
Searching for a Compressed Polyline
with a Minimum Number of Vertices

Alexander Gribov
Environmental Systems Research Institute

380 New York Street
Redlands, CA 92373

E-mail: agribov@esri.com

Abstract—There are many practical applications that require
simplification of polylines. Some of the goals are to reduce the
amount of information necessary to store, improve processing
time, or simplify editing. The simplification is usually done by
removing some of the vertices, making the resultant polyline go
through a subset of the source polyline vertices. However, such
approaches do not necessarily produce a new polyline with the
minimum number of vertices. The approximate solution to find a
polyline, within a specified tolerance, with the minimum number
of vertices is described in this paper.

Index Terms—polyline compression; polyline approximation;
orthogonality; circular arcs

I. INTRODUCTION

The task is to find a polyline, within a specified tolerance
of the source polyline, with the minimum number of vertices.
That polyline is called optimal. Usually, a subset of vertices of
the source polyline is used to construct an optimal polyline [1],
[2]. However, an optimal polyline does not necessarily have
vertices coincident with the source polyline vertices. One
approach, to allow the resultant polyline to have flexibility
in the locations of vertices, is to find the intersection be-
tween adjacent straight lines [3] or geometrical primitives [4].
However, there are situations when such an approach does
not work well, for example, when adjacent straight lines are
almost parallel to each other or a circular arc is close to being
tangent to a straight segment. The approach described in this
paper evaluates a set of vertex locations (considered locations)
while searching for a polyline with the minimum number of
vertices.

II. ALGORITHM

A. Discretization of the Solution

Any compressed polyline must be within tolerance of the
source polyline; therefore, the compressed polyline must have
vertices within tolerance of the source polyline. It would
be very difficult to consider all possible polylines and find
one with the minimum number of vertices; therefore, as an
approximation, only some locations around vertices of the

Fig. 1. Example of one segment (red segment) between considered locations
(black dots) within tolerance of the source polyline (blue polyline).

source polyline are considered (see the black points around
the vertices of the source polyline in Fig. 1).

The locations around vertices of the source polyline are
chosen to be on an infinite equilateral triangular grid with
the distance from vertices of the source polyline less than the
specified tolerance. The equilateral triangular grid (see Fig. 2)
has the lowest number of nodes versus other grids (square,
hexagonal, etc.), satisfying that distance from any point to the
closest node does not exceed the specified threshold.

O

A B

C

Fig. 2. The worst case distance for the equilateral triangular grid is the
distance from the center of the triangle O to any vertex of the equilateral
triangle. If OA = OB = OC = 1, then AB = BC = CA =

√
3.

The choice for the side of an equilateral triangle in the
equilateral triangular grid is calculated from the error it
introduces. That error can be expressed as a proportion of
the specified tolerance. For example, q ∈ (0, 1) proportion of
the specified tolerance means that the side of the equilateral
triangle is equal to q

√
3 times the specified tolerance. This

leads to about
2π

3
√

3q2
≈ 1.2

q2
locations per each vertex. To

decrease complexity, some locations might be skipped; if they
are considered in neighbor vertices of the source polyline,
however, it should be done without breaking the combinatorial
algorithm described in section II-E. If tolerance is great,
it is possible to consider locations around segments of the
source polyline. In this paper, to support any tolerance, only
locations around vertices of the source polyline are considered.
Densification of the source polyline might be necessary to find
the polyline with the minimum number of vertices.

B. Testing a Segment to Satisfy Tolerance

For a compressed polyline to be within tolerance, every
segment of the compressed polyline must be within tolerance
from the part of the source polyline it describes. To find the
compressed polyline with the minimum number of vertices,
this test has to be performed many times for all combinations

ar
X

iv
:1

50
4.

06
58

4v
1

 [
cs

.C
G

]
 2

4
A

pr
 2

01
5

of possible locations of vertices (see Fig. 1). [5] describes an
efficient approach to perform these tests based on the convex
hull. If the convex hull is stored as a polygon, the complexity
of this task is O(log n), where n is the number of vertices in
the convex hull [5]. The expected complexity of the convex
hull for the N random points in any rectangle is O(logN),
see [6]. If the source polyline has parts close to an arc, the size
of the convex hull tends to increase. For the worst case, the
number of vertices in the convex hull is equal to the number
of vertices in the original set.

If there are no lines with thickness of two tolerances
covering the convex hull completely, then one segment cannot
describe this part of the source polyline. The complexity of
this check is O(n log n).

A convex hull for any part of the source polyline is
constructed in the same way as in [5].

C. Testing Segment End Points

The test described in the previous section II-B does not
check the ends of the segment. The example in Fig. 3 shows
that the source polyline changes direction to the opposite
several times (zigzag) before going up. Without checking end
points and changes in direction, the compressed polyline might
not describe some parts of the source polyline (Fig. 3a).
Therefore, these tests are necessary to guarantee that the
compressed polyline (Fig. 3b) describes the source polyline
without missing any parts.

(a) (b)
Fig. 3. The blue polyline is the source polyline. The red polyline is the
result of the algorithm without checking for end points and the source polyline
direction (a) and with both checks performed (b).

The segment end points to be within the tolerance of the
part of the source polyline are tested based on the convex
hull in the same way as the test for the segment to be within
tolerance performed in section II-B.

This is equivalent to the test if the segment extended in
parallel and perpendicular directions by the tolerance (see
Fig. 4) contains a convex hull of the part of the source polyline
it describes. If more directions are used, a better approximation
of the curved polygon can be obtained. The complexity of the
test is O(log n).

Fig. 4. The diagonal striped area is the tolerance area around the segment.
The thin rectangle is the approximation of the area around the segment. A
thick polygon would be a better approximation.

D. Testing Polyline Direction
The test for the source polyline to have a zigzag is

performed by checking if the projection to the segment of
backward movement exceeds two tolerances (2T , where T is
the tolerance). Two tolerances are used because one vertex of
the source polyline can shift forward by the tolerance and
the vertex after that shift backward by the tolerance. The
algorithm is based on analyzing zigzags before the processed
point. Let pi be the vertices of the polyline, i = 0..N − 1, N
be the number of vertices in the polyline. The next algorithm
constructs a table for efficient testing.

Define a set of directions αj =
2π

Nd
j,

where j = 0..Nd − 1, Nd is the number of directions.
Cycle over each direction αj , j = 0..Nd − 1.

Define the priority queue with requests containing two
numbers. The first number is the real value, and the
second number is the index. Priority of the request is
equal to the first number.
Set k = 0.
Cycle over each point pi of the source polyline,
i = 0..N − 1.

Calculate projection of pi to the direction αj (scalar
product between the point and the direction vector):

d = pi · (cos (αj) , sin (αj)) .

Remove all requests from the priority queue with
a priority of more than d+ 2T . If the largest index
from removed requests is larger than k, set k equal
to that index.
Set Vj,i = k.
Add request (d, i+ 1) to the priority queue.

To test if the part of the source polyline between vertices
is and ie has a zigzag.

First, find the closest direction αj to the direction of the

segment αj∗ : j∗ = round

(
Nd
2π

α

)
mod Nd, where α is

the direction of the segment.
Second, if Vj∗,ie ≤ is, then there are no zigzags for the
segment describing the part of the source polyline from
vertex is till ie.

Let Wi = min
0≤j∧j<Nd

(Vj,i). If is < Wie , then one segment

cannot describe the part of the source polyline from vertex is
till ie.

This test has some limitations:
• The tested direction is approximated by the closest one,

making the check approximate.
• For some error models, a zigzag might pass the test. For

example, if errors are limited by a circle, a zigzag by two
tolerances is only possible if it happens directly on the
segment.

Nevertheless, it is an efficient test to avoid absurd re-
sults, like in Fig. 3a. The complexity of the algorithm is
O(NdN log (N)) and the complexity to test any segment is
O(1).

E. Combinatorial Approach to Find an Optimal Solution

The optimal solution is found by using the algorithm
described in [3].

Let pi,j be considered locations for vertex pi, where
i = 0..N − 1, j = 0..Ni − 1, Ni is the number of con-
sidered locations for the vertex i. Let pairs (ik, jk),
k = 0..m, divide the source polyline into m straight segments(
pik,jk , pik+1,jk+1

)
describing the source polyline from vertex

ik till ik+1, k = 0..m− 1. Notice that neighbor segments are
already connected in pik,jk , k = 1..m− 1, and this solution
avoids problems in algorithms [3], [4] when the intersection
of neighbor segments is far away from the source polyline.

The goal of this algorithm is to find the solution with
the minimum number of vertices while satisfying tolerance
restriction, and among them with the minimum integral square
differences. Therefore, minimization is performed in two parts{
T#

T ε

}
, where the first part T# is the number of segments,

and the second part T ε is the integral of the square deviation
between segments and the source polyline. The solutions
are compared by the number of segments and, if they have
the same number of segments, by square deviation between
segments and the source polyline. The solution of this task,
when the optimal polyline has vertices coincident with the
source polyline, can be found in [7].

Let Pk, k = 0..N − 1 be parts of the source polyline from
vertex 0 to k.

The optimal solution is found by induction. Define the

optimal solution for polyline P0 as

{
T#
0,j

T ε0,j

}
=

{
0

0

}
,

j = 0, N0 − 1. For k = 1, N − 1, construct the optimal
solution for Pk from optimal solutions for Pk′ , k′ = 0..k − 1.{
T#
k,j

T εk,j

}
= min

0 ≤ k′ ∧ k′ < k

0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#
k′,j′ + 1

T εk′,j′ + ε(k′,j′),(k,j)

})
,

where ε(k′,j′),(k,j) is the integral square difference between
segment (pk′,j′ , pk,j) and the source polyline from vertex
k′ till k, check ((k′, j′) , (k, j)) is a combination of checks
described in the previous sections II-B, II-C, and II-D to check
if segment (pk′,j′ , pk,j) can describe the part of the source
polyline from vertex k′ till k.

To reconstruct the optimal solution, it is necessary for{
T#
k,j

T εk,j

}
to store {k′, j′} when the right part is minimal.

The optimal solution is reconstructed from

min
0≤j∧j<NN−1

{
T#
N−1,j

T εN−1,j

}

by recurrently using stored {k′, j′} values.

F. Optimization

It is possible to significantly reduce the complexity of the
algorithm described in the previous section II-E by using the
approach described in [3].

min
k1 ≤ k′ ∧ k′ ≤ k2
0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#
k′,j′ + 1

T εk′,j′ + ε(k′,j′),(k,j)

})
'

' min
k1 ≤ k′ ∧ k′ ≤ k2
0 ≤ j′ ∧ j′ < Nk′

({
T#
k′,j′ + 1

T εk′,j′ + ε
(k2)
(k′,j′),(k,j)

})
,

(1)

where

ε
(k2)
(k′,j′),(k,j) =

= min
0 ≤ j2 ∧ j2 < Nk2

check ((k′, j′) , (k2, j2))

check ((k2, j2) , (k, j))

(
ε(k′,j′),(k2,j2) + ε(k2,j2),(k,j)

)
.

From (1), it follows that

min
k1 ≤ k′ ∧ k′ ≤ k2
0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#
k′,j′ + 1

T εk′,j′ + ε(k′,j′),(k,j)

})
'

' min
0 ≤ j2 ∧ j2 < Nk2

check ((k2, j2) , (k, j))

({
T#
k2,j2

T εk2,j2 + ε(k2,j2),(k,j)

}) (2)

and

min
k1 ≤ k′ ∧ k′ ≤ k2
0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#
k′,j′ + 1

T εk′,j′ + ε(k′,j′),(k,j)

})
'

' min
0≤j1∧j1<Nk1

({
T#
k1,j1

T εk1,j1

})
+

+


1

min
0 ≤ j2 ∧ j2 < Nk2

check ((k2, j2) , (k, j))

(
ε(k2,j2),(k,j)

) .

(3)

The maximum of (2) and (3) can be used to skip checking
combinations between vertex k1 and k2.

The inequalities (2) and (3) are approximate due to the
use of considered locations. However, this allows finding
stricter limitations for the solution inside the interval and
simultaneously finding the solution for breaking at vertex k2.

It is possible to construct (2) and (3) with exact inequalities
by constructing the optimal solution when the end point is

not required to end in the considered location. Similarly, the
part from vertex k2 to (k, j) should not be required to end
in considered locations for vertex k2. This is useful when the
resultant polyline is required to go through the vertices of
the source polyline. However, such an algorithm has a worse
compression ratio than the one with the flexibility in joints.

See paper [3] for further details of this algorithm.

G. Optimal Compression of Closed Polylines

To find the optimal compression of a closed polyline, it is
necessary to know the starting vertex. It is also necessary that
the resultant polyline starts and ends in the same vertex. The
next algorithm will be used to find the starting vertex and
construct a closed resultant polyline.

1. Construct a convex hull for all vertices of the source
polyline.

2. Find the smallest angle of the convex hull polygon.
3. Take the vertex corresponding to the smallest angle as

the starting vertex and reorient the closed polyline to start
from that vertex.

4. Apply the algorithm.
5. From the constructed solution, take one vertex in the

middle as the new starting vertex and reorient the closed
polyline to start from that vertex.

6. Apply the algorithm once more, while for the first and
the last vertex consider only the location of the previous
solution for the middle vertex.

Steps 1, 2, and 3 are important for a small closed polyline.
For the small closed polyline, the resultant polyline is within
tolerance of the source polyline, even with suboptimal orien-
tation. As a consequence, without these steps, step 5 may not
find the optimal division of the source polyline, leading to a
suboptimal solution.

H. Optimal Compression by Straight Segments and Arcs

This algorithm is extendible to support arcs. The arc passing
through considered locations differs from the segment by the
necessity to define the radius. Unfortunately, it adds significant
complexity to the algorithm. Nevertheless, such an algorithm
is possible. There are different ways to fit an arc to a
polyline: minimum integral square differences of squares [8],
[9], minimum integral square differences [10]–[14], minimum
deviation, etc. Algorithms with complexity O(n), where n is
the number of vertices in the fitted polyline, are not suitable
due to the significant increase in complexity. The algorithms
with acceptable complexity O(1) are [8], [9], [13], [14];
however, algorithms based on integral square differences of
squares [8], [9] might break for small arcs and, therefore, are
not suitable. Checking that the part of the source polyline
is within tolerance, end points, and zigzag will be time-
consuming due to complexity O(n).

III. ANALYSIS OF THE ALGORITHM COMPLEXITY

The algorithm contains three steps:
1. Preprocessing: construction of convex hulls (section II-B)

and filling arrays for an efficient zigzag test (section II-D).

2. Construction of the optimal solution (section II-E).
3. Reconstruction of the optimal solution (section II-E).

A significant amount of time is spent on constructing an
optimal solution. It is difficult to evaluate the complexity
described in section II-F; however, the worst complexity is

O

(
N2 · max

0≤i∧i<N

(
N2
i

)
· log (N)

)
. (4)

The complexity of the algorithm depends on the type of
polyline it processes. It is very difficult to conclude what is the
practical complexity of this algorithm. If the optimal polyline
does not have segments describing too many vertices of the
source polyline, (4) tends to be

O

(
N · max

0≤i∧i<N

(
N2
i

))
. (5)

Fig. 5 shows how much time it takes to process a polyline
depending on the number of vertices. The dependence is very
close to linear, supporting (5).

Fig. 5. Time needed to process a polyline versus the number of vertices. The
time is measured in CPU ticks on the processor Intel Xeon CPU E5-2670. The
polylines are generated by the Brownian motion process. Each next vertex
is randomly incremented from the previous vertex by random vector, with
components normally distributed with zero mean and 0.25 standard deviation.
The tolerance was set to one. The average reduction in the number of vertices
is about 50 times.

IV. EXAMPLES

Fig. 6 shows an example of the algorithm described in this
paper. If the source polyline is the noisy version of a ground
truth polyline, where the noise does not exceed some thresh-
old, and the algorithm is provided with a tolerance slightly
greater than the threshold to account for approximations inside
the algorithm, then the resultant polyline will never have more
vertices than the ground truth polyline.

The effectiveness of the approach is shown in Fig. 7. Nine
segments are sufficient to represent the arc with specified
precision. The algorithm not only optimizes the number of
segments, it also finds the locations of the segments that
minimize integral square differences. Therefore, as shown in
Fig. 7, the algorithm tends to construct segments similar in
length.

Fig. 8 shows the dependence from the error introduced by
a discrete set of considered locations (see section II-A) to
the efficiency of the compression. Flexibility in places where
neighboring segments connect each other is very important to
reach maximum compression, especially for noisy data.

(a)

(b)

(c)
Fig. 6. Comparison of the result of approximation of the Douglas-Peucker
algorithm (b) and approximation of optimal polyline compression (c). The
green polyline is a ground truth. The red polyline is the source polyline
(a), the result of the Douglas-Peucker algorithm [1] (b), and the result of
optimal polyline compression (c). The black dots around vertices of the source
polyline are considered locations for the vertices of the compressed polyline.
The vertices of the source polyline are deviated from the segments of the
ground truth polyline by random values uniformly distributed in the interval
(−0.1, 0.1).

Fig. 7. The black polyline is the source polyline. The red circles are the
vertices of the optimal polyline. Ground truth is the arc of 90°. The noise has
uniform distribution in the circle of one percent of the arc radius.

V. OPTIMAL COMPRESSION BY ORTHOGONAL
DIRECTIONS

The triangular grid for considered locations supports direc-
tions by 30°. Reconstruction of orthogonal buildings requires
support for 90° [15] and sometimes 45°. The square grid for
considered locations is more appropriate for this task.

Notice that because only certain directions are allowed,
only segments between pairs of considered locations aligned
by these directions may be parts of the resultant polyline.
Suppose that the resultant segment goes between vertex i and
j. Because it has to be within tolerance for all vertices between
i and j, it goes through their considered locations (with the
exception of the segment deviating close to the tolerance due
to discretization of considered locations).

Fig. 8. The number of segments versus discretization error. The polyline
was generated by the Brownian motion process in the same way as in Fig. 5
with 10, 000 vertices.

The optimal solution is found by induction. Define the

optimal solution for polyline P0 as

{
T#
0,j,q

T ε0,j,q

}
=

{
0

0

}
, where

j = 0, N0 − 1, q = 0,M − 1, and M is the number of
different directions. For orthogonal case M = 4, and for 45°

case M = 8. Take directions as αi =
360°
M
· i, i = 0,M − 1.

For k = 1, N − 1, construct the optimal solution for Pk from
the optimal solution for Pk−1.{

T#
k,j,q

T εk,j,q

}
=

min
0 ≤ j′ ∧ j′ < Nk−1

0 ≤ q′ ∧ q′ < M

2 |q′ − q| 6= M

angle (pk,j − pk−1,j′ , αq′)

({
T#
k−1,j′,q′ + δq′ 6=q

T εk−1,j′,q′ + ε(k−1,j′),(k,j)

})
,

were δq′ 6=q =

{
1, if q′ 6= q,

0, otherwise;

angle (v, α) is the check that the vector v has angle α (zero
length vectors are allowed).

The condition 2 |q′ − q| 6= M corresponds to prohibiting
changes in direction by 180°.

For the 45° case, it is possible to restrict the resultant
polyline from having sharp angles by not allowing a change
of direction by 135° (|4− ((q′ − q) mod 8)| 6= 1).

Notice that there are no checks for the tolerance, direction,
and end points because they are satisfied during each induction
step.

Analyzing the previous solution along M direction will
further reduce the amount of calculations. The total complexity
of the algorithm is

O

(
N · max

0≤i∧i<N
(Ni) ·M

)
.

For some data, the algorithm may produce an improper
result. This happens when the introduction of a zero length
segment lowers the penalty.

Because the correct orientation is not known in advance, it
is necessary to rotate polylines by different angles and take
the solution with the lowest penalty [15, see section 6].

Fig. 9 shows an example for the reconstruction of orthogo-
nal buildings.

Fig. 9. The black polylines are reconstructed buildings from lidar data [16].
The red polylines are the resultant orthogonal shapes. The blue polylines are
the ground truth taken from [17].

The reconstruction of buildings with 45° sides are shown in
Fig. 10.

Fig. 10. This differs from Fig. 9 by the allowance of 45° segments.

The main difference of the algorithm described in this
section and [15] is in the parameters. The specification of the
tolerance is easier than the specification of the penalty ∆ for
each additional segment.

VI. CONCLUSION

This paper describes an approximation algorithm that finds a
polyline with the minimum number of vertices while satisfying
tolerance restriction. The solution is optimal with the following
limitations:

• The vertices of the compressed polyline are limited to
considered locations (section II-A).

• The test that the vertex of the compressed polyline is
located between some vertices of the source polyline is
approximate due to the snapping of the breaking point
(section II-F).

• The tests for end points (section II-C) and zigzags are
approximate (section II-D).

The performance of the algorithm can be greatly improved
if the number of considered locations is decreased without
losing quality. This requires further research.

REFERENCES

[1] D. H. Douglas and T. K. Peucker, Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or its
Caricature. The Canadian Cartographer, 1973, vol. 10, no. 2, pp.
112–122.

[2] F. Chen and H. Ren, “Comparison of vector data compression
algorithms in mobile GIS,” in 2010 3rd IEEE International Conference
on Computer Science and Information Technology (ICCSIT), vol. 1,
July 2010, pp. 613–617. [Online]. Available:
http://dx.doi.org/10.1109/ICCSIT.2010.5564118

[3] A. Gribov and E. Bodansky, “A new method of polyline
approximation,” in Structural, Syntactic, and Statistical Pattern
Recognition, ser. Lecture Notes in Computer Science, A. Fred, T. M.
Caelli, R. P. Duin, A. Campilho, and D. de Ridder, Eds. Springer
Berlin Heidelberg, 2004, vol. 3138, pp. 504–511. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-27868-9 54

[4] E. Bodansky and A. Gribov, “Approximation of a polyline with a
sequence of geometric primitives,” in Image Analysis and Recognition,
ser. Lecture Notes in Computer Science, A. Campilho and M. Kamel,
Eds. Springer Berlin Heidelberg, 2006, vol. 4142, pp. 468–478.
[Online]. Available: http://dx.doi.org/10.1007/11867661 42

[5] J. Hershberger and J. Snoeyink, “Speeding up the Douglas-Peucker
line-simplification algorithm,” in Proceedings of the 5th International
Symposium on Spatial Data Handling, 1992, pp. 134–143.

[6] S. Har-Peled, “On the expected complexity of random convex hulls,”
CoRR, vol. abs/1111.5340, December 2011. [Online]. Available:
http://arxiv.org/abs/1111.5340

[7] W. S. Chan and F. Chin, “Approximation of polygonal curves with
minimum number of line segments or minimum error,” International
Journal of Computational Geometry & Applications, vol. 06, no. 01,
pp. 59–77, 1996. [Online]. Available:
http://dx.doi.org/10.1142/S0218195996000058

[8] S. M. Thomas and Y. T. Chan, “A simple approach for the estimation
of circular arc center and its radius,” Computer Vision, Graphics, and
Image Processing, vol. 45, no. 3, pp. 362–370, March 1989. [Online].
Available: http://dx.doi.org/10.1016/0734-189X(89)90088-1

[9] C. Ichoku, B. Deffontaines, and J. Chorowicz, “Segmentation of
digital plane curves: A dynamic focusing approach,” Pattern Recogn.
Lett., vol. 17, no. 7, pp. 741–750, June 1996. [Online]. Available:
http://dx.doi.org/10.1016/0167-8655(96)00015-3

[10] S. M. Robinson, “Fitting spheres by the method of least squares,”
Commun. ACM, vol. 4, no. 11, p. 491, November 1961. [Online].
Available: http://doi.acm.org/10.1145/366813.366824

[11] U. M. Landau, “Estimation of a circular arc center and its radius,”
Computer Vision, Graphics, and Image Processing, vol. 38, no. 3, pp.
317–326, June 1987. [Online]. Available:
http://dx.doi.org/10.1016/0734-189X(87)90116-2

[12] E. Bodansky and A. Gribov, “Approximation of polylines with circular
arcs,” in Graphics Recognition. Recent Advances and Perspectives, ser.
Lecture Notes in Computer Science, J. Lladós and Y.-B. Kwon, Eds.
Springer Berlin Heidelberg, 2004, vol. 3088, pp. 193–198. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-25977-0 18

[13] L. Dorst, “Total least squares fitting of k-spheres in n-d Euclidean
space using an (n+2)-d isometric representation,” Journal of
Mathematical Imaging and Vision, vol. 50, no. 3, pp. 214–234, 2014.
[Online]. Available: http://doi.org/10.1007/s10851-014-0495-2

[14] A. Gribov, “Approximate fitting of circular arcs when two points are
known,” 2015, in preparation for http://arxiv.org/.

[15] A. Gribov and E. Bodansky, “Reconstruction of orthogonal polygonal
lines,” in Document Analysis Systems VII, ser. Lecture Notes in
Computer Science, H. Bunke and A. Spitz, Eds. Springer Berlin
Heidelberg, 2006, vol. 3872, pp. 462–473. [Online]. Available:
http://dx.doi.org/10.1007/11669487 41

[16] “Missouri spatial data information service.” [Online]. Available:
http://msdis.missouri.edu/data/lidar/index.html

[17] “Saint Louis County, Missouri.” [Online]. Available:
http://www.stlouisco.com/OnlineServices/MappingandData

http://dx.doi.org/10.1109/ICCSIT.2010.5564118
http://dx.doi.org/10.1007/978-3-540-27868-9_54
http://dx.doi.org/10.1007/11867661_42
http://arxiv.org/abs/1111.5340
http://dx.doi.org/10.1142/S0218195996000058
http://dx.doi.org/10.1016/0734-189X(89)90088-1
http://dx.doi.org/10.1016/0167-8655(96)00015-3
http://doi.acm.org/10.1145/366813.366824
http://dx.doi.org/10.1016/0734-189X(87)90116-2
http://dx.doi.org/10.1007/978-3-540-25977-0_18
http://doi.org/10.1007/s10851-014-0495-2
http://dx.doi.org/10.1007/11669487_41
http://msdis.missouri.edu/data/lidar/index.html
http://www.stlouisco.com/OnlineServices/MappingandData

	I Introduction
	II Algorithm
	II-A Discretization of the Solution
	II-B Testing a Segment to Satisfy Tolerance
	II-C Testing Segment End Points
	II-D Testing Polyline Direction
	II-E Combinatorial Approach to Find an Optimal Solution
	II-F Optimization
	II-G Optimal Compression of Closed Polylines
	II-H Optimal Compression by Straight Segments and Arcs

	III Analysis of the Algorithm Complexity
	IV Examples
	V Optimal Compression by Orthogonal Directions
	VI Conclusion
	References

