet 0, 1, 2. Then logr−1 r = log3 4 ≈ 1.26 and
m = ⌊4 log3 4⌋ = 5. The conditions for applying the protocol are satisfied:
m > k, 4 > ln 3− 1, and as required by (4.12), 4 log3 4 − ⌊4 log3 4⌋ ≈ .05 < 1/4.

As guaranteed by (4.11), we can write 35 = 243 as ∑
4
i=0 ai3

i with 0 ≤ ai ≤

(4
i). The coefficients a0 = a1 = 0, a2 = 6, a3 = 4, and a4 = 1 do the trick. (The

representation is not unique; the coefficients 0, 3, 5, 4, 1 will work as well.)
We now select an exhaustive prefix code over the ternary output alphabet with
exactly ai codewords of length 5 − i. The code

0 10 11 12 20 210 211 212 220 221 222

32

does it. Now we assign to each codeword of length 5 − i a distinct input word
of length 4 and probability 3i/4k = (3/4)i(1/4)k−i. We can assign them

v4 uv3 vuv2 v2uv v3u u2v2 uvuv uv2u vu2v vuvu v2u2

respectively. The following diagram shows the output words and the proba-
bilities with which they are emitted:

34

44

33

44
33

44
33

44
33

44

32

44
32

44
32

44
32

44
32

44
32

44

0 1 2

0 1 2 0 1 2

0 1 2 0 1 2

Note that 0, 1, and 2 are each emitted as the nth letter with equal probability, so
the distribution is uniform. For n = 1, the probabilities are

34

44 = 3 · 33

44 = 1 · 33

44 + 6 · 32

44 .

Likewise, for n = 2 and n = 3, the probabilities are

2 · 34

44 = 33

44 + 3 · 32

44 2 · 32

44 ,

respectively.
The entropy consumption is

4(− 1
4 log 1

4 −
3
4 log 3

4) = 8 − 3 log 3 ≈ 3.25

and the production is

(1 · 1 · 34

44 + 4 · 2 · 33

44 + 6 · 3 · 32

44) log 3 = 459
256 log 3 ≈ 2.84

for an efficiency of 2.84/3.25 ≈ 0.87. The alternative coefficients 0, 3, 5, 4, 1

give slightly better production of 486
256 log 3 ≈ 3.01 for the same consumption,

yielding an improved efficiency of 3.01/3.25 ≈ 0.93.

5. Conclusion

We have introduced a coalgebraic model for constructing and reasoning
about state-based protocols that implement entropy-conserving reductions be-
tween random processes. We have provided basic tools that allow efficient
protocols to be constructed in a compositional way and analyzed in terms of
the tradeoff between state and loss of entropy. We have illustrated the use of
the model in various reductions.

An intriguing open problem is to improve the loss of the protocol of §4.4
to Θ(1/k). Partial progress has been made in §4.5, but we were not able to
generalize this approach.

33

5.1. Discussion: The Case for Coalgebra

What are the benefits of a coalgebraic view? Many constructions in the
information theory literature are expressed in terms of trees; e.g. [28, 29]. Here
we have defined protocols as coalgebras (S, δ), where δ : S × Σ → S × Γ∗, a
form of Mealy automata. These are not trees in general. However, the class

admits a final coalgebra D : (Γ∗)Σ+
× Σ → (Γ∗)Σ+

× Γ∗, where

D(f , a) = (f @a, f (a)) f @a(x) = f (ax), a ∈ Σ, x ∈ Σ+.

Here the extension to streams Dω : (Γ∗)Σ+
× Σω ⇀ Γω takes the simpler form

Dω(f , aα) = f (a) · Dω(f @a, α).

A state f : Σ+ → Γ∗ can be viewed as a labeled tree with nodes Σ∗ and edge
labels Γ∗. The nodes xa are the children of x for x ∈ Σ∗ and a ∈ Σ. The label
on the edge (x, xa) is f (xa). The tree f @x is the subtree rooted at x ∈ Σ∗,
where f @x(y) = f (xy). For any coalgebra (S, δ), there is a unique coalgebra

morphism h : (S, δ) → ((Γ∗)Σ+
, D) defined coinductively by

(h(s)@a, h(s)(a)) = let (t, z) = δ(s, a) in (h(t), z),

where s ∈ S and a ∈ Σ; equivalently,

h(s)(a) = snd(δ(s, a)) h(s)(ax) = h(fst(δ(s, a)))(x),

where fst and snd denote the projections onto the first and second components,
respectively.

The coalgebraic view allows arbitrary protocols to inherit structure from
the final coalgebra under h−1, thereby providing a mechanism for transferring
results on trees, such as entropy rate, to results on state transition systems.

There are other advantages as well. In this paper we have considered only
homogeneous measures on Σω and Γω, that is, those induced by i.i.d. processes in
which the probabilistic choices are independent and identically distributed, for
finite Σ and Γ. However, the coalgebraic definitions of protocol and reduction
make sense even if Σ and Γ are countably infinite and even if the measures are
non-homogeneous.

We have observed that a fixed measure µ on Σ induces a unique homo-
geneous measure, also called µ, on Σω. But in the final coalgebra, we can go
the other direction: For an arbitrary probability measure µ on Σω and state
f : Σ+ → Γ∗, there is a unique assignment of transition probabilities on Σ+

compatible with µ, namely the conditional probability

f (xa) =
µ({α | xa ≺ α})

µ({α | x ≺ α})
,

or 0 if the denominator is 0. This determines the probabilistic behavior of the
final coalgebra as a protocol starting in state f when the input stream is dis-
tributed as µ. This behavior would also be reflected in any protocol (S, δ) start-
ing in any state s ∈ h−1(f) under the same measure on input streams, thus
providing a semantics for (S, δ) even under non-homogeneous conditions.

34

In addition, as in Lemma 3.2(iii), any measure µ on Σω induces a push-
forward measure µ ◦ (Dω)−1 on Γω. This gives a notion of reduction even in the
non-homogeneous case. Thus we can lift the entire theory to Mealy automata
that operate probabilistically relative to an arbitrary measure µ on Σω. These
are essentially discrete Markov transition systems with observations in Γ∗.

Even more generally, one can envision a continuous-space setting in which
the state set S and alphabets Σ and Γ need not be discrete. The appropriate
generalization would give reductions between discrete-time and continuous-
space Markov transition systems as defined for example in [30, 31].

As should be apparent, in this paper we have only scratched the surface of
this theory, and there is much left to be done.

Acknowledgments

Thanks to Swee Hong Chan, Bobby Kleinberg, Joel Ouaknine, Aaron Wag-
ner for valuable discussions. Thanks to the anonymous referees for several
suggestions for improving the presentation. Thanks to the Bellairs Research In-
stitute of McGill University for providing a wonderful research environment.
This research was supported by NSF grants CCF-1637532, IIS-1703846, IIS-
1718108, and CCF-2008083, ARO grant W911NF-17-1-0592, and a grant from
the Open Philanthropy project.

References

[1] J. von Neumann, Various techniques used in connection with random dig-
its, notes by G.E. Forsythe, National Bureau of Standards, Applied Math
Series 12 (1951) 36–38. Reprinted in: von Neumann’s Collected Works,
vol. 5, Pergamon Press, (1963), 768–770.

[2] P. Elias, The efficient construction of an unbiased random sequence, Ann.
Math. Stat. 43 (1992) 865–870.

[3] Y. Peres, E. Mossel, C. Hillar, New coins from old: Computing with un-
known bias, Combinatorica 25 (2005) 707–724.

[4] Y. Peres, Iterating von Neumann’s procedure for extracting random bits,
Ann. Stat. 20 (1992) 590–597.

[5] M. Blum, Independent unbiased coin flips from a correlated biased
source: a finite state Markov chain, Combinatorica 6 (1986) 97–108.

[6] S. Pae, M. C. Loui, Randomizing functions: Simulation of discrete prob-
ability distribution using a source of unknown distribution, Trans. Infor-
mation Theory 52 (2006) 4965–4976.

[7] S. Pae, M. C. Loui, Optimal random number generation from a biased
coin, in: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, Van-
couver, Canada, 2005, pp. 1079–1088.

35

[8] S. Pae, Random number generation using a biased source, Ph.D. thesis,
University of Illinois, 2005.

[9] T. S. Han, M. Hoshi, Interval algorithm for random number gen-
eration, IEEE Trans. Information Theory 43 (1997) 599–611. URL:
https://doi.org/10.1109/18.556116. doi:10.1109/18.556116.

[10] N. Nisan, D. Zuckerman, Randomness is linear in space, Journal of Com-
puter and System Sciences 52 (1996) 43–52.

[11] N. Nisan, A. Ta-shma, Extracting randomness: A survey and new con-
structions, Journal of Computer and System Sciences 58 (1999) 148–173.

[12] A. Ta-shma, On extracting randomness from weak random sources, in:
Proc. 28th ACM Symp. Theory of Computing, 1996, pp. 276–285.

[13] A. Srinivasan, D. Zuckerman, Computing with very weak random
sources, SIAM J. Computing 28 (1999) 264–275.

[14] Y. Dodis, A. Elbaz, R. Oliveira, R. Raz, Improved randomness extraction
from two independent sources, in: K. J. et al. (Ed.), Approx and Random
2004, volume 3122 of LNCS, Springer, 2004, pp. 334–344.

[15] P. R. Halmos, Measure Theory, Van Nostrand, 1950.

[16] K. L. Chung, A Course in Probability Theory, 2nd ed., Academic Press,
1974.

[17] W. Feller, An Introduction to Probability Theory and Its Applications, vol-
ume 1, 2nd ed., Wiley, 1971.

[18] W. Feller, An Introduction to Probability Theory and Its Applications, vol-
ume 2, 2nd ed., Wiley, 1971.

[19] J. L. Doob, Stochastic Processes, volume 2, Wiley, New York; Chapman &
Hall, London, 1953.

[20] A. Kolmogorov, Foundations of the Theory of Probability, 1st ed., Chelsea,
1950.

[21] A. Kolmogorov, Foundations of the Theory of Probability, 2nd ed.,
Chelsea, 1956.

[22] R. Durrett, Probability: Theory and Examples, Cambridge University
Press, 2010.

[23] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley-
Interscience, 1991.

[24] J. Adamek, Foundations of Coding, Wiley, 1991.

36

https://doi.org/10.1109/18.556116
http://dx.doi.org/10.1109/18.556116

[25] J. W. S. Cassels, An introduction to Diophantine approximation, vol-
ume 45 of Cambridge Tracts in Mathematics and Mathematical Physics, Cam-
bridge University Press, 1957.

[26] S. Lang, Introduction to Diophantine Approximations, Springer, 1995.

[27] W. M. Schmidt, Diophantine approximation, volume 785 of Lecture Notes
in Mathematics, Springer, 1996. doi:10.1007/978-3-540-38645-2.

[28] T. Hirschler, W. Woess, Comparing entropy rates on finite and infinite
rooted trees with length functions, IEEE Trans. Information Theory (2017).
doi:10.1109/TIT.2017.2787712.

[29] G. Böcherer, R. A. Amjad, Informational divergence and entropy rate on
rooted trees with probabilities, in: Proc. IEEE Int. Symp. Information The-
ory, 2014, pp. 176–180. doi:10.1109/ISIT.2014.6874818.

[30] P. Panangaden, Labelled Markov Processes, Imperial College Press, 2009.

[31] E.-E. Doberkat, Stochastic Relations: Foundations for Markov Transition
Systems, Studies in Informatics, Chapman Hall, 2007.

37

http://dx.doi.org/10.1007/978-3-540-38645-2
http://dx.doi.org/10.1109/TIT.2017.2787712
http://dx.doi.org/10.1109/ISIT.2014.6874818

	1 Introduction
	1.1 Related Work

	2 Definitions
	2.1 Protocols and Reductions
	2.2 Restart Protocols
	2.3 Convergence
	2.4 Efficiency
	2.5 Capacity
	2.6 Entropy and Conditional Entropy

	3 Basic Results
	3.1 Composition
	3.2 Protocol Families
	3.3 Serial Protocols

	4 Reductions
	4.1 Uniform Uniform
	4.2 Uniform Rational
	4.3 Uniform Arbitrary
	4.4 Arbitrary c-Uniform with Efficiency 1-(logk/k)
	4.5 (1r,r-1r) (r-1)-Uniform with Efficiency 1-(k-1)

	5 Conclusion
	5.1 Discussion: The Case for Coalgebra

