

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Mokhov A, de-Gennaro A, Tarawneh G, Wray J, Lukyanov G, Mileiko S, Scott

J, Yakovlev A, Brown A. Language and Hardware Acceleration Backend for

Graph Processing. In: FDL 2017 Forum on specification & Design Languages.

2017, Verona, Italy: FDL.

Copyright:

This is the author’s manuscript of a paper that is due to be presented at FDL 2017 Forum on specification

& Design Languages, held 18th-20th September 2017 in Verona, Italy

Link to conference:

https://ecsi.org/fdl

Date deposited:

18/07/2017

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239781
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239781
https://ecsi.org/fdl

Language and Hardware Acceleration Backend
for Graph Processing

Andrey Mokhov†, Alessandro de Gennaro†, Ghaith Tarawneh†, Jonny Wray‡,
Georgy Lukyanov†, Sergey Mileiko†, Joe Scott†, Alex Yakovlev†, Andrew Brown§

†Newcastle University, UK
‡e-Therapeutics, Oxford, UK
§University of Southampton, UK

Abstract—Graphs are important in many applications however
their analysis on conventional computer architectures is generally
inefficient because it involves highly irregular access to memory
when traversing vertices and edges. As an example, when finding
a path from a source vertex to a target one the performance is
typically limited by the memory bottleneck whereas the actual
computation is trivial.

This paper presents a methodology for embedding graphs
into silicon, where graph vertices become finite state machines
communicating via the graph edges. With this approach many
common graph analysis tasks can be performed by propagat-
ing signals through the physical graph and measuring signal
propagation time using the on-chip clock distribution network.
This eliminates the memory bottleneck and allows thousands
of vertices to be processed in parallel. We present a domain-
specific language for graph description and transformation, and
demonstrate how it can be used to translate application graphs
into an FPGA board, where they can be analysed 1000x faster
than on a conventional computer cluster.

I. INTRODUCTION

Network science is an emerging field combining models,
theories and methods across application areas that involve pro-
cessing large-scale graphs, e.g. social, telecommunication and
biological networks [1]. A lot of on-going research is dedicated
to the discovery of new algorithms for processing graphs, par-
ticularly focusing on improving their asymptotic complexity,
where the runtime of an algorithm is characterised using the
big O notation and constant factors are ignored. For example,
breadth-first search, a textbook algorithm for computing the
shortest path between two vertices in an unweighted graph,
takes O(|V | + |E|) time to process a graph with the vertex
set V and the edge set E, e.g. see [2]. Here the big O notation
hides the constant factors c1 and c2 in the more precise runtime
bound c1|V |+c2|E| for the sake of convenience and simplicity.
The research on graph algorithms, therefore, tends to focus
on improving the asymptotic complexity while paying little
attention to constant factors.

In this paper we take an orthogonal approach: our primary
focus is the improvement of the underlying constant factors by
physically embedding graphs in silicon and making vertices
communicate locally and directly, which is radically different
from conventional graph processing in software that involves
an indirect traversal of a graph data structure stored in memory.
We do not claim any asymptotic improvements to classic graph
algorithms, but we demonstrate that the proposed approach can

provide 3-4 orders of magnitude speedups for sizable real-life
graphs compared to a software implementation.

We automate the presented approach by developing a graph
transformation language that allows the user to parse applica-
tion graphs, manipulate them using common graph operations,
write them into an FPGA in the form of a circuit netlist, and
execute graph analysis queries.

It is important to note that the presented approach is suitable
only for those applications where the overhead associated with
embedding the graph into an FPGA is negligible compared to
the graph processing runtime. For example, executing a single
shortest-path query takes only a fraction of the time required
to synthesise the FPGA netlist. One therefore needs to execute
thousands of such queries in order to achieve any improvement
compared to a conventional software implementation. Our case
study requires the execution of millions of graph analysis
queries, which justifies the upfront cost of graph embedding.

The contributions of the paper are:
• We present a domain-specific language for manipulating

and embedding graphs in silicon in Section II. The
language is implemented in Haskell [3], which allows
us to reuse standard functional programming abstractions
to efficiently manipulate graphs.

• Execution of graph analysis queries requires support of an
on-FPGA infrastructure that is developed in Section III.

• We demonstrate the presented methodology on the exam-
ple of biological network analysis in Section IV.

Future research directions are discussed in Section V.

II. GRAPH TRANSFORMATION LANGUAGE

This section presents a framework for constructing, manipu-
lating, and embedding graphs in silicon, which is implemented
on top of the algebraic-graphs library [4]. The framework
provides a domain-specific language for graph transformation,
a parser for GraphML files, and a hardware synthesis engine
for generating VHDL netlists. It is open-source and publicly
available under the MIT license [5].

A. Graph Data Type

Graphs are represented by the abstract data type Graph a,
where a corresponds to the type of the graph vertices. For
example, Graph Int and Graph String are graphs whose
vertices are integers and alpha-numeric strings, respectively.

1 -- Read and parse a GraphML file describing a network
2 readGraphML :: FilePath -> IO Network
3
4 -- Print a network
5 print :: Network -> IO ()
6
7 -- Synthesise a network into a hardware circuit, write the result to a VHDL file
8 writeVHDL :: Network -> FilePath -> IO ()
9

10 -- Merge a list of proteins into a single protein complex
11 mergeVertices :: [Protein] -> Protein -> Network -> Network
12
13 -- Split a protein complex into a list of proteins
14 splitVertex :: Protein -> [Protein] -> Network -> Network
15
16 -- Compute the subgraph induced by a given protein predicate
17 induce :: (Protein -> Bool) -> Network -> Network

Fig. 1: Overview of main functions of the framework API specialised to protein-interaction networks.

1 > g1 <- readGraphML "example.graphml"
2 > print g1
3 edges [("A","B"), ("B","C"), ("B","D"), ("C","E"), ("D","E")]
4
5 > g2 = mergeVertices ["C","D"] "CD" g1
6 > print g2
7 edges [("A","B"), ("B","CD"), ("CD","E")]
8
9 > g3 = splitVertex "CD" ["C","D"] g2
10 > print g3
11 edges [("A","B"), ("B","C"), ("B","D"), ("C","E"), ("D","E")]
12
13 > relevantProtein p = p `notElem` ["A","D","CD"]
14 > induce relevantProtein g3
15 edges [("B","C"), ("C","E")]
16
17 > writeVHDL g3 "circuit.vhdl"

Fig. 2: Interactive graph transformation session.

Our main case study presented in Section IV is dedicated to
the analysis of protein-interaction graphs, further referred to
simply as networks, for the purpose of drug discovery. Vertices
of these networks are proteins, and edges are known protein
interactions. The following two type synonyms are defined for
convenience:

type Protein = String
type Network = Graph Protein

That is, a Protein is represented simply by its name, and a
Network is a graph whose vertices are proteins.

The developed graph transformation language is fully poly-
morphic with respect to the type of graph vertices, however
we only discuss protein-interaction networks in the rest of the
section for the sake of simplicity. We refer an interested reader
to the framework documentation [5], which provides specifi-
cations and examples of using fully polymorphic versions of
the functions we discuss.

B. Reading and Parsing GraphML Files

GraphML is a popular file format for graph storage that
is used in the drug discovery field. The framework supports
reading and parsing GraphML files using the readGraphML
function, whose type is shown in line 2 of Fig. 1. The

graph transformation language is embedded in Haskell and
is therefore a purely functional language, requiring all side-
effects to be explicitly reflected in function types. In the case
of the readGraphML function, the type says that the function
takes the path to a GraphML file as the input and returns
the resulting network as the output, performing some side-
effects during the execution (specifically, IO operations such
as reading a file). Most of the functions of the framework API
shown in Fig. 1 are pure, i.e. they have no side-effects, which
improves the testability and scalability of the framework.

The following GraphML file describes a graph with 5
vertices and 5 edges that we will use as a running example in
this section. The graph is shown in Fig. 3(a).

<graph id="G" edgedefault="undirected">
<node id="A"/>
<node id="B"/>
<node id="C"/>
<node id="D"/>
<node id="E"/>
<edge source="A" target="B"/>
<edge source="B" target="C"/>
<edge source="B" target="D"/>
<edge source="C" target="E"/>
<edge source="D" target="E"/>

</graph>

(a) Example network

(b) Merging vertices (c) Splitting vertices (d) Computing an induced subnetwork

Fig. 3: Examples of transforming protein-interaction networks.

C. Transforming Graphs

This section describes examples of graph transformation
supported by the presented language. Fig. 2 shows an example
of an interactive graph manipulation session, and Fig. 3 illus-
trates the transformations. We cover transformations relevant
to the drug discovery case study, namely vertex merging and
splitting, as well as computing induced subnetworks. The
library provides more functionality – see the documentation.

The session starts with parsing the example GraphML file
(see line 1 of the session in Fig. 2), which is given the name g1
and printed using the function print.

Vertex merging can be used to model the formation of pro-
tein complexes in the context of protein-interaction networks.
A protein complex is a structure where two or more proteins
physically come together and form a functional unit, the com-
plex, where all the components are required for the complex to
function. To merge a list of proteins into a complex, one can
use the mergeVertices function, as demonstrated in lines 5-
7 of Fig. 2. The implementation is based on the standard
functional programming abstraction called functor [6]: we
apply a mapping function to each vertex of a given graph,
as illustrated in Fig. 3(b), and if two vertices are mapped into
the same target they are merged.

Protein complexes may be unstable and their dissociation
could be modelled by splitting the corresponding vertex of
the network preserving its connectivity. Lines 9-11 of the
session demonstrate the use of the function splitVertices
to undo the effect of merging vertices C and D. Note that the
resulting graph g3 coincides with the original graph g1. Vertex
splitting is implemented using another standard functional
programming abstraction called monad [6][7], where each
vertex of the graph can be substituted with a subgraph,
subsequently flattening the result, as illustrated in Fig. 3(c).

An important step in the drug discovery process is the iden-
tification of proteins that are relevant to a specific biological
process, and discarding the remaining ones from the network
under consideration, i.e. computing the induced subnetwork
on the set of relevant proteins. This can be achieved using the
induce function, see lines 13-15 in the session. The example
predicate relevantProtein discards proteins A, D and CD,
and can be implemented as follows:

relevantProtein :: Protein -> Bool
relevantProtein p = p `notElem` ["A","D","CD"]

Here the function notElem returns True if the given element
does not belong to the given list. Note that discarding the
non-existent vertex CD is allowed.

The implementation of induce can also be expressed in
terms of the monad abstraction, where discarded vertices are
substituted with empty subgraphs, which effectively removes
these vertices from the graph – see Fig. 3(d).

Another reason to remove a vertex in the drug discovery
context is to account for the introduction of a drug into the
system, which can bind to certain proteins, preventing them
from participating in their usual interactions. The removal of a
vertex v can be expressed as computing an induced subgraph
on all vertices but v.

A graph transformation session is typically ended by saving
the result in a GraphML file or embedding it into an FPGA
for accelerating its analysis, as described in Section III. Graph
embedding is performed by the function writeVHDL.

The presented graph transformation language relies on pow-
erful functional programming abstractions, such as functor and
monad, which allows the user of the framework to implement
common graphs transformations in a concise and clear manner,
and reuse existing functional programming libraries.

Accumulator (AC)

Completion DetectionEnable Register (RE)

O
ut

 R
eg

is
te

r
(R

O
)

In
it

R
eg

is
te

r
(S

R
)

Counter (CT)

nodes

no
de

s

no
de

s

×

GraphNios II ProcessorHost Computer

Graph Processing Accelerator
(Altera Stratix IV FPGA)

Σ

Fig. 4: Architecture of graph processing accelerator. An instance of the graph to be processed is synthesised and implemented with additional
control circuitry and an on-board NIOS II processor. Host computer communicates with the accelerator via a JTAG interface and can initiate
or read computation results using an Application Programming Interface (API) for graph processing.

Fig. 5: Mapping a graph to a digital circuit for implementing on an FPGA.

III. EMBEDDING GRAPHS INTO FPGAS

While the presented language is an expressive and powerful
tool for manipulating graph descriptions, executing graph al-
gorithms in software is generally inefficient due to the memory
bottleneck. To this end we present an FPGA-based hardware
acceleration backend that supplements the language described
in Section II. The backend provides significant improvement in
shortest path calculations compared to an optimised software
implementation (we compare the two in Section IV).

Even though there are other hardware-based solutions for
accelerating graph computations including many-core/cluster-
based systems [8][9] and GPUs [10][11], we argue that FPGAs
are better suited for the following reasons:

1) They are more cost effective than clusters of commodity
general purpose processors.

2) They allow a direct mapping between network elements
and physical silicon structures (i.e. vertices can be
mapped to flip-flops and edges to interconnect paths, as
will be discussed shortly). This increases both the scale
and absolute performance of computations compared to
more abstract network representations that are necessary
in GPU and DSP implementations.

3) They are programmable, so a single device can be used
to analyse multiple networks, unlike ASICs. This is par-
ticularly useful if the underlying network is frequently
updated (e.g. due to acquisition of new data).

A. General Architecture

An architectural overview of the accelerator is shown in
Fig. 4. At the core, the accelerator consists of an in silico
instance of the graph to be processed, synthesised by mapping
vertices to individual memory elements (flip-flops) and edges
to combinational paths between these elements. The resulting
hardware graph is encapsulated by the control circuitry to
enable/disable selected vertices, coordinate computation, and
read shortest-path computation results. An on-chip software
processor (NIOS II) is also included to communicate with
the host computer and provide an Application Programming
Interface (API) for graph processing.

B. Graph Traversal in Hardware

The basic idea behind representing graphs using flip-flops
and combinational paths is that we wish to perform graph
traversal by propagating logic high values between flip-flops.
The logic state of each flip-flop therefore indicates whether
a given vertex has been visited (logic high) or not (logic low).
To propagate a “visited” state between flip-flops, we OR the
outputs of all vertex neighbours and use it as an input to the
vertex flip-flop. This mapping scheme is illustrated in Fig. 5.

Using this hardware representation, shortest path calculation
from a starting vertex S is performed as follows. Initially, all
vertex flip-flops except for S are reset (indicating an unvisited
state). On the first clock cycle following the initial state, the

“visited” state of S propagates to its immediate neighbours.
The newly-visited vertices then propagate this state to their
own neighbours in the following cycle and so on until the
graph is fully traversed (i.e. when all vertices have been
visited). In short, this computation is a classic breadth-first
search where each iteration is performed in a clock cycle and
involves visiting flip-flops by changing their state to logic high.

Note that the maximum number of clock cycles required
to traverse the graph is equal to the graph diameter, which is
often very small for real-life graphs. For example, biological
networks in our case study comprise thousands of vertices
yet their diameter is typically around 5 due to the small-world
phenomenon. These networks can therefore be traversed in few
clock cycles, which is faster than a single memory access on
a commodity computer. This forms the basis for the significant
acceleration factors reported in Section IV.

C. Calculating Average Shortest Path

The accelerator is designed primarily to calculate the aver-
age shortest path ϑ(G) over all pairs of source and destination
vertices (a, b) where a 6= b, or

ϑ(G) =
1

N(N − 1)

N∑
i=1

N∑
j 6=i

D(vi, vj), (1)

where N is the number of vertices and D(a, b) is the
shortest distance between vertices a and b. For better corre-
spondence with the hardware implementation, presented next,
we reformulate ϑ(G) as

ϑ(G) =
1

N(N − 1)

N∑
i=1

∑
k=1

k × C(vi, k), (2)

where C(a, k) is the number of vertices at a distance k
from vertex a. In this case the inner loop terminates when
C(vi, k) = 0 since this implies C(vi, h) = 0 for h > k.

D. Implementation Details

We now describe in more details how the accelerator
computes ϑ. The graph circuit interfaces with three registers:
an initialisation shift register (SR), an enable register (RE) and
an output register (RO). Register SR initializes vertex values
at the beginning of each traversal while RE enables/disables
selected vertices and RO detects which vertices have been
visited during the current traversal step. Additionally, a counter
CT maintains the step count during each traversal.

Computing ϑ involves N traversals, each amounting to
calculating the inner sum in (2). During each step (of each
traversal), the number of bits in RO is multiplied by CT and
the result is added to an accumulator AC. Each traversal is
completed when RO = 0 (i.e. when no new vertices are visited).
After N traversals, each starting from a different vertex, the
value held in AC is divided by N(N − 1) to obtain ϑ.

Register SR initializes the graph in preparation for a traversal
operation. As discussed earlier, all vertices except for the
starting vertex S are initialized in an unvisited state. The value
of SR is therefore a one-hot encoding of the index of S.

The accelerator is meant to be used in applications where
selected graph vertices can be disabled and the impact of this
on ϑ can be determined. Register RE provides this functional-
ity; it is an N -bit register that can be prepopulated by the user
(via API calls). Any 0 bit entries in this register will disable the
corresponding vertices during the traversal process, effectively
removing them from the graph.

The accelerator is controlled by a host computer; compu-
tations are started, monitored and their results are read via
API calls. This provides a programmatic interface enabling
the accelerator to be used as a step in an automatic quan-
titative workflow involving manipulating a base graph via
vertex removal and evaluating the impact by re-calculating ϑ.
Using the language presented in Section II, an input graph
can be converted into VHDL code and synthesized into an
FPGA within the accelerator framework. Therefore, developers
can read a graph description, synthesize and implement the
accelerator, and then use it to analyse the graph, all while
remaining within the same programming environment.

IV. CASE STUDY

The presented graph transformation language and accom-
panying hardware implementation have been applied suc-
cessfully by e-Therapeutics, a pioneer in drug discovery, to
accelerate their analyses of protein interactions networks. We
discuss this use case here.

A. Computational Drug Discovery: An Overview

Biological systems can be modeled at different levels of
abstraction by extensive networks of interactions. At the base
level, molecular interactions give rise to a rich set of interac-
tions at the cellular level while the latter mediate higher forms
of interactions and so on. If normal cellular function arises
from the molecular interactions within the cell then disease
mechanisms can be considered as emerging from collections
of pathological interactions that only occur in the disease
state [12][13]. If the cellular mechanisms underlying (certain)
diseases can be described as a complex system then drug
discovery aimed at combating those diseases can be considered
as the identification of agents that have a significant effect
when used to perturb those systems.

Approaching the discovery of new therapeutic agents from
this direction has a number of theoretical benefits, such as
being better placed to address complex diseases that arise
due to interactions between multiple components, to tackle
inherent cellular robustness mechanisms [14], potentially re-
duce the capacity to develop resistance [15], and aid in the
discovery of personalized therapeutics [16]. The robustness
and resilience properties of complex systems implies they
can withstand the failure, or functional perturbation, of small
numbers of their constituent elements. Thus, substantial levels
of change in system behavior can only occur when multiple
elements are perturbed simultaneously. The fact that linear
superposition does not hold implies that the identification
of such element collections is not trivial, and is certainly
not as simple as choosing those that appear most important

TABLE I: Resource Utilization and Performance Comparison for Six Protein Network Implementations

Network n0 n1 n2 n3 n4 n5
Vertices 3 15 87 349 1628 3487

Edges 2 42 804 6456 53406 115898

Resource Utilization

LUTs 54 120 477 2237 14093 31249

Memory Bits 63 134 445 1512 6658 14082

Logic Utilization (LUTs + memory) <1% <1% 1% 2% 11% 25%

Average Interconnect Usage <1% <1% <1% <1% 8% 25%

Peak Interconnect Usage <1% <1% 2% 16% 75% 91%

Operating Parameters

Maximum Frequency (MHz) 706 283 246 159 131 107

Processing Cycles (per network) 32 215 1206 4793 22772 48371

Performance

Software Throughput (networks/sec) 105 >104 1176 56 3 ∼0.88

FPGA Throughput (networks/sec) >107 >106 204290 33186 5489 2205

Acceleration Factor ∼100× ∼100× 173× 592× 1829× 2505×

individually. In the context of drug discovery this leads to
the concept of the identification of collections of multiple
proteins, that, when perturbed simultaneously, can have a large
effect on biological function. The experimental identification
of effective protein sets within intact cellular systems is
tricky due to both experimental limitations and combinatorial
explosion. Conversely, computational approaches are ideally
suited for problems plagued by combinatoric issues.

e-Therapeutics has developed a practical, in silico, sys-
tems based approach to drug discovery based on the above
principles [17]. Networks can be considered a mathematical
abstraction of a complex system [1] and have become a very
useful tool for modeling the molecular interactions within a
cell and guiding the understanding of integrated biological
function [18]. Networks, therefore, are an ideal computational
approach to use for modeling cellular disease mechanisms.
Percolation theory applied to complex networks [19] is con-
cerned with exploring the change in network structure and
behavior due to perturbation of collections of system elements.
A key result [20] demonstrates that certain networks, including
biological networks, show tolerance to random vertex failure
but are vulnerable to targeted attacks. As such, network per-
colation forms a computational framework to develop analysis
approaches aimed at the identification of effective protein sets
in disease networks.

B. Drug Discovery by Network Analysis

The impact I of a perturbation, or removal, of vertices from
a network is defined as

IX =
|ζn − ζ0|

ζ0

where ζn is the value of network measure X when n vertices
have been removed from the network.

Numerous measures X have been used in studies of net-
work percolation and robustness with two commonly used

measures being network diameter [20] and the average shortest
path [21]. Both these measures rely on the calculation of all
shortest paths between every pair of vertices in the network,
or those in the largest connected component if the network be-
comes fragmented. For unweighted graphs, which are typically
used in the drug discovery context, a breadth-first search is
the most efficient solution to obtain all shortest paths between
a pair of vertices with a time complexity of O(|V | + |E|),
where |V | and |E| are the numbers of vertices and edges,
respectively. The practical use of percolation experiments dur-
ing the drug discovery approach at e-Therapeutics necessitates
the calculation of impact on a network of multiple different
proteins sets with the total number of protein sets into the
hundreds of thousands. As such, improvements in calculation
speed of the core impact measures based on shortest path
calculations would have a major positive effect on reducing
computational bottlenecks in the discovery process.

C. Biological Networks on FPGAs

We synthesized six protein interaction networks, used by
e-Therapeutics, and implemented them on an FPGA as part of
the graph analysis accelerator described in Section III. The
networks are used to evaluate and compare the effects of
different drug candidates on complex cellular systems. The
impact of each drug is evaluated by disabling selected vertices
that the drug is known to perturb and then calculating ϑ.
Our motivation was: i) to compare accelerator performance
to a software implementation, and ii) to test the scalability
of our hardware implementation using realistic networks used
in an industrial application. The networks ranged from very
small (3 vertices, 2 edges) to considerably large (3487 vertices,
115898 edges) and had a small diameter (around 5).

Table I summarizes accelerator resource utilization and per-
formance for the six networks. We found that the FPGA device
we used (Altera Stratix IV - EP4SGX230) was sufficiently

large to accommodate the largest network (n5). For this net-
work, combinational logic and register utilization represented
a considerable but still permitting percentage of device re-
sources (25%) while peak interconnect utilization approached
the device’s limit (91%). This result is not surprising given
that the high degree of connectivity in biological networks
cannot be matched by the planar interconnect network of an
FPGA. Many real-world networks have comparable degrees
of connectivity and so we expect that the scalability of our
hardware implementation will be upper-bounded by FPGA
interconnect density. Nevertheless, n5 is the largest within its
class of proteins interaction networks used at e-Therapeutics
and so our hardware implementation and choice of FPGA
device have been sufficient for this particular application.

The increase in network scale also meant that the clock
frequency at which the network could be clocked was lower,
a trend clearly visible in Table I. This is because neighbor-
ing vertices had to be mapped to more distant flip-flops to
accommodate the entire network and worst-case propagation
delay had to be increased correspondingly. Nevertheless, we
found that we could achieve a target clock frequency higher
than 100 MHz for the largest network (n5). Another upshot
of increasing network scale is that the number of cycles to
calculate ϑ also increases since shortest path computations
have to be repeated for a larger number of vertices. This
decreased performance further compared to smaller networks.

Compared to a software implementation, the throughput
of average path calculations using our hardware accelerator
was higher by 2 to 4 orders of magnitude. Even though
larger networks could be clocked at lower frequencies and
required more cycles to calculate ϑ, the relative performance
of the accelerator with these networks was higher (compared to
software). Again, this is a trend that we expected; our approach
scales much better with respect to network size compared to a
software implementation. The performance benefit is therefore
more prominent when processing larger networks.

V. CONCLUSIONS AND FUTURE RESEARCH

The paper presented a domain-specific language for graph
construction and transformation, and a hardware acceleration
backend for processing graphs on FPGAs. We demonstrate
1000x acceleration compared to a conventional software im-
plementation used in the drug discovery industry.

Our future research will focus on investigating the applica-
bility of the developed technology to graph processing in other
domains, where graphs are typically fixed apart from minor
perturbations and can therefore be embedded into FPGAs.
One such example is smart grids, where vertices and edges
are rarely added or removed. Deep learning networks are also
suitable for embedding in hardware and it would be instructive
to compare the developed technology to those produced by
other groups in this active research area. We believe that the
presented graph transformation language may be particularly
well-suited for compiling machine-learning networks devel-
oped using frameworks such as Tensorflow [22] into hardware.
Finally, with the advent of cloud FPGA technology it becomes

possible to provide easily accessible and highly scalable graph
manipulation and processing infrastructure for a wide range of
applications and users, which is our long-term goal.

REFERENCES

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47, 2002.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2001.

[3] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28(4):196, 1996.

[4] Haskell library algebraic-graphs. Home page and documentation on
Hackage: http://hackage.haskell.org/package/algebraic-graphs.

[5] Removed for blind review.
[6] M. Lipovača. Learn You a Haskell for Great Good!: A Beginner’s Guide.

No Starch Press, 2012.
[7] Philip Wadler. Monads for functional programming. In International

School on Advanced Functional Programming, pages 24–52. Springer,
1995.

[8] Nadathur Satish, Changkyu Kim, Jatin Chhugani, and Pradeep Dubey.
Large-scale energy-efficient graph traversal: a path to efficient data-
intensive supercomputing. In High Performance Computing, Network-
ing, Storage and Analysis (SC), 2012 International Conference for, pages
1–11. IEEE, 2012.

[9] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel
graph exploration on multi-core cpu and gpu. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on,
pages 78–88. IEEE, 2011.

[10] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. Gunrock: A high-performance graph
processing library on the gpu. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
page 11. ACM, 2016.

[11] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In International Conference on High-Performance
Computing, pages 197–208. Springer, 2007.

[12] T. Ideker and R. Sharan. Protein networks in disease. 18(4):644–652.
[13] Eric E. Schadt. Molecular networks as sensors and drivers of common

human diseases. 461(7261):218–223.
[14] Hiroaki Kitano. A robustness-based approach to systems-oriented drug

design. 6(3):202–210.
[15] Tianhai Tian, Sarah Olson, James M. Whitacre, and Angus Harding.

The origins of cancer robustness and evolvability. 3(1):17.
[16] Rui Chen and Michael Snyder. Systems biology: Personalized medicine

for the future? 12(5):623–628.
[17] Removed for blind review.
[18] Albert-László Barabási and Zoltán N Oltvai. Network biology: Under-

standing the cell’s functional organization. 5(2):101–13.
[19] D S Callaway, M E Newman, S H Strogatz, and D J Watts. Network

robustness and fragility: Percolation on random graphs. 85(25):5468–71.
[20] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and

attack tolerance of complex networks. 406(6794):378–382.
[21] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda.

Efficiency of scale-free networks: Error and attack tolerance. 320:622–
642.

[22] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. Google Research, White Paper, 2016.

