
Learning from errors: error-based exercises

in domain modelling pedagogy

Daria Bogdanova1 and Monique Snoeck1

1Research Center for Management Informatics, KU Leuven, Naamsestraat 69,

3000 Leuven, Belgium

daria.bogdanova@kuleuven.be; monique.snoeck@kuleuven.be

Abstract. Conceptual modelling remains a challenging topic for educators, as it

concerns ill-defined problems and requires substantial amount of practice for

reaching even the initial level of proficiency. Year after year, novice modellers

tend to make similar errors when learning to design models and some of those

errors become persistent even at the higher level of proficiency. Are these errors

the unavoidable “necessary evil” or there is a possibility to address them at the

very early stage of a modeller’s education? In this work, we examine a novel

approach to teaching conceptual modelling by identifying the most frequent er-

rors in students’ models and introducing error-based step-by-step exercises in the

framework of a Small Private Online Course for university students.

Keywords: Conceptual Modelling, Domain Modelling, Enterprise Modelling,

Education, Error-Based Learning, Adaptive Expertise, UML, Class Diagrams

1 Introduction

The question of properly addressing students’ errors in the subjects rich with ill-defined

problems is one of the substantial challenges arising before educators. In conceptual

modelling pedagogy, this question is of a particular significance, as the novice modelers

should not only reach the “routine”-level expertise that implies knowledge of a reper-

toire of tools or procedures, but also become adaptive experts that are able to promptly

grasp the core of provided requirements, identify the changes in the previously learned

task, and adapt the procedures accordingly.

Although numerous guidelines, reusable patterns and other materials on conceptual

modelling (and, specifically, on UML class diagrams) are available, novice modelers

tend to struggle with grasping the gist of the subject. Moreover, the extensive amount

of materials may even hinder the development of a novice – “typical novice analysts

fail to derive maximum benefit from such assistance due to the cognitive overload in-

volved in the recommendations and guidelines”[1:108].

In addition to the challenge of the “cognitive overload”, novice modellers are often

provided with unbalanced learning material, which is focused either on the lowest-level

cognitive skills (e.g. “understand” level, according to the revised Bloom’s taxonomy

[2]), or the highest, such as the very creation of a model “from scratch”, while the in-

termediate levels necessary for a constructive skill acquisition involving learning to

mailto:daria.bogdanova@kuleuven.be
mailto:monique.snoeck@kuleuven.be
https://orcid.org/0000-0001-6481-4300
https://orcid.org/0000-0002-3824-3214

apply procedures, analyse and evaluate models and their parts, remain underrepresented

in the pedagogical materials [3].

The abovementioned difficulties require thorough reflection and action at least at a

level of a particular university course, and ask for rethinking of conceptual modelling

curriculum fieldwide.

In this paper, we will take a closer look particularly at domain modelling errors that

students tend to make, propose an error-based approach to creating step-by-step mod-

elling exercises and evaluate the preliminary result of its implementation in the context

of a master-level course of Architecture and Modelling of Management Information

Systems at KU Leuven. We will examine the effectiveness of targeted step-by-step

online exercises for preventing the most common student errors in simple UML models

design at a task level and identify the content areas and concepts, which cause most

difficulties.

2 Background

2.1 Knowledge evaluation criteria

The quality of a model designed by a student can be considered the most important

indication of mastery of the subject. One of the most commonly accepted modelling

quality frameworks is the three dimensional framework proposed by Lindland et al. [4].

The framework proposes to evaluate a conceptual model from three quality perspec-

tives: syntactic (formal syntax of the model), semantic (relevance of the model to the

domain it describes) and pragmatic (readability/understandability of the model). Thus,

errors in modelling can be classified according to the quality dimensions they belong

to, both in the professional and educational settings. However, in an educational setting

dedicated to the initial stages of training and design of simple models, more narrow

evaluation criteria can be applied, so that students could reflect not only on the final

modelling solution, but also on the flaws in the various stages of modelling, and/or be

informed on the specific content area that requires revising. As an example, in [5], a

simplified set of criteria suitable for novice learners of simple class diagrams is pro-

posed, including the syntactic, class-related, attribute-related and association-related

errors. If classified according to [4], these types are part of only syntactic and semantic

quality dimensions, with no pragmatic dimension involved. However, those two dimen-

sions of quality are considered the most important at the initial stage of learning, when

the students must grasp the core principles of modelling. Afterwards, students should

be able to refine the semantically and syntactically valid model according to the prag-

matic quality standards.

2.2 Novices’ errors in domain modelling

Identification of typical modelling errors has been subject of a number of studies in the

last two decades. Novice modelers tend to struggle with similar types of tasks and no-

tions throughout time. In 1994, an experimental study on novice errors in conceptual

database design showed that the typical errors included literal translation of require-

ments, bias related to incomplete knowledge, errors in relationship degree, as well as

incorrect connectivity (“one” or “many”) [6]. Similar errors were found in 2005 by

Leung and Bolloju, who performed a detailed analysis of the quality of domain models

developed by novice systems analysts [7] based on the Lindland et al. [4] model quality

framework and studied the interrelations between the pairs of commonly occurring er-

rors. According to their findings, the most common errors were related to semantic and

pragmatic quality, with the most popular error in the category “unexpected is pre-

sented", which means that the novice modelers tend to overload the model with unnec-

essary entities or attributes. The most frequent semantic error was placing the wrong

cardinality or multiplicity. The syntactic errors were also quite common (about the

quarter of the errors, overall), despite the fact that an automated tool was checking the

model syntax for the students prior to submission.

Although the solutions and recommendations proposed by researchers and educators

regarding common and recurring errors differ in detail, there is a consensus on the very

need for modification of modelling pedagogy regarding those errors, as every paper

found had a suggestion regarding such modification. Several successful attempts to em-

ploy teaching methods based on common modeling errors have been reported. For in-

stance, a quantitative error analysis of class diagrams created by university freshmen

and subsequent modification of the teaching method with greater focus on most com-

mon errors (syntactic, attribute-related, association-related and class-related), led to the

“improved performance related to syntactic errors and relation errors in fundamental

tasks” [7:621]. An analogical use of a “prophylactic approach” to teaching UML pro-

vided improved results in summative quizzes developed to test the competences of stu-

dents in modelling relationships between classes, requirements identification and cre-

ating a simple class diagram [9].

2.3 Technology-enhanced learning support

Another approach to dealing with novice errors is providing immediate feedback on the

simple models designed by students. The ability to create simple class diagrams (by

“simple” we imply those consisting of up to five classes) without errors can be consid-

ered a fundamental first step for mastering conceptual modelling. On the level of a

simple model, where the variety of possible valid solutions is still much more limited

and the model solution is easily available, the use of intelligent tutoring systems (ITS)

or other educational software becomes possible. In [10], an implementation of a sample

solution-based ITS for teaching UML skills, with a pre-built set of possible error mes-

sages, resulted in no worse result than a traditional learning setting, while providing a

more enjoyable experience for students and reducing teacher’s time on correcting stu-

dents’ solutions. In [11], the use of technology-enhanced support with implementation

of immediate automated feedback in a conceptual modelling course resulted in im-

provement of students’ performance, as well as the positive student perception of the

course.

In modelling pedagogy, technology is employed not only at the task level, but also

throughout the whole modelling curriculum – for example, by means of MOOCs (Mas-

sive Open Online Courses) or SPOCs (Small Private Online Courses). MOOCs on con-

ceptual data modelling remain not numerous, with just a few available for the wide

audience [3]. Typically, such courses consist of a number of modules that include vid-

eos with theoretical and practical materials and practice exercises at the end of each

module – in a form of a multiple-choice quiz or other formative or summative task with

automated assessment. Such a variety in types of materials and sequencing of tasks and

theory lessons provides additional educational opportunities both for the students and

for the educators and could be leveraged to provide error-based support. However, none

of the currently available online courses on modelling provides students with gradual

step-by-step exercises specifically on conceptual modelling, and UML diagram design,

in particular.

3 Methodology

3.1 General Approach

The course Architecture and Modelling of Management Information Systems is taught

to the master students of the faculty of Business and Economics at KU Leuven. The

course has been successfully taught for over a decade, evaluated and improved after

each iteration. A thorough evaluation of student mistakes was made in 2017 to propose

a targeted improvement the next year. The targeted improvement was performed in

2018 by introduction of step-by-step error-based formative exercises in an online

course. The improvement was set up according to an experimental design, such as to

be able to evaluate the effectiveness of the proposed improvement by comparing stu-

dents' performance in 2018 to the performance of the 2017 cohort. In particular, care

was taken to isolate the treatment and keep the rest of the course similar to the 2017

setting as much as possible.

3.2 Subjects and general setting

Two similar groups of master students (39 students in 2017 and 32 in 2018) from the

same trajectories and following the same set of mandatory courses followed the course

of Architecture and Modelling of Management Information Systems. The course in-

cludes an extensive module on UML class diagram design following the MERODE

approach [12] and employs the JMermaid modelling software that provides students

with immediate automated feedback. As part of the course, students are required to

complete a series of exercise sessions and submit the solution of provided cases.

Student groups are very similar across the successive academic years, in particular

concerning variables that might influence their modelling skills. In terms of language

skills, the course is taught in English, which is a second language for the very large

majority of the students. To be accepted to the master program and, subsequently, to

the particular course, the international students have to pass a unified English profi-

ciency exam, thus, we assume that the students in both groups possess sufficient mas-

tery of English language to understand the tasks and the requirements provided in the

course equally. In terms of prior education on modelling or other IT skills, all students

have very limited experience in these matters as the master program is intended for

academic bachelors with a non-IT background.

The course materials on theory were identical for both groups of students, however,

in 2018 a Small Private Online Course was introduced to provide formative exercises

and ensure better understanding of the subject.

3.3 Instructional design

Throughout the course, 4C/ID instructional design model was applied. 4C/ID is a model

developed specifically to design training programs aimed at complex skills [13]. The

key parts of the model are: a sequence of learning tasks (whole-task practice – authentic

learning experience), supportive information, just-in-time information (including ex-

amples and corrective feedback) and part-task practice (practice for a selected skill with

tasks of a narrower focus). In the Architecture and Modelling of Management Infor-

mation System course, the learning tasks (whole-tasks) are represented by complete

cases, where students have to build a model based on textual requirements. Supportive

information is provided in the textbook, presentations or in the online course: the infor-

mation is doubled throughout different resources, so the students could choose the most

convenient one. Just-in-time information is provided by means of automated feedback

in the modelling software and/or by means of automated feedback in the SPOC exer-

cises, while part-task practice is provided during the exercise sessions either by means

of the modelling software during a collective exercise or in the SPOC.

In 2017, after the presentation of theoretical material and examples, the students

solved two cases during a lab sessions. The two exercises had an identical set-up: in the

course of the session, the students were given automated feedback of two types by the

modelling software – a reminder to simulate the model after certain amount of actions,

and a multiple choice question provoking the reflection on an association just created

by the student.

In 2018, the "treatment" constituted of using the identical cases as in 2017, but

providing part-task practice for the first case by means of step-by-step online exercises

in a SPOC. The second case was (similarly as in 2017) given “as a whole”, without

subdividing it into part-tasks. This allows to assess to what extent the students were

able to extrapolate the practical experience received in the first case to the second one.

The effectiveness of the treatment can then be assessed by measuring the improvement

on the second exercise in 2018, compared to the 2017 performance.

3.4 The cases

The students were asked to solve two cases provided requirements documents. The

cases were designed to test the ability of students to understand and apply the following

concepts and elements:

- Correct identification of classes and associations from the requirements docu-

ment

- Inheritance and the notion of roles

- Correct multiplicities of associations

Each of the model solutions included: five or six classes, with one central element

connected with a chain of two or three classes, a single class and a class with a recursive

association. The multiplicities in the two cases differed according to the specific re-

quirements given in the task.

The model solutions of the two cases are provided in Fig. 1 and Fig. 2.

Fig. 1. Model solution for Case 1, central class being Exhibition

Fig. 2. Model solution for Case 2, central class being Contract.

The full description of the cases can be found in Appendix A

3.5 Frequent errors identification

The student solutions of the exercise session cases became the source for a frequent

errors collection. The error identification resulted in the following error types related

to classes and associations (the corresponding quality dimension according to the Lind-

land et al. [4] is mentioned in parentheses):

Class-level errors:

1. No meaningful name is given to a class (Pragmatic)

2. Missing classes (Semantic)

3. Superfluous classes (Semantic)

Association-level errors:

4. No meaningful name is given to an association (Pragmatic)

5. Missing association (Semantic)

6. Superfluous association (Semantic) – see Fig. 3

7. Name-concept mismatch (Semantic)

8. Wrong multiplicity (Semantic)

9. Unnecessary reification (Semantic)

10. Role inversion/Degree (Semantic)

11. Wrongly linked association (Semantic)

Fig. 3. An example of a superfluous association (dashed arrow) from a student solution: the

airline company that owns the aircraft (yellow dashed path) is the airline company that placed

the contract for the acquisition of the aircraft (green path).

When modelling associations, students are requested to think about the relationships

between the life cycles of the objects, and in particular to reflect about which objects

need to exist first, whether associations ends are frozen or not, and what objects need

to be deleted first. For example, when modelling the association between AirlineCom-

pany and Contract, the student should realize that before a Contract can be registered,

there needs to be a AirlineCompany (or the AirlineCompany needs to be registered

simultaneously), that the contract cannot "change" AirlineCompany throughout its life

and that it cannot exist any longer than the AirlineCompany-object it refers to (meaning

that the association end is frozen). In ER-terms, the weak entity (Contract) will need

the strong entity (AirlineCompany) to exist first, and cannot outlive it.

Some clarification is necessary for error types 7, 9, 10 and 11:

“Name-concept mismatch” refers to the problems where an association has been re-

ified to an association class, and the name of the association class does not convey the

meaning of the association. A typical example is the unary "partnership" association

between airlines. If reified to an association class, its name should reflect the fact that

the class represents a partnership. If the association class is named e.g. "daughter_air-

line", this represents a name-concept mismatch.

“Reified too often” refers to an association that has been reified to an association

class, and whereby one of the resulting new associations has been reified again. A typ-

ical example is the association between employee and contract, giving rise to an asso-

ciation class "SalesManagerDuty" (with attributes such as start date, end date, etc.). If

then an association between "SalesManagerDuty" and “Contract” is reified again, such

reification is excessive. Weak associations that express existence dependency should

not be reified.

"Inverted roles" refers to the fact that the student made a wrong analysis, and indi-

cated the wrong class as the "strong" vs "weak" entity in the association. For recursive

associations, a "degree" problem refers to the fact that the association was not modelled

as a recursive association, but rather an extra class was created to which the class airline

was linked. Both types of problems refer to the fact that a student does not manage to

make a correct in-depth analysis of the semantics of the association s/he is drawing.

Finally, "wrongly linked" associations refer to classes linked wrongly, such as link-

ing Airplane to Airline rather than to Contract. These errors also result from missing

classes (e.g. the Airplane directly linked to Contract because of the missing Acquisition

class).

As it can be seen from the list, most of the errors are related to the semantic quality

dimension. The small amount of syntactic errors is explained by the fact that the JMer-

maid tool prevents the input of models with syntactical errors.

The student solutions of Case 2 from both academic years (2017 and 2018) were

checked and marked according to the list of errors identified in 2017.

3.6 Step-by-step online exercises

A set of step-by-step online exercises was designed for the iteration of the course in

2018 to prevent most of the commonly occurring errors in class diagram design, as

identified in the previous academic year. The steps provided in the online learning plat-

form as case-related guided exercises, had to be reproduced by the students in the sec-

ond case afterwards, without guidance.

The exercises included the following:

1. Identifying enterprise object types – students could choose several options that

they believed were object types according to the requirements document. This

exercise aimed to address error types 1, 2 and 3.

2. Modelling associations – multiple-choice test based on given case requirements

to address error types 5, 6 and 11.

3. “People and their roles” – and multiple choice exercise aimed at differentiation

between a base concept and a role, to address error types 3 and 10.

No specific treatment was given for error type 4, as the semantic quality of the mod-

els was given a higher priority. Errors 7 and 9 (name-concept mismatch and reifica-

tion problems) were not addressed in the online course due to the complex nature of

the problems related to those errors, which is hard to address in an entirely automated

way. Error 8 (multiplicity error) was not treated specifically for these tasks, as the

theoretical material as well as a number of exercises related to the topic of multiplic-

ity were presented to the students previously in the course.

Immediate automated feedback on the answers was provided to the students. An ex-

ample of and exercise with feedback can be seen in Fig. 4.

Fig. 4. Part of a guided exercise with feedback.

4 Results

This part presents the summary of student solutions analysis for Case 2 and the com-

parison of the solution quality to the model solution (see Fig. 2).

4.1 Class-level errors

Table 1. Summary of the class-level errors

Table 1 gives an overview of the class-level errors found in student solutions. The total

count of error occurrence is listed in the “Total” column for each error type. The “Task

frequency” column indicates the percentage of tasks where the errors of certain type

occurred (one or several times). The columns with class names indicate the relative

frequency of an error: the number of times the error occurred divided by the total num-

ber of tasks (student solutions).

C
o

nt
ra

ct

A
ir

lin
e

Em
pl

o
ye

e

A
cq

ui
si

ti
o

n

A
ir

pl
an

e

G
en

er
al

To
ta

l

Ta
sk

 F
re

qu
en

cy

C
o

nt
ra

ct

A
ir

lin
e

Em
pl

o
ye

e

A
cq

ui
si

ti
o

n

A
ir

pl
an

e

G
en

er
al

To
ta

l

Ta
sk

 F
re

qu
en

cy

Problem with name 0,36 0,08 17 44% 0,06 0,66 0,19 29 78%

Missing class 0,10 0,31 0,18 23 59% 0,13 4 13%

Superfluous class(es) 0,31 12 31% 0 0%

Relative frequency/totals 0,00 0,10 0,33 0,38 0,18 0,31 51 1,308 0,00 0,06 0,66 0,31 0,00 0,00 33 1,03

2017 2018

Semantic Quality

Pragmatic Quality

Class-Level

Name problems. Whereas in 2017 there is an average of 44% of the tasks showing

name problems, the frequency in the 2018 solutions is much higher. This increased

frequency is mostly due to students using the role name "SalesPerson" as a name for

the class "Employee", and subsequently using "Assignment" or "Management" as role

names.

Missing classes. In the 2017 solutions, this error occurs 23 times, and in 59,0% of

the tasks, whereas in 2018, this error appears only 4 times and in 13% of the tasks.

Superfluous classes. In 2017, there are 12 occurrences of the error, appearing in

30.8% of the tasks. In 2018, there are no superfluous classes in the proposed solutions.

On average, there are 1.31 class-level errors per task in 2017, with approximately 2 out

of the 3 errors being semantic quality problems. In 2018, we see on average 1,03 error

per task, the large majority of which (29 of 33) are naming errors (pragmatic quality).

4.2 Association-level errors

Overall, one can immediately see from Table 2 that association-level problems have a

much higher frequency than class-level problems.

Missing associations. Obviously, when a class is missing, any association that would

involve this class is missing as well. Therefore, we only counted the additional missing

associations when the required class(es) were present, but the association was missing.

In 2017, in three solutions the recursive association representing airline partnership was

missing. In 2018, this happened only once.

Superfluous associations were always the result of superfluous classes, so these er-

rors were not counted separately. There were no solutions where an additional associa-

tion was added on top of the required associations between two correctly captured clas-

ses.

Table 2. Summary of the association-level errors

C
o

nt
ra

ct
-A

ir
lin

e

A
ir

lin
e-

U
na

ry

C
o

nt
ra

ct
 E

m
pl

o
ye

e

C
o

nt
ra

ct
-A

cq
ui

si
ti

o
n

A
cq

ui
si

ti
o

n-
A

ir
pl

an
e

G
en

er
al

To
ta

l

Ta
sk

 F
re

qu
en

cy

C
o

nt
ra

ct
-A

ir
lin

e

A
ir

lin
e-

U
na

ry

C
o

nt
ra

ct
 E

m
pl

o
ye

e

C
o

nt
ra

ct
-A

cq
ui

si
ti

o
n

A
cq

ui
si

ti
o

n-
A

ir
pl

an
e

G
en

er
al

To
ta

l

Ta
sk

 F
re

qu
en

cy

Problem with name 0,05 0,21 10 26% 0,09 0,31 13 41%

Missing association 0,08 3 8% 0,03 1 3%

Superfluous association 0 -

Name-concept mismatch 0,13 0,03 6 15% 0,34 11 34%

Multiplicity problem 0,13 0,18 0,26 0,03 0,56 45 95% 0,06 0,09 0,06 0,81 33 94%

Reified too often 0,03 0,08 0,05 6 15% 0,03 1 3%

Role inversion/Degree 0,08 0,21 0,31 0,03 0,05 26 54% 0,03 0,06 0,06 0,06 0,06 9 28%

Wrongly linked 0,13 0,08 0,08 0,38 26 51% 0,06 0,06 0,03 0,19 11 22%

Relative frequency/totals 0,31 0,59 0,69 0,10 0,79 122 3,13 0,15 0,41 0,33 0,08 0,82 79 2,469

Association-Level

20182017

Pragmatic Quality

Semantic Quality

Name-concept mismatch. In 2017, we find this problem occurring mainly for the

recursive association on Airlines, and three times for the Contract-Employee associa-

tion. In 2018, the relative frequency is higher, especially for the recursive association

on Airlines.

Multiplicity seems to be the most complicated concept to get right, as more than 90%

of the tasks suffer from this problem in both years.

Reified too often error appears 6 times and in 15,4% distinct tasks in 2017, and only

once in 2018.

Inverted role/degree problems occurred 26 times in more than a half (54%) of the

distinct tasks, as opposed to only 9 times in 28% distinct tasks in 2018.

Wrongly linked associations occurred 26 times in more than half (51%) of the distinct

tasks, as opposed to only 11 times in 22% distinct tasks in 2018.

In total, the overall amount of association-level errors decreased – from 122 errors

in total (3,13 errors per task) in 2017 to 79 (2,47 errors per task) in 2018.

5 Discussion

There are a number of limitations that should be considered regarding this study. First

of all, it should be viewed as a small-scale exploratory analysis, as the groups of stu-

dents were relatively small (~30 to 40 persons in each group). However, such group

size is typical for university exercise session setting. Nevertheless, larger population of

students should be addressed and treated with step-by-step exercises in the future re-

search, e.g. by means of a MOOC. Second, the focus of this study is narrowed to a

specific type of modelling tasks, in order to capture the granular view of the learning

process. In the future, it may be beneficial to “zoom out” to the level of the entire course

and check the impact of step-by-step exercises for modelling on student performance

throughout the course. Third, the error detection was done for the exercise that followed

the previous one immediately (Case 2 was given in the same exercise session as Case

1 for both years). Thus, the long-term effectiveness of the step-by-step exercises is yet

to be determined. Also, more focus could be given to improving the pragmatic quality

of student models, as in the current version of the course, semantic quality was consid-

ered the key problem to tackle, with no specific exercises for improving the pragmatic

quality.

As it can be seen from the preliminary results, the group that was treated by step-by-

step exercises showed improved results in comparison with the group of the previous

years in all types of errors, except for pragmatic (name-concept mismatch).

Class-level errors are less numerous than association-level errors in both years,

which is consistent with the findings of previous studies [1, 8]. The name problems

were more common in 2018 than in 2017, though compensated by much less semantic

errors. The increased number of wrongly named classes in 2018 is mostly located at the

level of the class employee. This may have been induced by the part-task training on

roles, as many students named the class "Employee" as "SalesManager" instead. This

calls for a revision of the corresponding exercise to better emphasize the need for a

correct name for the base class. The number of missing classes in 2018 dropped signif-

icantly in comparison with 2017, while the superfluous classes error was completely

eliminated in 2018, which might be the result of the targeted exercise in the online

course that provided students with an opportunity to reflect on the choice of classes

from the textual description. In average, there are less class-level errors in 2018 than in

2017.

On association level, the group of 2018 also outperforms the group of 2017. The

most common error in the association level was wrong choice of multiplicity, which in

both years occurred in the vast majority of the tasks. Multiplicity errors are common in

various types of modelling exercises reported in other sources [6, 7]. Missing recursive

associations, as well as unnecessary reification, were several times less common in

2018 than in 2017, which can suggest that the targeted exercise showed its effectiveness

in training the association-level skills. However, since the missing associations were,

obviously, not counted for the classes that were missing, this implies an underrepresen-

tation of association errors for 2017 compared to 2018, as in 2018 there were a few

missing classes, while there were much more missing classes in 2017.

Overall, concerning task-specific errors, from the totals in each column of Table 2,

it is easy to see that the recursive association on “airplane”, the “acquisition”-to-“con-

tract” and the "sales representative" association between employee and contract are the

most difficult ones to capture correctly. This calls for an additional part-task training

on recursive associations. At the same time, the error frequencies also demonstrate that

the "part-task" exercise, in which the students were requested to analyze in detail three

potential associations, can be viewed as a way of substantial improvement for the

course. Errors that indicate shortcomings in understanding the semantics of an associ-

ation and the roles classes play in the association as witnessed by name-concept mis-

matches, inverted roles, degree problems and wrongly linked associations, are much

less frequent in 2018 than in 2017.

6 Conclusion and Future Research

In this work, we have implemented a series of step-by-step exercises based on known

common errors to teach a specific part of the modelling course – building a simple

UML model with a recursive association and a chain of associations based on textual

case description. Summing the results presented above, we can make a preliminary

conclusion that the step-by-step exercises implemented in a Small Private Online

Course in the framework of 4C/ID instructional design model have shown to be effec-

tive, at least when it concerns the immediately following exercise. Nevertheless, while

the majority of errors (semantic) both on class and association levels seem to be tackled

successfully in the latter group of students, there were two error types – name-concept

mismatch (pragmatic) and multiplicity errors – that require thorough investigation and

targeted training.

We are planning to continue the implementation of 4C/ID model and introduction of

more step-by-step online exercises in the course, and to check whether the improvement

on the task level will extrapolate to the course level, as well. In addition, the current

SPOC on enterprise information systems modelling will be expanded into a MOOC to

address larger groups of students, so it will be possible to investigate and improve this

type of pedagogical approach further, and make a larger and more representative col-

lection of student errors.

7 References

1. Bolloju, N., Leung, F.S.K.: Assisting novice analysts in developing quality

conceptual models with UML. Commun. ACM. 49, 108–112 (2006).

2. Krathwohl, D.R.: A Revision of Bloom’s taxonomy. Theory Into Pract. (2002).

3. Bogdanova, D., Snoeck, M.: Domain modelling in bloom: Deciphering how we

teach It. (2017).

4. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual

modeling. IEEE Softw. 11, 42–49 (1994).

5. Kayama, M., Ogata, S., Asano, D.K., Hashimoto, M.: Educational Criteria for

Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling.

Int. Assoc. Dev. Inf. Soc. (2016).

6. Batra, D., Antony, S.R.: Novice errors in conceptual database design. Eur. J.

Inf. Syst. 3, 57–69 (1994).

7. Leung, F., Bolloju, N.: Analyzing the Quality of Domain Models Developed

by Novice Systems Analysts. In: Proceedings of the 38th Annual Hawaii

International Conference on System Sciences. p. 188b–188b. IEEE.

8. Kayama, M., Ogata, S., Masymoto, K., Hashimoto, M., Otani, M.: A Practical

Conceptual Modeling Teaching Method Based on Quantitative Error Analyses

for Novices Learning to Create Error-Free Simple Class Diagrams. In: 2014

IIAI 3rd International Conference on Advanced Applied Informatics. pp. 616–

622. IEEE (2014).

9. Elva, R., Workman, D.: A Prophylactic Approach to Teaching UML in

Undergraduate Computer Science Courses. In: The Fifteenth International

Conference on Learning (2008).

10. Schramm, J., Strickroth, S., Le, N.-T., Pinkwart, N.: Teaching UML Skills to

Novice Programmers Using a Sample Solution Based Intelligent Tutoring

System. Flairs ’12. (2012).

11. Sedrakyan, G., Snoeck, M.: Technology-enhanced support for learning

conceptual modeling. In: Lecture Notes in Business Information Processing.

pp. 435–449. Springer, Berlin, Heidelberg (2012).

12. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE

Approach. Springer Publishing Company, Incorporated (2014).

13. Merriënboer, J.J.G., Jelsma, O., Paas, F.G.W.C.: Training for reflective

expertise: A four-component instructional design model for complex cognitive

skills, (1992).

Appendix A. Cases descriptions

Case 1. Mouvre Museum

The Mouvre Museum in Paris is a huge museum with quite a large number of rooms,

so that many exhibitions can be organised in parallel in the Museum. Also, the planning

phase of an exhibition starts at least two years before the actual opening date of an

exhibition, so that even for a single room, several exhibitions in different stages of ad-

vancement need to be followed up simultaneously. Therefore, a little management sys-

tem is required to make sure all these exhibitions run smoothly.

The museum has identified a set of locations inside the museum that can hold exhi-

bitions. The locations can be considered as museums inside the museum. So, for each

location a series of exhibitions is developed. For each exhibition, first a series of desired

exhibition items is defined. For example, for an exhibition on Vincent Van Gogh, it is

defined that one item of his early period is desired, one pencil drawing with the corre-

sponding painting, one sunflower painting, etc. For each desired item, a suitable piece

is sourced from the collectors that possess candidate pieces. For some items, only one

unique piece is available, but some exhibition items several potential pieces are availa-

ble from different collectors. (There are for example several "Sunflower" paintings

from Vincent Van Gogh). For each exhibition item, the system will keep track of what

pieces are requested from which collector.

Each exhibition is assigned an employee of the museum as coordinator. To foster

knowledge transfer, junior employees are assigned a senior employee as coach.

Case 2. Boncardier

Boncardier sells aircrafts to airline companies. As aircrafts are very expensive to build,

they are only built "on demand", meaning that first a sales agreement is made with a

customer, before the airplane is actually built. (An exception are demo versions of air-

planes, but these are out of scope for this case). The sales are regulated by means of

contracts with the airline companies, whereby a single contract may consist of several

acquisitions of airplanes. The global contract stipulates common elements across all

acquisitions such as delivery conditions, legal aspects, etc. Each acquisition of an air-

plane has further specific details, such as the chosen model of airplane, the negotiated

price for that airplane, chosen options & customizations, delivery date, etc. Each con-

tract is managed by a Boncardier salesperson. An employee can act as salesperson for

several contracts. Given the long term of contracts, the assigned salesperson may

change over time, but Boncardier ensures there is always a salesperson available for the

client.

Some airlines are related to each other: for example, main airlines often have a low

cost daughter airline company. Boncardier therefore keep track as much as possible of

the mother-daughter relationships between airline companies, to be able to track

whether to sold aircrafts are shifted to partner airlines of the original buyer.

