Skip to main content

Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm

  • Chapter
  • First Online:
Machine Learning Paradigms: Theory and Application

Part of the book series: Studies in Computational Intelligence ((SCI,volume 801))

Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed, A.W., Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012)

    Article  Google Scholar 

  2. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  3. Hassanien, A.E., Alamry, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC—Taylor & Francis Group, (2015). ISBN 9781498741064—CAT# K26721

    Google Scholar 

  4. Costa, L., Oliveira, P.: Evolutionary algorithms approach to the solution of mixed non-linear programming. Comput. Chem. Eng. 25, 257–266 (2001)

    Article  Google Scholar 

  5. Lin, Y.C., Hwang, K.S., Wang, F.S.: A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput. Math. Appl. 47, 1295–1307 (2004)

    Article  MathSciNet  Google Scholar 

  6. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design. ASME Y. Mech. Des. 112, 223–229 (1990)

    Article  Google Scholar 

  7. Dua, V., Pistikopoulos, E.N.: Optimization techniques for process synthesis and material design under uncertainty. Chem. Eng. Res. Des. 76(3), 408–416 (1998)

    Article  Google Scholar 

  8. Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain. Electr. Power Syst. Res. 80(8), 935–942 (2010)

    Article  Google Scholar 

  9. Garroppo, R.G., Giordano, S., Nencioni, G., Scutellà, M.G.: Mixed integer non-linear programming models for green network design. Comput. Oper. Res. 40(1), 273–281 (2013)

    Google Scholar 

  10. Maldonado, S., Pérez, J., Weber, R., Labbé, M.: Feature selection for support vector machines via mixed integer linear programming. Inf. Sci. 279(20), 163–175 (2014)

    Article  MathSciNet  Google Scholar 

  11. Çetinkaya, C., Karaoglan, I., Gökçen, H.: Two-stage vehicle routing problem with arc time windows: a mixed integer programming formulation and a heuristic approach. Eur. J. Oper. Res. 230(3), 539–550 (2013)

    Article  MathSciNet  Google Scholar 

  12. Liu, P., Whitaker, A., Pistikopoulos, E.N., Li, Z.: A mixed-integer programming approach to strategic planning of chemical centers: a case study in the UK. Comput. Chem. Eng. 35(8), 1359–1373 (2011)

    Article  Google Scholar 

  13. Xu, G., Papageorgiou, L.G.: A mixed integer optimization model for data classification. Comput. Ind. Eng. 56(4), 1205–1215 (2009)

    Article  Google Scholar 

  14. Grossmann, I.E., Sahinidis, N.V. (eds.): Special Issue On Mixed-Integer Programming And Its Application To Engineering, Part I: Optimization Engineering, vol. 3, no. 4. Kluwer Academic Publishers, Netherlands (2002)

    Google Scholar 

  15. Grossmann, I.E., Sahinidis, N.V. (eds.): Special Issue on Mixed-integer Programming and its Application to Engineering, Part II: Optimization Engineering, vol. 4, no. 1. Kluwer Academic Publishers, Netherlands (2002)

    Google Scholar 

  16. Hsieh Y.C., et al.: Solving nonlinear constrained optimization problems: an immune evolutionary based two-phase approach. Appl. Math. Model. (2015). http://dx.doi.org/10.1016/j.apm.2014.12.019

  17. Ng, C.K., Zhang, L.S., Li, D., Tian, W.W.: Discrete filled function method for discrete global optimization. Comput. Optim. Appl. 31(1), 87–115 (2005)

    Article  MathSciNet  Google Scholar 

  18. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31(12), 1533–1546 (1985)

    Article  MathSciNet  Google Scholar 

  19. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programming. Comput. Oper. Res. 21, 359–367 (1994)

    Article  MathSciNet  Google Scholar 

  20. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972)

    Article  MathSciNet  Google Scholar 

  21. DuranMA, G.I.: An outer approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  Google Scholar 

  22. Fletcher, R., Leyffer, S.: Solving mixed-integer programs by outer approximation. Math. Program. 66(1–3), 327–349 (1994)

    Article  MathSciNet  Google Scholar 

  23. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

    Article  Google Scholar 

  24. Westerlund, T., Pettersson, F.: A cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)

    Article  Google Scholar 

  25. Lee, S., Grossmann, I.E.: New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24, 2125–2142 (2000)

    Article  Google Scholar 

  26. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5, 186–204 (2008)

    Article  MathSciNet  Google Scholar 

  27. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)

    Article  MathSciNet  Google Scholar 

  28. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Num. 22, 1–131 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: Abraham, A., Hassanien, A.E., Siarry, P. (eds.) Foundations on computational intelligence, studies in computational intelligence, vol. 203, pp. 153–234. Springer, New York (2009)

    Google Scholar 

  30. D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: a practical overview. 4OR 9(4), 329–349 (2011) (cit. on p. 13)

    Google Scholar 

  31. Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tec. 86, 991–1012 (2014)

    Article  Google Scholar 

  32. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

    MathSciNet  Google Scholar 

  33. Grossmann, I.E.: Review of non-linear mixed integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)

    Article  MathSciNet  Google Scholar 

  34. Cardoso, M.F., Salcedo, R.L., Feyo de Azevedo, S., Barbosa, D.: A simulated annealing approach to the solution of minlp problems. Comput. Chem. Eng. 21(12), 1349–1364 (1997)

    Article  Google Scholar 

  35. Rosen, S.L., Harmonosky, C.M.: An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Comput. Oper. Res. 32, 343–358 (2005)

    Article  MathSciNet  Google Scholar 

  36. Glover, F.: Parametric tabu-search for mixed integer programs. Comput. Oper. Res. 33(9), 2449–2494 (2006)

    Article  MathSciNet  Google Scholar 

  37. Hua, Z., Huang, F.: A variable-grouping based genetic algorithm for large-scale integer programming. Inf. Sci. 176(19), 2869–2885 (2006)

    Article  MathSciNet  Google Scholar 

  38. Kesen, S.E., Das, S.K., Güngör, Z.: A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs). Comput. Oper. Res. 37(6), 1148–1156 (2010)

    Article  Google Scholar 

  39. Turkkan, N.: Discrete optimization of structures using a floating-point genetic algorithm. In: Annual Conference of the Canadian Society for Civil Engineering, Moncton, Canada, 4–7 June 2003

    Google Scholar 

  40. Yokota, T., Gen, M., Li, Y.X.: Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput. Ind. Eng. 30, 905–917 (1996)

    Article  Google Scholar 

  41. Wasanapradit, T., Mukdasanit, N., Chaiyaratana, N., Srinophakun, T.: Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean J. Chem. Eng. 28(1), 32–40 (2011)

    Article  Google Scholar 

  42. Deep, K., Singh, K.P., Kansal, M.L., Mohan, C.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Cai, J., Thierauf, G.: Evolution strategies for solving discrete optimization problems. Adv. Eng. Softw. 25, 177–183 (1996)

    Article  Google Scholar 

  44. Costa, L., Oliveira, P.: Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Comput. Chem. Eng. 25(2–3), 257–266

    Google Scholar 

  45. Cao, Y.J., Jiang, L., Wu, Q.H.: An evolutionary programming approach to mixed-variable optimization problems. App. Math. Model. 24, 931–942 (2000)

    Article  Google Scholar 

  46. Mohan, C., Nguyen, H.T.: A controlled random search technique incorporating the simulating annealing concept for solving integer and mixed integer global optimization problems. Comput. Optim. Appl. 14, 103–132 (1999)

    Article  MathSciNet  Google Scholar 

  47. Woon, S.F., Rehbock, V.: A critical review of discrete filled function methods in solving nonlinear discrete optimization problems. Appl. Math. Comput. 217(1), 25–41 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Yongjian, Y., Yumei, L.: A new discrete filled function algorithm for discrete global optimization. J. Comput. Appl. Math. 202(2), 280–291 (2007)

    Article  MathSciNet  Google Scholar 

  49. Socha, K.: ACO for continuous and Mixed-Variable Optimization. Ant Colony, Optimization and Swarm Intelligence. Springer, Berlin, Heidelberg, pp. 25–36 (2004)

    Google Scholar 

  50. Schlüter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 36(7), 2217–2229 (2009)

    Article  MathSciNet  Google Scholar 

  51. Yiqing, L., Xigang, Y., Yongjian, L.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)

    Article  Google Scholar 

  52. Yue, T., Guan-zheng, T., Shu-guang, D.: Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Cent. S. Univ. 21, 2731–2742 (2014)

    Article  Google Scholar 

  53. Gao, Y., Ren, Z., Gao, Y.: Modified differential evolution algorithm of constrained nonlinear mixed integer programming problems. Inf. Technol. J. 10(11), 2068–2075 (2011)

    Article  Google Scholar 

  54. Lin, Y.C., Hwang, K.S., Wang, F.S.: A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput. Math. Appl. 47(8–9), 1295–1307 (2004)

    Google Scholar 

  55. Li, H., Zhang, L.: A discrete hybrid differential evolution algorithm for solving integer programming problems. Eng. Optim. 46(9), 1238–1268 (2014)

    Article  MathSciNet  Google Scholar 

  56. Mohamed, A.W.: An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput. Ind. Eng. 85, 359–375 (2015)

    Article  Google Scholar 

  57. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95–012, ICSI http://www.icsi.berkeley.edu/~storn/litera.html (1995)

  58. Storn, R., Price, K.: Differential Evolution- a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  59. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons Ltd (2005)

    Google Scholar 

  60. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  61. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  Google Scholar 

  62. Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization using genetic algorithms. IEEE Trans. Evol. Comput. 9(4), 424–435 (2005)

    Article  Google Scholar 

  63. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, 1st edn. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  64. Fan, H.Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. J. Glob. Optim. 27(1), 105–129 (2003)

    Article  MathSciNet  Google Scholar 

  65. Mohamed, A.W., Suganthan, P.N.: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft. Comput. (2017). https://doi.org/10.1007/s00500-017-2777-2

  66. Mohamed, A.W., Sabry, H.Z., Farhat, A.: Advanced differential evolution algorithm for global numerical optimization. In: Proceedings of the IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE 2011), Penang, Malaysia, pp. 156–161 (2011)

    Google Scholar 

  67. Mohamed, A.W.: A novel differential evolution algorithm for solving constrained engineering optimization problems. J. Intell. Manuf. (2017)

    Google Scholar 

  68. Mohamed, A.W., Almazyad, A.S.: Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput. 2017, 18 (2017). https://doi.org/10.1155/2017/7974218

    Article  Google Scholar 

  69. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  70. Zhang, J.Q., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  71. Mohamed, A.W., Mohamed, A.K.: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cyber. (2017). https://doi.org/10.1007/s13042-017-0711-7

  72. Mohamed A.K., Mohamed A.W., Elfeky E.Z., Saleh M. (2018) Enhancing AGDE algorithm using population size reduction for global numerical optimization. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol. 723. Springer, Cham

    Google Scholar 

  73. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

    Article  Google Scholar 

  74. Mohamed, A.W.: An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. Cybernet. 8, 989 (2017)

    Article  Google Scholar 

  75. Lampinen, J., Zelinka, I.: Mixed integer-discrete-continuous optimization by differential evolution, part 1: the optimization method. In: Ošmera, P. (ed.) Proceedings of MENDEL’99, 5th International Mendel Conference on Soft Computing, Brno, Czech Republic, 9–12 June 1999

    Google Scholar 

  76. Omran, M.G.H., Engelbrecht, A.P.: Differential evolution for integer programming problems. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2237–2242, Sept 2007

    Google Scholar 

  77. Li, Y., Gen, M.: Nonlinear mixed integer programming problems using genetic algorithm and penalty function. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 2677–2682 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Wagdy Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, A.K., Mohamed, A.W., Elfeky, E.Z., Saleh, M. (2019). Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm. In: Hassanien, A. (eds) Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol 801. Springer, Cham. https://doi.org/10.1007/978-3-030-02357-7_16

Download citation

Publish with us

Policies and ethics