
The Foul Adversary: Formal Models

Naipeng Dong1 and Tim Muller2

1 National University of Singapore, Singapore
2 University of Oxford, UK

Abstract. In classical notions of privacy in computer security, users at-
tempt to keep their data private. A user that is bribed, extorted or black-
mailed (i.e., coerced) may not do so. To get a general model of coercion,
we strengthen the Dolev-Yao adversary with the ability to coerce others,
to the foul adversary. We show that, depending on the setting, subtly
di↵erent abilities should be assigned to the adversary – whereas existing
approaches are one-size-fits-all. The variations of the foul adversary are
formalised and we provide a hierarchical relation in their strength. We
further interpret the adversary models using several examples.

1 Introduction

Privacy is increasingly important in internet-based services [5, 9, 20]. A new pri-
vacy notion - enforced privacy - arose, which assumes users (are forced to) reveal
private information due to, e.g., bribery or extortion (coercion). Vote-buying,
bribed doctors and rigged auctions are real-life examples of voters/doctors/
bidders revealing information that should be private. In domains like e-voting,
e-auction and e-health, coercion must, therefore, be prevented [3, 12, 19]; the
systems should enforce a user’s privacy even when the user reveals his private
information. The basic idea is that if a system provides a way for the coerced
user to mislead the attacker, then the system enforces privacy of the user [14,
24]1. In Section 2, we further explain the mechanism mitigating coercion.

There are cryptographic protocols that ensure enforced privacy [3, 12, 19, 26,
27]. As the design of cryptographic protocols is well-known to be error-prone
and flaws in such protocols are often subtle and counter-intuitive, formal verifi-
cation is an important step before implementation. There are multiple ways to
formalise enforced privacy. Currently, a standard method (proposed by Benaloh
and Tuinstra [7] and later symbolically formalised by Delaune et al [14]) is to
encode a privacy property as the formal equivalent of “even if the user gives up
his private information, the (Dolev-Yao [15]) adversary cannot be sure that this
really is his private information”. This method does not generalise to security
properties other than privacy. We propose an alternative method, which is to
keep the security/privacy property unaltered (“the adversary cannot know the

1 Note that bribed, extorted or blackmailed users di↵er from compromised users
(e.g., [6]) - a coerced user is assumed to lie to the attacker if possible whereas a
compromised user is assumed to be totally controlled by the attacker.

user’s private information”), but to verify it under an adversary that has the
power to coerce; the foul adversary.

Our approach philosophically di↵ers from the existing approaches. The ex-
isting approaches enhance the security requirements (privacy becomes enforced
privacy) of the system in question. Our approach is the first to allow reasoning
about coercion even in absence of a concrete security system or protocol. We
give the attacker the ability to (try to) coerce whenever he desires. Like any
attacker, he has the capability of reasoning about his knowledge, and inserting
it into a protocol; the only di↵erence is that there may now be coerced data
in his knowledge. Our approach is rooted in similar formal techniques, meaning
automated verification is also feasible.

The main advantage of the standard method [14] is that it already has some
tool support (e.g., ProVerif [8]), and there are various case-studies using the
method [4, 16, 17]. The advantages of our proposed method are: 1) it generalises
to security properties other than privacy, 2) it allows a greater degree of fine-
tuning, and 3) it makes the assumptions of coercion explicit. To illustrate why it
pays to have assumptions explicit: The voting protocol in [14] makes an implicit
assumption that it su�ces to keep the vote of the user enforced private. However,
as Küsters et al [24] point out, the fact that a person voted at all may need to
be enforced private. Küsters et al [24] have an alternative proposal for enforced
privacy. We discuss both methodologies in Section 2.

To motivate our alternative approach to coercion, take a frivolous example
(more technical and relevant examples are given later) where residents are to
be protected against potentially violent burglars. At a burglary, a burglar may
threaten a resident to enter a code to disable the alarm. A duress code (or
panic code) is a code that disables the sirens and lights, making it appear the
alarm is disabled, but in reality notifies the police that a burglar is coercing a
resident. When the system ensures that the residents have the code, then the
alarm is coercion resistant2 [10]. The precise details matter when the system
allows cases where the residents never received the duress code, or where the
residents never configured the duress code. We refer to this issue as the user
knowledge aspect, as the crucial question is whether it is su�cient when a user
could know something, or whether he actually needs to know it. Moreover, if the
burglars are su�ciently notorious, then residents may forgo using their duress
code, as they fear retribution from the burglar even after their arrest. We refer to
this issue as the dynamics aspect, as the crucial question is how potential futures
influence the present. The user knowledge aspect and the dynamics aspect are
orthogonal issues, which can be individually fine-tuned in our approach.

Contributions We formalise and investigate a family of adversaries – foul adver-
saries – that extend the Dolev-Yao adversary with the ability to coerce. There

2 Or at least somewhat coercion resistant. If the burglar is aware of the existence of a
duress code, he could elicit two codes that turn o↵ the alarm, knowing that one of
the two must be the real code, and decrease the odds of a silent alarm from 100% to
50%. A burglar would typically still be deterred with a 50% probability of a silent
alarm going o↵. We do not further investigate probabilistic scenarios.

2

are two orthogonal aspects that determine the strength of the foul adversaries,
the user knowledge aspect and the dynamic aspect. We prove a hierarchy of
these 8 (2⇥4) di↵erent foul adversaries, and illustrate the foul adversaries using
practical examples of protocols.

Paper Organization In Section 2, we introduce the context of our approach. In
Section 3, we define the core of our foul adversary in the form of knowledge and
reasoning. In Section 4, we introduce the notion of security systems and further
formalise the variants of the foul adversary. Then we introduce examples to
illustrate our approach and to concretely link it to security systems, in Section 5.
Finally, we conclude in Section 6.

2 Coercion

Coercion involves an adversary forcing a user to say (or do) something against
their will. However, unlike a controlled user, these coerced users may say (or
do) something else without the adversary noticing. All definitions explicitly deal
with the fact that users only actually say (or do) what the adversary demands
when the adversary can distinguish if the user does not comply.

Currently, there is research on coercion in the literature and defending against
coercion in protocol design. We discuss these approaches and their successes be-
low, in Existing Methods. The approaches have in common that they see coercion
as part of the security requirements. In Foul Adversary, we discuss the exact dif-
ferences resulting from making coercion part of the adversary’s abilities.

Existing Methods The requirement to prevent coercion was first proposed in e-
voting systems [7]. Cryptographic e-voting protocols have been proposed to meet
this requirement (e.g., [27, 26]). To formally verify these protocols, formalisa-
tions of enforced privacy in e-voting were proposed to capture the requirements,
for instance quantitative receipt-freeness and coercion-resistance [22], coercion-
resistance in game-based provable security style [25], coercion-resistance using
epistemic approach [24], and receipt-free and coercion-resistance using process
algebras, e.g., in the applied pi calculus [12] and in CSP [21]. Later, the enforced
privacy requirements have been found in other domains, such as e-auctions [3]
and e-health [12]. Formalisations of enforced privacy properties in e-auctions
and e-health have also been proposed, following the framework in the applied
pi calculus [22, 16, 17]. Thus, systems wherein coercion may occur are a growing
phenomenon, occurring in many new security domains.

The definition of enforced privacy by Delaune et al (in [13]) is particularly
influential, as it is the first symbolic formal definition of enforced privacy that
is generalised over protocols. The definition, however, did not generalise nicely
over di↵erent domains, as it was specifically intended for e-voting. Voters may be
bribed to vote for a certain candidate, and receive benefits only if they can prove
that they voted for that candidate. Thus, it is not su�cient that the adversary
cannot invade your privacy and obtain a proof of your vote, but the protocol
must prevent users from providing the proof to the adversary.

3

Assume that there is a user that honestly forwards all data honestly and
correctly to the adversary. Presumably the user’s privacy is broken if he actually
does this. If there exists an alternative behaviour for the user, that looks exactly
the same to the adversary but now it does not break the user’s privacy, then the
user can “cheat” the adversary. By behaving in the alternative way, the user does
not break its privacy, but the adversary cannot tell that the user is not being
honest. Therefore, the user cannot prove that it broke its own privacy, and the
adversary has no reason to believe that the user actually broke his own privacy.
When this is the case, Delaune et al say that enforced privacy holds. As pointed
by Backes et al [4] and Küsters et al [24], the definition by Delaune et al does
not capture certain protocols (such as [26, 23]) and certain attacks (abstention
attacks). To tackle the problem, Backes et al [4] improved the definition. How-
ever, these definitions depend on specific protocol structures (as pointed out by
Küsters et al [24]). Küsters et al [24] proposed a more general epistemic defini-
tion following the same basic idea. This approach requires reasoning on voter’s
goals and strategies. In addition, the above mentioned work focuses on specific
a specific domain - e-voting.

Foul Adversary We have the following assumption: Users only want to cooperate
with the foul adversary when it is impossible to merely pretend to cooperate. This
is a high-level assumption shared by all of the variations of the foul adversary
model (and shared by the existing enforced properties [4, 14, 16, 17]). The exact
meaning of that abstract assumption is di�cult to pin down. In fact, we argue
that the precise interpretation depends on the context, and that a variety of
models is necessary.

Another assumption is a standard assumption, namely that a system is secure
if and only if no attacker can perform an attack. This means that we can ignore,
without loss of generality, those attackers that are strictly weaker than some
other attackers. Concretely, we can ignore attackers that coerce at the wrong
time, for the wrong data, or do not realise they can coerce for data. For example,
a foul adversary may not know whether a user knows some coercible data, but
choose to try to coerce anyway, and gain knowledge if the user does (and punish
unfairly if he does not).

There are two aspects on which we divide the foul adversaries: On the require-
ments for a user to cheat, and on the role of time in coercion. First, we use the
duress code example from the introduction to illustrate the first aspect. Then,
we introduce an informal example to illustrate the time aspect (see 5.1). We
formalise the distinctions between the foul adversaries in the following sections.

3 Knowledge

In modern formalisms (such as Tamarin [29], the applied pi calculus [2], etc.), for
the analysis of security properties under the Dolev-Yao adversary, it is possible
but not necessary to reason explicitly about the knowledge of users (or even
about users at all). Here, we explicitly model the users and their knowledge, to
make the assumptions explicit.

4

Moreover, the fact that we explicitly reason about adversary knowledge is
a core concept in our approach. We argue that some subtleties simply cannot
be captured by a model that does not take knowledge into account. In this
section, we create a model of knowledge and reasoning using coercion. We do
not take learning (dynamic knowledge) into account, until Section 4. Our model
of knowledge is similar to other definitions in symbolic security (e.g., [29, 11]).

3.1 Preliminaries

A common way to reason about knowledge is epistemic modal logic. However,
an epistemic agent has perfect reasoning capabilities, allowing him to solve com-
putationally hard problems. The (Dolev-Yao or foul) adversary is not capable of
solving computationally hard problems. Hence, in the context of security proto-
col modelling, we need an alternative model of knowledge. We take Cortier and
Kremer [11]’s model of the Dolev-Yao knowledge and reasoning as our starting
point. In their model, a user knows something i↵ he can derive it from one of
the facts in his core knowledge.

We adopt a symbolic approach [2, 15, 29], meaning that we adopt the ideal
properties of the cryptographic primitives. Messages that a user and an adversary
know can be modelled as the following (e.g. in [2, 11]):

– There exists a countable set of names N , an countable set of variables V,
and a countable set of signatures ⌃ – a set of function symbols with arities.

– A term in T (N ,V,⌃) is either a name from N , a variable from V, or
f(M1, . . . ,Mn

) where f is an n-ary function in ⌃ and all M
i

(0 i n)
are terms in T (N ,V,⌃).

– The variables in a term M are denoted by �(M). A term is ground when
�(M) = ;. Ground terms are called data and denoted as T (N ,⌃). Replacing
a variable x in term M with a ground term d is an instantiation, denoted
by M{d/x}. We use ✓ to represent instantiation of a set of variables, �(✓) to
denote the variables, and '(✓) to denote the data to replace the variables3.

– Properties of cryptographic primitives are captured by an equational theory
E, where E is a set of equations of terms of the form M =

E
N , where

M,N 2 T (N ,V,⌃).

The derivation rules are provided by an axiomatization, such as found in [30]
and in [1, 11]. We axiomatize the reasoning of the users (the Dolev-Yao adversary
in particular) with the rules in Figure 1. We may refer to axiom A as the axiom
of core knowledge, to axiom B as the axiom of equality and to axiom F as the
axiom of function application. If there exists a derivation with premise X and
conclusion y under axioms A, B and F , and a specified equational theory E,
then we may write X D̀Y y. The statement X D̀Y y means that an agent with

core knowledge X has y in his knowledge. D̀Y models the reasoning ability of

the Dolev-Yao adversary. Let X be a set of sets of knowledge, and Y be a set of
knowledge, we may write X D̀Y Y to mean 8

y2Y

9
X2X (X D̀Y y).

3 Only our notion of instantiation di↵ers from the standard, as we disallow names to
be substituted, and we disallow variables to be substituted into a formula.

5

A

x 2 X

X ` x

B

X ` y x =
E
y

X ` x

F

X ` x0, . . . , xn f 2 ⌃

X ` f(x0, . . . , xn)

Fig. 1. Standard knowledge reasoning rules.

3.2 Weak Coercion

As mentioned before, one of the two aspects on which we distinguish the adver-
sary’s power, is user knowledge. The distinction between the weak and strong
variants is that the former uses weak coercion, and the latter uses strong coer-
cion. The definitions of weak coercion and strong coercion are similar, but weak
coercion is simpler. Here, we define weak coercion, and in Section 3.3 we show
how strong coercion di↵ers.

Weak coercion is based on a notion of verifiability and a notion of elicitation.
Given an equation which can only be satisfied with data d, then d is called verifi-
able under that equation. Elicitation models obtaining information by coercion.
In particular, if d is verifiable under an equation that the foul adversary can con-
struct, and a user has d, then the foul adversary can ask the user to provide d,
which he must provide as the foul adversary can verify it. Elicitation is modelled
as a derivation rule, where the adversary elicits data whenever necessary.

Verifiability Verifiability is a property of data. For example, if you receive a
hashed message, then there is only one original message that would give you
that hash (assuming an idealised hash function without collision). In this case,
we say that the original message is verifiable under the hashed message. More
precisely, let the hashed message be h(m) and m the original, then the equation
h(x) =

E
h(m) can only be satisfied when x =

E
m. Thus h(x)✓ =

E
h(m)✓ holds, only

if ✓ replaces x by m (note that m is not a variable, and cannot be instantiated).
This forms the bases of the definition.

We obtain the following formal definition of verifiability of D (a set of data)
under M,N :

V

M,N (D) i↵ 9
✓:'(✓)=D^M✓=

E
N✓

⇣
6 9
✓

0:�(✓0)=�(✓)^D 6=
E
'(✓0) (M✓

0 =
E
N✓

0)
⌘
.

The formula states that D is verifiable under M,N , when there exists an in-
stantiation ✓ (of D onto variables that occur in M,N), such that M and N are
equivalent and there is no instantiation ✓

0 (of other data than D onto the same
variables) that equates M and N . Thus, if the user is challenged to give the
correct data to equate M and N , then the user cannot provide any other data
than D (or data that equates to D)4.
4 The domain of ✓ has not been restricted in the formula. Note that we can add a
condition �(✓) ✓ �(M) [�(N) without loss of generality. If there were a variable
x 2 �(✓), x 62 �(M) [�(N), then M✓ =

E
N✓ implies M✓

0 =
E
N✓

0, for all ✓0 that are
equal to ✓ except on where x maps to. In that case, the condition 6 9 . . . is trivially
false. Therefore, we can limit our ✓ to those with only variables also in M or N .

6

C

CK(D), A D̀Y M, A D̀Y N, V

M,N (D)

(A,K) ⇣̀ D

Fig. 2. Axiom concerning elicitation.

Elicitation The foul adversary can gain knowledge by coercion – elicitation. A
set of data D is elicitable if the coercible users can derive it (i.e., when the
users know it). Formally, given the set of core knowledges K of coercible users,
elicitable of a set of data D (denoted as CK(D)) is defined as:

CK(D) i↵ 8d 2 D, 9
K2K(K D̀Y d).

When D is elicitable and the adversary can derive some terms under which
D is verifiable, then the user has no choice but to provide D truthfully. This is
the intuition behind the elicitation rule, which is modelled as a derivation rule,
meaning that elicitation is just a way for the adversary to gain knowledge.

Since the question of whether D is elicitable depends on the knowledge of
the users, it is unavoidable that the elicitation rule does not merely depend
on the adversary’s (core) knowledge. The premises of elicitation are the core
knowledges of the users, and the core knowledge of the adversary. If the adversary
can construct terms M,N , such that data d is verifiable under M,N , then the
adversary can coerce d from users that know the data d. This is directly codified
in the coercion rule, in Figure 2.

In Figure 2, CK(D) ensures that D can actually be provided by the coerced
users, A D̀Y M (or N) ensures that the adversary can actually construct M (or

N) from his core knowledge A – note that he uses variables here – and finally
V

M,N (D) ensures that misrepresenting D is impossible for the coerced users.
Note that as mentioned in Section 2, to coerce for d, the adversary need not
know that the coerced user knows d.

3.3 Strong Coercion

Strong coercion is highly similar to weak coercion. The verification rule is lib-
eralised, and some data which is not verifiable in weak coercion may now be
verifiable. The verification rule now takes into account the core knowledge(s) of
the user(s) that need to cheat the adversary. If the users do not actually know
the data needed to cheat the adversary, then they cannot cheat the adversary,
meaning the data remains verifiable.

More precisely, dataD may not be verifiable underM,N , due to the existence
of some D

0 6=
E
D that fits the same equation. In reality, the existence of such D

0

may not help the user, if he is unable to construct it. For example, if h(k) =
E

h(k0), then the adversary, who saw the hash h(k), may construct M = h(k) and
N = h(x), and is not able to coerce for k this way, since k0 satisfies the equation
too. However, if the user cannot actually derive k0, then he still has no choice but
to provide k to satisfy the equation. In this section, we make minimal changes
to weak coercion to obtain strong coercion.

7

Cs

CK(D), A D̀Y M, A D̀Y N, V

M,N
K (D)

(A,K) ⇣̀s D

Fig. 3. Axiom concerning strong coercion.

Verifiability Using the notion of instantiation, we obtain the formal definition
of verifiability of D under M,N for coerced users with core knowledges K:

V

M,N

K (D) i↵ 9
✓:'(✓)=D^M✓=

E
N✓⇣

6 9
✓

0:�(✓0)=�(✓)^D 6=
E
'(✓0)

⇣
K D̀Y '(✓0) ^M✓

0 =
E
N✓

0
⌘⌘

.

Strong verifiability is identical to weak verifiability, except for the additional
expression K D̀Y '(✓0) in the not-exists, which expresses the additional require-

ment that the user actually knows how to construct the deception.

Proposition 1. V

M,N (D) implies V

M,N

K (D).

Proof. If ✓0 exists in strong verifiability, then it exists in weak verifiability.

Elicitation Strong coercion is a simple adaptation from weak coercion, where we
use strong verifiability rather than weak verifiability; see Figure 3.

4 Behaviour

In this section, we use a crude model of the dynamics of the systems. We assert
that all users follow some protocol, which determines what actions they may
perform. The adversary can also perform actions, depending on his knowledge.
The e↵ect of the actions is deterministic, meaning that the consequences of
an action are fixed. This allows us to use the extensive form representation
of a system, where traces and states are equivalent notions. We formalise this
representation in Section 4.1.

In Section 4.2, we introduce the four variations of the dynamic aspect: static,
conservative, aggressive and extended foul adversaries. We show the relationships
between the di↵erent adversaries that we have introduced, in Section 4.3.

4.1 Preliminaries

A system is (S,A, I, s0, U,K
0

) where S is a set of states, A is a set of actions of
the form keyword(u, v, d) where keyword 2 {public, private, block, insert}, u is the
(alleged) sender, v is the (alleged) receiver, d : T (N ,V,⌃) is the communicated
data, I : S ⇥ A ⇥ S is a deterministic5 set of transitions forming a tree6, s0 is

5 Given state s and action a, there is at most one state t such that s
a�! t.

6 Due to knowledge monotonicity, it is important that the system is represented in
the extensive form of a tree.

8

the initial state at the root of the tree, U is a set of users (coerced users UC are
a subset of U) and K

0

: U [{e} ! }(T (N ,V,⌃)) is an assignment of initial
core knowledge to the users. As a consequence of this definition, every state
is uniquely identified by the sequence of actions leading to it. Hence, we may
simply write [a1, . . . , an] to refer to the state s

n

which has the property that

s

0 a1�! s1, . . . , sn�1
an��! s

n

.
Users behave according to some protocol specification, which dictates their

actions. Users can send s(w, d) and receive r(w, d) public messages d to/from
w, and send ps(w, d) and receive pr(w, d) privately messages d to/from w under
certain circumstances. Users do not introduce variables, only terms, if a user
sends a variable, it is a variable it received by the adversary. Let ⇡

u

(s) be a
projection of the global state to the user state, and ⇢

s

u

(a) be that action a is
enabled at user state ⇡

u

(s). A transition

– s

public(u,v,⌧)�������! t exists i↵ ⇢

s
u(s(v, ⌧)), ⇢

s
v(r(u, ⌧)),

– s

private(u,v,⌧)��������! t exists i↵ ⇢

s
u(ps(v, ⌧)), ⇢

s
v(pr(u, ⌧)),

– s

block(u,v,⌧)�������! t exists i↵ ⇢

s
u(s(v, ⌧)), and

– s

insert(u,v,⌧)�������! t exists i↵ ⇢

s
v(r(u, ⌧)) and the adversary knows ⌧ (s � ⌧ , where �

depends on the adversary model), with ⌧ 2 T (N ,V,⌃).

Thus, in the extensive form representation, a private communication can happen
only if both parties can privately communicate. Similarly for public communi-
cation. However, in addition, the adversary can block a public communication
– pretending to be the receiver – or insert a public communication (provided
the adversary knows the content of the communication) – pretending to be the
sender. These are standard assumptions in the Dolev-Yao model, which is our
starting point.

At every state, the users and the adversary have some knowledge. The knowl-
edge consists of a core knowledge, and the ability to reason. We define

u(s) as
a function that gives the core knowledge of u in state s.

–

u(s0) = K
0

(u), for all users;

–

v(t) =

v(s) [{⌧} when s

public(u,v,⌧)�������! t, s
private(u,v,⌧)��������! t or s

insert(u,v,⌧)�������! t;

–

e(t) =

e(s) [{⌧} when s

public(u,v,⌧)�������! t or s
block(u,v,⌧)�������! t; and

–

v(t) =

v(s) for all other users.

Due to the fact that we use extensive form representation, we have uniquely
defined the knowledge of all users in all states. We write

a�!
D

if the message in
a is data; i.e. if it does not contain variables.

4.2 Formal Models of Foul Adversaries

Here we introduce the static, conservative, aggressive and extended foul adver-
saries, that di↵er in how they treat the dynamic aspect.

Static Foul Adversary The static foul adversary models a situation in which the
foul adversary only has power over the coerced users in the present. An example
is a street robber that wants to obtain your PIN code, if you manage to cheat

9

the street robber, then he cannot punish you later. All that matters is that the
data is not currently verifiable.

Let �S
S be the weakest relationship satisfying,

1. in state s 2 S, for K = {ui(s)|u
i

2 UC}) and A =

e(s), if (A,K) ⇣̀s d,

then s �S
Sd; and

2. 8s ! s

0 2 I, s �S
Sd =) s

0 �S
Sd.

The strong static foul adversary (SSFA) is an adversary that uses �S
S as deriva-

tion relation.
Rule 1 simply encodes that the static foul adversary can elicit information in

a state that allows him to elicit information. Rule 2 is a modelling trick. Without
rule 2, it is possible that data d becomes unverifiable due to the user learning
a cheat. However, we can assume without loss of generality that the adversary
had su�cient foresight to elicit d when it was possible. We address this issue by
simply defining the reasoning to be monotonic.

The relation �W
S is defined similarly, using ⇣̀ rather than ⇣̀s . The weak static

foul adversary (WSFA) is an adversary that uses � W
S as derivation relation.

Here, the monotonicity rule (rule 2) is superfluous, as the adversary knowledge
is trivially monotonic using only rule 1 (since data cannot become unverifiable).

Conservative Foul Adversary The conservative foul adversary models a situation
in which the foul adversary is not willing to coerce unless it is sure it can follow
up on its threats. An example is a mafioso who values his reputation of following
up on threats more than breaking the security property. This typically occurs in
scenarios where the stakes of the individual users are relatively low.

Let �S
C be the weakest relationship satisfying,

1. in state s 2 S, for K = {ui(s)|u
i

2 UC} and A =

e(s), if (A,K) ⇣̀s d, then

s �S
Cd;

2. 8s ! s

0 2 I, s �S
Cd =) s

0 �S
Cd; and

3. 8s !
D

s

0 2 I and CK({d}) for K = {ui(s)|u
i

2 UC}, s0 �S
Cd =) s �S

Cd.

The strong conservative foul adversary (SCFA) is an adversary that uses �S
C as

derivation relation.
Rule 3 states that if for all (non-imaginary) futures, the foul adversary can

verify data d, then the user has no choice to surrender d, provided he has d.
The subscript D (in !

D

) ensures that the future is not imaginary, as it disallows
variables in the messages – restricting to communications with actual data.

The relation � W
C is defined similarly, using ⇣̀ rather than ⇣̀s . The weak

conservative foul adversary (WCFA) is an adversary that uses �W
C as derivation

relation. Again, monotonicity is superfluous here.

Aggressive Foul Adversary The aggressive foul adversary models a situation in
which the user wants to avoid crossing the foul adversary at all costs. This is
the typical dynamic version of the foul adversary, applicable to voting systems,
where the foul adversary may punish users after the results came in.

Let �S
A be the weakest relationship satisfying,

10

1. in state s 2 S, for K = {ui(s)|u
i

2 UC}) and A =

e(s), if (A,K) ⇣̀s d,

then s �S
Ad;

2. 8s ! s

0 2 I, s �S
Ad =) s

0 �S
Ad; and

3. 9s !
D

s

0 2 I and CK({d}) for K = {ui(s)|u
i

2 UC}, s0 �S
Ad =) s �S

Ad.

The strong aggressive foul adversary (SAFA) is an adversary that uses � S
A as

derivation relation.
Rule 3 is changed to an existential property, which states that if in some

(non-imaginary) futures, the foul adversary can verify data d, then the user has
no choice to surrender d, provided he has d. Again, we are only considering real
data, not imaginary communications.

The relation �W
A is defined similarly, using ⇣̀ rather than ⇣̀s . The weak ag-

gressive foul adversary (WAFA) is an adversary using �W
A as derivation relation.

Extended Foul Adversary The aggressive foul adversary also models a situation
in which the user wants to avoid crossing the foul adversary at all costs, but
furthermore, the adversary cares more about not being cheated than about the
actual security property at hand. In particular, it involves scenarios where the
adversary coerces for data which he can only verify because he coerced for the
data in the first place.

Let �S
E be the weakest relationship satisfying,

1. in state s 2 S, for K = {ui(s)|u
i

2 UC}) and A =

e(s), if (A,K) ⇣̀s d,

then s �S
Ed;

2. 8s ! s

0 2 I, s �S
Ed =) s

0 �S
Ed; and

3. 9s ! s

0 2 I and CK({d}) for K = {ui(s)|u
i

2 UC}, s0 �S
Ed =) s �S

Ed.

The strong extended foul adversary (SEFA) is an adversary that uses � S
E as

derivation relation.
Rule 3 is changed to allow imaginary futures. In addition to non-imaginary

future states, it may be useful for the adversary to send a variable (imaginary
communication). The users process the received variable, and output a function
of that variable. The adversary can then use that output term to construct an
equation to verify the data.

The relation � W
E is defined similarly, using ⇣̀ rather than ⇣̀s . The weak

extended foul adversary (WEFA) is an adversary using �W
E as derivation relation.

4.3 Hierarchy

The relations between the foul adversaries are shown in Figure 4. We say ad-
versary A is stronger than adversary B (denoted as B ! A), if a protocol
satisfies a property w.r.t. A, then protocol satisfies the property w.r.t. B, i.e.,
B ` d =) A ` d. In Figure 4, from left to right the adversary is getting
stronger, because the ability of a stronger adversary contains all the ability of a
weaker adversary. The adversaries in the second row is stronger than the corre-
sponding one in the first row. The theorems in the figure and their proofs can
be found in [18].

11

DY

WSFA WCFA WAFA WEFA

SSFA SCFA SAFA SEFA

Thm 1.

Thm 3. Thm 4. Thm 5.

Thm 3. Thm 4. Thm 5.

Thm 2. Thm 2. Thm 2. Thm 2.

Fig. 4. Relations of adversary models.

5 Example Systems

The notions that we have introduced were, by design, of a high level of abstrac-
tion. In this section, we introduce examples to make the ideas more concrete, and
to link our approach to security systems and protocols. Our notion of coercion
allows other security properties than privacy, in Section 5.1, we use the common
property of secrecy. We also apply out approach to privacy, in Section 5.2. In
this section, we do not encode all properties formally into the formalism, for
brevity’s sake. We merely codify the relevant elements of the examples, and rely
on common sense for the details. Even fairly simple systems and protocols would
require pages of specification, when defined rigorously.

5.1 Examples on (Enforced) Secrecy

Special Symmetric Encryption Let the equational theory support a special sym-
metric encryption, meaning that enc(dec(m, k), k) =

E
m and dec(enc(m, k), k) =

E

m are in the equational theory. There are two honest (and coercible) users, the
sender u and the receiver v communicating on public channels, and a foul adver-

sary e. The user u contains states s
u

, s

0
u

and the transition (s
u

s(v,enc(m,k))��������! s

0
u

)

and user v contains at least the states s

v

, s

0
v

and the transition (s
v

r(u,x)����! s

0
v

).
The system at least contains the transition s ! s

0 where in state s

0, v gains
knowledge enc(m, k). Furthermore, a state s

00 exists with (s ! s

00) where in
state s

00, the adversary gains knowledge enc(m, k). The reasoning abilities of u
and v are D̀Y and that of the adversary depends on the foul adversary model,

e.g., �S
S in the case of static foul adversary. The initial knowledge is f, such that

f(u) = {m, k}, f(v) = {k} and f(e) = ;.
We are interested in the secrecy of m, meaning that the correctness of the

protocol is determined by the reachability of a state t where t �S
Sm.

The core knowledge of the adversary is initially empty, and the adversary
receives at most one message, enc(m, k) in state s

00. The largest core knowledge
that the adversary can achieve is, therefore, {enc(m, k)}. We can neither coerce
for m nor for k, since the user can generate m

0 and k

0, such that enc(m, k) =
E

enc(m0
, k

0). In particular for arbitrary k

0, let m

0 = dec(enc(m, k), k0), in which
case enc(m0

, k

0) =
E
enc(dec(enc(m, k), k0), k0) =

E
enc(m, k). Formally, m or k can-

not be verified: since encryption and decryption are the only functions, whenever
two terms M✓ =

E
N✓ holds for m and k, it also holds for some m

0 and k

0, due
to the equational theory.

12

Encryption of Natural Language Take the same scenario as sketched in the pre-
vious example. We add a constant c and a unary function e to the equational
theory, with e(m) =

E
c only for a subset of terms T (m 2 T), representing those

messages that are valid English texts. Dissimilar to the previous example, we
cannot conclude that the protocol that sends enc(m, k) (with m 2 T) is safe un-
der the foul adversary, as the fact that enc(m, k) =

E
enc(dec(enc(m, k), k0), k0) is

no longer su�cient to prevent coercion, due to that an arbitrary k

0 leads to non-
readable messages, assuming the probability of k0 2 T is negligible. The foul ad-
versary can add a test e() =

E
c, which holds for m, but not for an arbitrary m

0 =
E

dec(enc(m, k), k0). Formally, there exists e(dec(enc(y, x), x)){k/x}{m/y} =
E

c

(serving as the relation M✓ =
E
N✓ in rule C in Figure 2 or rule C

s

in Figure 3),
that only holds for m and k, but not holds for arbitrary m

0 and k

0.
Interestingly, together the last two examples imply that the same encryption

method is coercion resistant when containing random data, but not coercion
resistant when it contains natural language.

Note that under Dolev-Yao adversary, secrecy of m is satisfied, because there
is no way for the Dolev-Yao adversary to obtain the key. Thus, this example
shows that static foul adversary is strictly stronger than Dolev-Yao adversary.

Coercion with Delayed Verification Take the same scenario as in the previous
example, but let the adversary initially know m

0. Furthermore, upon receiving
the first term x, the receiver will respond with dec(x, k). In an honest run, the
received term will be enc(m, k), meaning that the response is m.

Suppose the adversary wants to replace m in the message with m

0. That is,
the adversary needs to insert the message enc(m0

, k) to the receiver, and thus
he needs to know enc(m0

, k) before the receiver outputs anything. Since the
static foul adversary cannot look ahead, the adversary cannot know k (and thus
enc(m0

, k)) before the receiver sending the response, as the adversary does not
have enough information to verify them. It means that the static foul adversary
cannot insert the message enc(m0

, k) to the receiver before the receiver outputs
anything. The dynamic foul adversary, however, can look ahead. Since there is a
trace where the adversary will know m, and be able to verify k using enc(m,) =
enc(m, k). That, in turn, means that the adversary can coerce for k in the initial
state. Hence, the adversary knows k in the initial state, and can construct and
insert enc(m0

, k) before the receiver outputs anything.

5.2 Examples on (Enforced) Privacy

Enforced privacy properties such as receipt-freeness and coercion-resistance are
important requirements in e-voting. We use a simplified well-known e-voting
protocol to show how enforced privacy properties can be formalised with respect
to the foul adversary. This simplified protocol is the voting phase of the Okamoto
e-voting protocol [28]7.

7 For the simplicity of presentation, we ignore some functionalities, such as signature,
registration and verifiability, and focus only on the critical part for enforced privacy.

13

Two voters V1 and V2 have initial knowledge {V1, V2, C, v1, r1} and {V1, V2, C,

v2, r2} respectively, where v1 and v2 are their votes, r1 and r2 are two random
numbers for the commitment, C is the vote-collector. The two voters send the
committed votes first over public channels, then send privately the opening in-
formation (r1 and r2 respectively), and finally receive the voting result; modelled
as follows.

s

0
V1

s(C,(com(v1,r1)))�����������! s

V1

ps(C,(com(v1,r1),r1))�������������! s

0
V1

r(C,((v1,v2),(m1,m2)))��������������! s

00
V1
,

s

0
V2

s(C,(com(v2,r2),r2))�������������! s

V2

ps(C,(com(v2,r2),r2))�������������! s

0
V2

r(C,((v1,v2),(m1,m2)))��������������! s

00
V2
.

The vote-collector C’s initial knowledge is {V1, V2, C}. C reads in the votes and
the opening information, and sends out the voting results. One possible trace of
C is as follows.

s

0
C

r(V1,com(v1,r1))����������! s

1
C

pr(V1,(com(v1,r1),r1))��������������! s

2
C

r(V2,(com(v2,r2))�����������! s

3
C

pr(V2,(com(v2,r2),r2))��������������! s

4
C

s(V1,((v1,v2),(m1,m2)))���������������! s

5
C

s(V2,((v1,v2),(m1,m2)))���������������! s

6
C

.

Assuming s

0 is the initial state, with

e(s0) = {V1, V2, C}. The follow-

ing transitions are eligible: s

0 block(V1,C,(com(v1,r1)))���������������! s

1 insert(V1,C,(com(v1,r1)))���������������!
s

2 private(V1,C,(com(v1,r1),r1))������������������! s

3 public(V2,C,(com(v2,r2)))����������������! s

3 private(V2,C,(com(v2,r2),r2))������������������!
s

5 block(C,V1,((v1,v2),(m1,m2)))�������������������! s

6. The adversary knowledge in state s1 is e(s1) =

e(s0) [{com(v1, r1)}, since the public message from V1 to C is blocked by e.
Vote privacy is formalized as V1{c1/v1}|V2{c2/v2} ⇠ V1{c2/v1}|V2{c1/v2},

where ‘⇠’ is indistinguishability of left side (V1 votes for c1 and V2 votes for
c2) and right side (V1 votes for c2 and V2 votes for c1) and ‘|’ denotes parallel
composition (following the definition in [14]). When v1 6= v2, the property is
satisfied - the left situation and right situation of ‘⇠’ lead to the same voting
result, and the adversary cannot distinguish.

However, if the adversary can coerce V1 for the vote v1 and the random
number r1, then the property does not hold anymore. In state s

1 we have (K =
{V1, V2, C, v1, r1}, e(s1) = {V1, V2, C,M1} and M1 = com(v1, r1)),

CK({v1, r1}), A D̀Y M1, 9{v1/x}{v2/y}^M1=
E
com(x,y) 6 9v0

,r

0(M1 =
E
com(v0, r0))

(A,K) ⇣̀ {v1, r1}
.

Hence, in the left side situation, the adversary can verify that V1 votes for c1,
since v1 is substituted with c1, whereas at the right side, the adversary verifies
that V1 votes for c2 (since {c2/v1}). That is, enforced privacy is broken.

By replacing bit commitment with trap-door bit commitment tdcom(v, r, td),
the rule does not hold anymore, because for M1 =

E
com(v1, r1, td), 9r0 : M1 =

E

com(v1, r0, td0). When the adversary coerces for both r1 and td1, although the
adversary can elicit r1 and td1 for the case of V1 voting for c1, since V1 can also
derive r

0 and td

0 such that M1 =
E
com(v2, r0, td0), the adversary can also elicit r0

and td

0 for the case of V1 voting for c2. Hence, M1 can be opened as c1 and c2.
This holds on both sides of the equations; thus enforced privacy is not broken

14

in this way. Of course, to prove the enforced privacy property is satisfied in this
case, one needs to consider all branches and all states, often using tool support.

6 Conclusions

In the paper, we propose the idea of modelling an adversary with the ability to
coerce – the foul adversary. This contrasts the standard approach of modelling
coercion resistance as a security requirement. Knowledge and reasoning are key
points in the foul adversary, which is highlighted by the fact that elicitation is
the main power of the foul adversaries. Elicitation is built upon the notion of
verification, if only one piece of data fits the equation, then the foul adversary
obtains the data. We show that reasoning about coercion itself can be just as
important, as we have shown by example that di↵erent contexts may require dif-
ferent models of the adversary. In particular, we show a hierarchical relationship
between the possible foul adversaries. The powers of the adversaries are divided
along two aspects: user knowledge and dynamics. The most powerful foul ad-
versary requires users to know how to cheat, and uses the dynamic nature of
the system maximally to his advantage. Finally, we also provide a collection of
examples of security systems to help place and interpret our theoretical results.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 367(1-2):2–32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Symposium on Principles of Programming Languages, pages 104–115.
ACM, 2001.

3. M. Abe and K. Suzuki. Receipt-free sealed-bid auction. In Proc. 5th Conference
on Information Security, volume 2433 of LNCS, pages 191–199. Springer, 2002.

4. M. Backes, C. Hritcu, and M. Ma↵ei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In Proc. 21st IEEE Computer Security
Foundations Symposium, pages 195–209. IEEE Computer Society, 2008.

5. M. Barbaro and T. Zeller Jr. A face is exposed for AOL searcher no. 4417749.
6. D. A. Basin and C. J. F. Cremers. Modeling and analyzing security in the presence

of compromising adversaries. In Proc. 15th European Symposium on Research in
Computer Security, volume 6345 of LNCS, pages 340–356. Springer, 2010.

7. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended ab-
stract). In Proc. 26th Symposium on Theory of Computing, pages 544–553. ACM,
1994.

8. B. Blanchet. An e�cient cryptographic protocol verifier based on prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop, pages 82–96. IEEE
CS, 2001.

9. Ch. Caldwell. A pass on privacy?, July 2005. 17.
10. Jeremy Clark and Urs Hengartner. Panic passwords: Authenticating under duress.

HotSec, 8:8, 2008.
11. V. Cortier and S. Kremer. Formal models and techniques for analyzing secu-

rity protocols: A tutorial. Foundations and Trends in Programming Languages,
1(3):151–267, 2014.

15

12. B. de Decker, M. Layouni, H. Vangheluwe, and K. Verslype. A privacy-preserving
eHealth protocol compliant with the Belgian healthcare system. In Proc. 5th Eu-
ropean Workshop on Public Key Infrastructures, Services and Application, volume
5057 of LNCS, pages 118–133. Springer, 2008.

13. S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness in
electronic voting. In Proc. 19th IEEE Computer Security Foundations Workshop,
pages 28–42. IEEE Computer Society, 2006.

14. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

15. D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–207, 1983.

16. N. Dong, H. L. Jonker, and J. Pang. Analysis of a receipt-free auction protocol in
the applied pi calculus. In Proc. 7th Workshop on Formal Aspects in Security and
Trust, volume 6561 of LNCS, pages 223–238. Springer, 2011.

17. N. Dong, H. L. Jonker, and J. Pang. Formal analysis of privacy in an eHealth
protocol. In Proc. 17th European Symposium on Research in Computer Security,
volume 7459 of LNCS, pages 325–342. Springer, 2012.

18. N. Dong and T. Muller. The foul adversary : Formal models.
https://sites.google.com/view/foul-adversary/home.

19. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In Proc. Advances in Cryptology – AUSCRYPT’92, pages 244–251,
1992.

20. D. Goodin. Defects in e-passports allow real-time tracking, January 2010. 26.
21. J. Heather and S. Schneider. A formal framework for modelling coercion resistance

and receipt freeness. In Proc. Formal Mehtods – FM’12, volume 7436 of LNCS,
pages 217–231. Springer, 2012.

22. H. L. Jonker, J. Pang, and S. Mauw. A formal framework for quantifying voter-
controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic,
64(2-3):89–105, 2009.

23. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections.
In Proc. 4th ACM Workshop on Privacy in the Electronic Society – WPES’05,
pages 61–70. ACM, 2005.

24. R. Küsters and T. Truderung. An epistemic approach to coercion-resistance for
electronic voting protocols. In Proc. 30th IEEE Symposium on Security and Pri-
vacy, pages 251–266. IEEE CS, 2009.

25. R. Küsters, T. Truderung, and A. Vogt. A game-based definition of coercion-
resistance and its applications. In Proc. 23rd IEEE Computer Security Foundations
Symposium, pages 122–136. IEEE CS, 2010.

26. B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo. Providing receipt-
freeness in mixnet-based voting protocols. In Proc. Information Security and Cryp-
tology – ICISC’03, pages 245–258, 2003.

27. T. Okamoto. An electronic voting scheme. In Proc. IFIP World Conference on IT
Tools, pages 21–30, 1996.

28. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Proc. Security Protocols Workshop, pages 25–35, 1997.

29. B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis
of di�e-hellman protocols and advanced security properties. In Proc. 25th IEEE
Computer Security Foundations Symposium, pages 78–94. IEEE CS, 2012.

30. S. Schneider. Security properties and csp. In Proc. IEEE Symposium on Security
and Privacy, pages 174–187. IEEE Computer Society, 1996.

16

