Skip to main content

Service-Oriented Design and Verification of Hybrid Control Systems

  • Conference paper
  • First Online:
  • 1031 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11232))

Abstract

Hybrid control systems combine discrete and continuous behavior. They switch between discrete control states and influence continuous values that evolve according to differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MathWorks: MATLAB Simulink. www.mathworks.com/products/simulink.html

  2. Alalfi, M.H., Rapos, E.J., Stevenson, A., Stephan, M., Dean, T.R., Cordy, J.R.: Semi-automatic identification and representation of subsystem variability in simulink models. In: 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 486–490. IEEE (2014)

    Google Scholar 

  3. Haber, A., Kolassa, C., Manhart, P., Nazari, P.M.S., Rumpe, B., Schaefer, I.: First-class variability modeling in Matlab/Simulink. In: Proceedings of the Seventh International Workshop on Variability Modelling of Software-intensive Systems, p. 4. ACM (2013)

    Google Scholar 

  4. Bourke, T., Carcenac, F., Colaço, J.L., Pagano, B., Pasteur, C., Pouzet, M.: A synchronous look at the simulink standard library. ACM Trans. Embed. Comput. Syst. (TECS) 16, 176 (2017)

    Google Scholar 

  5. Araiza-Illan, D., Eder, K., Richards, A.: Verification of control systems implemented in simulink with assertion checks and theorem proving: a case study. In: 2015 European Control Conference (ECC), pp. 2670–2675. IEEE (2015)

    Google Scholar 

  6. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-time MATLAB/Simulink models using SMT solving. In: 2013 Proceedings of the International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE (2013)

    Google Scholar 

  7. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_14

    Chapter  Google Scholar 

  8. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for simulation of hybrid systems in Matlab/Simulink: hybrid equations (HyEQ) toolbox. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 101–106. ACM (2013)

    Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Autom. Control. 48, 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  10. Roy, P., Shankar, N.: SimCheck: a contract type system for Simulink. Innov. Syst. Softw. Eng. 7, 73–83 (2011)

    Article  Google Scholar 

  11. Boström, P., Wiik, J.: Contract-based verification of discrete-time multi-rate Simulink models. Softw. Syst. Model. 15, 1141–1161 (2016)

    Article  Google Scholar 

  12. Liebrenz, T., Herber, P., Göthel, T., Glesner, S.: Towards service-oriented design of hybrid systems modeled in simulink. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 469–474. IEEE (2017)

    Google Scholar 

  13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41, 143–189 (2008)

    Article  MathSciNet  Google Scholar 

  14. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control systems modeled in simulink with KeYmaera X. In: 20th International Conference on Formal Engineering Methods (ICFEM) (to appear)

    Google Scholar 

  15. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Liebrenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebrenz, T. (2018). Service-Oriented Design and Verification of Hybrid Control Systems. In: Sun, J., Sun, M. (eds) Formal Methods and Software Engineering. ICFEM 2018. Lecture Notes in Computer Science(), vol 11232. Springer, Cham. https://doi.org/10.1007/978-3-030-02450-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02450-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02449-9

  • Online ISBN: 978-3-030-02450-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics