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Abstract

We show that Branching-time temporal logics CTL andCTL
∗, as well

as Alternating-time temporal logics ATL and ATL
∗, are as semantically

expressive in the language with a single propositional variable as they

are in the full language, i.e., with an unlimited supply of propositional

variables. It follows that satisfiability for CTL, as well as for ATL, with

a single variable is EXPTIME-complete, while satisfiability for CTL
∗, as

well as for ATL
∗, with a single variable is 2EXPTIME-complete,—i.e.,

for these logics, the satisfiability for formulas with only one variable is as

hard as satisfiability for arbitrary formulas.

Keywords: branching-time temporal logics, alternating-time tempo-

ral logics, finite-variable fragments, computational complexity, semantic

expressivity, satisfiability problem

1 Introduction

The propositional Branching-time temporal logics CTL [4, 7] and CTL
∗

[10, 7] have for a long time been used in formal specification and verification of
(parallel) non-terminating computer programs [23, 7], such as (components of)
operating systems, as well as in formal specification and verification of hard-
ware. More recently, Alternating-time temporal logics ATL and ATL

∗ [1, 7]
have been used for formal specification and verification of multi-agent [33] and,
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retical Aspects of Computing – ICTAC 2018, Lecture Notes in Computer Science, Vol. 11187,
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more broadly, so-called open systems, i.e., systems whose correctness depends
on the actions of external entities, such as the environment or other agents
making up a multi-agent system.

Logics CTL, CTL
∗, ATL, and ATL

∗ have two main applications to com-
puter system design, corresponding to two different stages in the system design
process, traditionally conceived of as having specification, implementation, and
verification phases. First, the task of verifying that an implemented system con-
forms to a specification can be carried out by checking that a formula expressing
the specification is satisfied in the structure modelling the system,—for program
verification, this structure usually models execution paths of the program; this
task corresponds to the model checking problem [5] for the logic. Second, the
task of verifying that a specification of a system is satisfiable—and, thus, can be
implemented by some system—corresponds to the satisfiability problem for the
logic. Being able to check that a specification is satisfiable has the obvious ad-
vantage of avoiding wasted effort in trying to implement unsatisfiable systems.
Moreover, an algorithm that checks for satisfiability of a formula expressing a
specification builds, explicitly or implicitly, a model for the formula, thus sup-
plying a formal model of a system conforming to the specification; this model
can subsequently be used in the implementation phase. There is hope that one
day such models can be used as part of a “push-button” procedure producing an
assuredly correct implementation from a specification model, avoiding the need
for subsequent verification altogether. Tableaux-style satisfiability-checking al-
gorithms developed for CTL in [9], for CTL

∗ in [28], for ATL in [17], and for
ATL

∗ in [6] all implicitly build a model for the formula whose satisfiability is
being checked.

In this paper, we are concerned with the satisfiability problem for CTL,
CTL

∗, ATL, and ATL
∗; clearly, the complexity of satisfiability for these logics

is of crucial importance to their applications to formal specification. It is well-
known that, for formulas that might contain contain an arbitrary number of
propositional variables, the complexity of satisfiability for all of these logics is
quite high: it is EXPTIME-complete for CTL [12, 9], 2EXPTIME-complete for
CTL

∗ [37], EXPTIME-complete for ATL [19, 40], and 2EXPTIME-complete
for ATL

∗ [32].
It has, however, been observed (see, for example, [8]) that, in practice, for-

mulas expressing formal specifications, despite being quite long and containing
deeply nested temporal operators, usually contain only a very small number
of propositional variables,—typically, two or three. The question thus arises
whether limiting the number of propositional variables allowed to be used in
the construction of formulas we take as inputs can bring down the complexity
of the satisfiability problem for CTL, CTL

∗, ATL, and ATL
∗. Such an effect

is not, after all, unknown in logic: examples are known of logics whose satis-
fiability problem goes down from “intractable” to “tractable” once we place a
limit on the number of propositional variables allowed in the language: thus,
satisfiability for the classical propositional logic as well as the extensions of the
modal logic K5 [25], which include such logics as K45, KD45, and S5 (see
also [20]), goes down from NP-complete to polynomial-time decidable once we
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limit the number of propositional variables in the language to an (arbitrary)
finite number.1 Similarly, as follows from [26], satisfiability for the intuitionis-
tic propositional logic goes down from PSPACE-complete to polynomial-time
decidable if we allow only a single propositional variable in the language.

The question of whether the complexity of satisfiability for CTL, CTL
∗,

ATL, and ATL
∗can be reduced by restricting the number of propositional

variables allowed to be used in the formulas has not, however, been investigated
in the literature. The present paper is mostly meant to fill that gap.

A similar question has been answered in the negative for Linear-time tem-
poral logic LTL in [8], where it was shown, using a proof technique peculiar to
LTL (in particular, [8] relies on the fact that for LTL with a finite number of
propositional variables satisfiability reduces to model-checking), that a single-
variable fragment of LTL is PSPACE-complete, i.e., as computationally hard
as the entire logic [34]. It should be noted that, in this respect, LTL behaves
like most “natural” modal and temporal logics, for which the presence of even
a single variable in the language is sufficient to generate a fragment whose sat-
isfiability is as hard as satisfiability for the entire logic. The first results to this
effect have been proven in [2] for logics for reasoning about linguistic structures
and in [38] for provability logic. A general method of proving such results for
PSPACE-complete logics has been proposed in [20]; even though [20] consid-
ers only a handful of logics, the method can be generalised to large classes of
logics, often in the language without propositional variables [22, 3] (it is not,
however, applicable to LTL, as it relies on unrestricted branching in the models
of the logic, which runs contrary to the semantics of LTL,—hence the need for
a different approach, as in [8]). In this paper, we use a suitable modification
of the technique from [20] (see [29, 30]) to show that single-variable fragments
of CTL, CTL

∗, ATL, and ATL
∗ are as computationally hard as the entire

logics; thus, for these logics, the complexity of satisfiability cannot be reduced
by restricting the number of variables in the language.

Before doing so, a few words might be in order to explain why the technique
from [20] is not directly applicable to the logics we are considering in this pa-
per. The approach of [20] is to model propositional variables by (the so-called
pp-like) formulas of a single variable; to establish the PSPACE-harness results
presented in [20], a substitution is made of such pp-like formulas for proposi-
tional variables into formulas encoding a PSPACE-hard problem. In the case
of logics containing modalities corresponding to transitive relations, such as the
modal logic S4, for such a substitution to work, the formulas into which the
substitution is made need to satisfy the property referred to in [20] as “evidence
in a structure,”—a formula is evident in a structure if it has a model satisfying
the following heredity condition: if a propositional variable is true at a state,
it has to be true at all the states accessible from that state. In the case of

1To avoid ambiguity, we emphasise that we use the standard complexity-theoretic conven-
tion of measuring the complexity of the input as its size; in our case, this is the length of the
input formula. In other words, we do not measure the complexity of the input according to
how many distinct variables it contains; limiting the number of variables simply provides a
restriction on the languages we consider.
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PSPACE-complete logics, formulas satisfying the evidence condition can always
be found, as the intuitionistic logic, which is PSPACE-complete, has the hered-
ity condition built into its semantics. The situation is drastically different for
logics that are EXPTIME-hard, which is the case for all the logics considered
in the present paper: to show that a logic is EXPTIME-hard, one uses formulas
that require for their satisfiability chains of states of the length exponential in
the size of the formula,—this cannot be achieved with formulas that are evident
in a structure, as by varying the valuations of propositional variables that have
to satisfy the heredity condition we can only describe chains whose length is
linear in the size of the formula. Thus, the technique from [20] is not directly
applicable to EXPTIME-hard logics with “transitive” modalities, as the for-
mulas into which the substitution of pp-like formulas needs to be made do not
satisfy the condition that has to be met for such a substitution to work. As all
the logics considered in this paper do have a “transitive” modality—namely, the
temporal connective “always in the future”, which is interpreted by the reflex-
ive, transitive closure of the relation corresponding to the temporal connective
“at the next instance”—this limitation prevents the technique from [20] from
being directly applied to them.

In the present paper, we modify the approach of [20] by coming up with
substitutions of single-variable formulas for propositional variables that can be
made into arbitrary formulas, rather than formulas satisfying a particular prop-
erty, such as evidence in a structure. This allows us to break away from the
class PSPACE and to deal with CTL, CTL

∗, ATL, and ATL
∗, all of which

are at least EXPTIME-hard. A similar approach has recently been used in [29]
and [30] for some other propositional modal logics.

A by-product of our approach, and another contribution of this paper, is that
we establish that single-variable fragments of CTL, CTL

∗, ATL, and ATL
∗

are as semantically expressive as the entire logic, i.e., all properties that can be
specified with any formula of the logic can be specified with a formula containing
only one variable—indeed, our complexity results follow from this. In this light,
the observation cited above—that in practice most properties of interest are
expressible in these logics using only a very small number of variables—is not
at all surprising from a purely mathematical point of view, either.

The paper is structured as follows. In Section 2, we introduce the syntax
and semantics of CTL and CTL

∗. Then, in Section 3, we show that CTL and
CTL

∗ can be polynomial-time embedded into their single-variable fragments.
As a corollary, we obtain that satisfiability for the single variable fragment of
CTL is EXPTIME-complete and satisfiability for the single variable of of CTL

∗

is 2EXPTIME-complete. In Section 4, we introduce the syntax and semantics of
ATL and ATL

∗. Then, in Section 5, we prove results for ATL and ATL
∗ that

are analogous to those proven in Section 3 for CTL and CTL
∗. We conclude in

Section 6 by discussing other formalisms related to the logics considered in this
paper to which our proof technique can be applied to obtain similar results.
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2 Branching-time temporal logics

We start by briefly recalling the syntax and semantics of CTL and CTL
∗.

The language of CTL
∗ contains a countable set Var = {p1, p2, . . .} of propo-

sitional variables, the propositional constant ⊥ (“falsehood”), the Boolean con-
nective → (“if . . . , then . . . ”), the path quantifier ∀, and temporal connectives
❣ (“next”) and U (“until”). The language contains two kinds of formulas:

state formulas and path formulas, so called because they are evaluated in the
models at states and paths, respectively. State formulas ϕ and path formulas ϑ
are simultaneously defined by the following BNF expressions:

ϕ ::= p | ⊥ | (ϕ→ ϕ) | ∀ϑ,

ϑ ::= ϕ | (ϑ→ ϑ) | (ϑ Uϑ) | ❣ϑ,

where p ranges over Var. Other Boolean connectives are defined as follows:
¬A := (A → ⊥), (A ∧ B) := ¬(A → ¬B), (A ∨ B) := (¬A → B), and
(A ↔ B) := (A → B) ∧ (B → A), where A and B can be either state or path
formulas. We also define ⊤ := ⊥ → ⊥, ✸ϑ := (⊤Uϑ), ✷ϑ := ¬✸¬ϑ, and
∃ϑ := ¬∀¬ϑ.

Formulas are evaluated in Kripke models. A Kripke model is a tuple
M = (S, 7−→, V ), where S is a non-empty set (of states), 7−→ is a binary
(transition) relation on S that is serial (i.e., for every s ∈ S, there exists s′ ∈ S
such that s 7−→ s′), and V is a (valuation) function V : Var → 2S .

An infinite sequence s0, s1, . . . of states in M such that si 7−→ si+1, for every
i > 0, is called a path. Given a path π and some i > 0, we denote by π[i] the
ith element of π and by π[i,∞] the suffix of π beginning at the ith element. If
s ∈ S, we denote by Π(s) the set of all paths π such that π[0] = s.

The satisfaction relation between models M, states s, and state formulas
ϕ, as well as between models M, paths π, and path formulas ϑ, is defined as
follows:

• M, s |= pi ⇌ s ∈ V (pi);

• M, s |= ⊥ never holds;

• M, s |= ϕ1 → ϕ2 ⇌ M, s |= ϕ1 implies M, s |= ϕ2;

• M, s |= ∀ϑ1 ⇌ M, π |= ϑ1 for every π ∈ Π(s).

• M, π |= ϕ1 ⇌ M, π[0] |= ϕ1;

• M, π |= ϑ1 → ϑ2 ⇌ M, π |= ϑ1 implies M, π |= ϑ2;

• M, π |= ❣ϑ1 ⇌ M, π[1,∞] |= ϑ1;

• M, π |= ϑ1 Uϑ2 ⇌ M, π[i,∞] |= ϑ2 for some i > 0 and M, π[j,∞] |= ϑ1
for every j such that 0 6 j < i.
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A CTL
∗-formula is a state formula in this language. A CTL

∗-formula is sat-
isfiable if it is satisfied by some state of some model, and valid if it is satisfied
by every state of every model. Formally, by CTL

∗ we mean the set of valid
CTL

∗-formulas. Notice that this set is closed under uniform substitution.
Logic CTL can be thought of as a fragment of CTL

∗ containing only for-
mulas where a path quantifier is always paired up with a temporal connective.
This, in particular, disallows formulas whose main sign is a temporal connective
and, thus, eliminates path-formulas. Such composite “modal” operators are
∀ ❣ (universal “next”), ∀ U (universal “until”), and ∃ U (existential “until”).
Formulas are defined by the following BNF expression:

ϕ ::= p | ⊥ | (ϕ→ ϕ) | ∀ ❣ϕ | ∀ (ϕ Uϕ) | ∃ (ϕ Uϕ),

where p ranges over Var. We also define ¬ϕ := (ϕ→ ⊥), (ϕ∧ψ) := ¬(ϕ→ ¬ψ),
(ϕ ∨ ψ) := (¬ϕ → ψ), ⊤ = ⊥ → ⊥, ∃ ❣ϕ := ¬∀ ❣¬ϕ, ∃✸ϕ := ∃(⊤Uϕ), and
∀✷ϕ := ¬∃✸¬ϕ.

The satisfaction relation between models M, states s, and formulas ϕ is
inductively defined as follows (we only list the cases for the “new” modal oper-
ators):

• M, s |= ∀ ❣ϕ1 ⇌ M, s′ |= ϕ1 whenever s 7−→ s′;

• M, s |= ∀(ϕ1 Uϕ2) ⇌ for every path s0 7−→ s1 7−→ . . . with s0 = s,
M, si |= ϕ2, for some i > 0, and M, sj |= ϕ1, for every 0 6 j < i;

• M, s |= ∃(ϕ1 Uϕ2) ⇌ there exists a path s0 7−→ s1 7−→ . . . with s0 = s,
such that M, si |= ϕ2, for some i > 0, and M, sj |= ϕ1, for every 0 6 j < i.

Satisfiable and valid formulas are defined as for CTL
∗. Formally, by CTL we

mean the set of valid CTL-formulas; this set is closed under substitution.
For each of the logics described above, by a variable-free fragment we mean

the subset of the logic containing only formulas without any propositional vari-
ables. Given formulas ϕ, ψ and a propositional variable p, we denote by ϕ[p/ψ]
the result of uniformly substituting ψ for p in ϕ.

3 Finite-variable fragments of CTL∗ and CTL

In this section, we consider the complexity of satisfiability for finite-variable
fragments of CTL and CTL

∗, as well as semantic expressivity of those frag-
ments.

We start by noticing that for both CTL and CTL
∗ satisfiability of the

variable-free fragment is polynomial-time decidable. Indeed, it is easy to check
that, for these logics, every variable-free formula is equivalent to either ⊥ or ⊤.
Thus, to check for satisfiability of a variable-free formula ϕ, all we need to do
is to recursively replace each subformula of ϕ by either ⊥ or ⊤, which gives us
an algorithm that runs in time linear in the size of ϕ. Since both CTL and
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CTL
∗ are at least EXPTIME-hard and P 6= EXPTIME, variable-free fragments

of these logics cannot be as expressive as the entire logic.
We next prove that the situation changes once we allow just one variable to

be used in the construction of formulas. Then, we can express everything we
can express in the full languages of CTL and CTL

∗; as a consequence, the com-
plexity of satisfiability becomes as hard as satisfiability for the full languages.
In what follows, we first present the proof for CTL

∗, and then point out how
that work carries over to CTL.

Let ϕ be an arbitrary CTL
∗-formula. Without a loss of generality we may

assume that ϕ contains propositional variables p1, . . . pn. Let pn+1 be a variable
not occurring in ϕ. First, inductively define the translation ·′ as follows:

pi
′ = pi, where i ∈ {1, . . . , n};

⊥′ = ⊥;
(φ→ ψ)′ = φ′ → ψ′;
(∀α)′ = ∀(✷pn+1 → α′);
( ❣α)′ = ❣α′;
(α Uβ)′ = α′ Uβ′.

Next, let
Θ = pn+1 ∧ ∀✷(∃ ❣pn+1 ↔ pn+1),

and define
ϕ̂ = Θ ∧ ϕ′.

Intuitively, the translation ·′ restricts evaluation of formulas to the paths
where every state makes the variable pn+1 true, while Θ acts as a guard making
sure that all paths in a model satisfy this property. Notice that ϕ is equivalent
to ϕ̂[pn+1/⊤].

Lemma 3.1 Formula ϕ is satisfiable if, and only if, formula ϕ̂ is satisfiable.

Proof. Suppose that ϕ̂ is not satisfiable. Then, ¬ϕ̂ ∈ CTL
∗ and, sinceCTL

∗ is
closed under substitution, ¬ϕ̂[pn+1/⊤] ∈ CTL

∗. As ϕ̂[pn+1/⊤] ↔ ϕ ∈ CTL
∗,

so ¬ϕ ∈ CTL
∗; thus, ϕ is not satisfiable.

Suppose that ϕ̂ is satisfiable. In particular, let M, s0 |= ϕ̂ for some model
M and some s0 in M. Define M

′ to be the smallest submodel of M such that

• s0 is in M
′;

• if x is in M
′, x 7−→ y, and M, y |= pn+1, then y is also in M

′.

Notice that, since M, s0 |= pn+1∧∀✷(∃ ❣pn+1 ↔ pn+1), the model M′ is serial,
as required, and that pn+1 is true at every state of M′.

We now show that M
′, s0 |= ϕ. Since M, s0 |= ϕ′, it suffices to prove that,

for every state x in M
′ and every state subformula ψ of ϕ, we have M, x |= ψ′

if, and only if, M′, x |= ψ; and that, for every path π in M
′ and every path

subformula α of ϕ, we have M, π |= α′ if, and only if, M′, π |= α. This can be
done by simultaneous induction on ψ and α.

7



The base case as well as Boolean cases are straightforward.
Let ψ = ∀α, so ψ′ = ∀(✷pn+1 → α′). Assume that M, x 6|= ∀(✷pn+1 → α′).

Then, M, π 6|= α′, for some π ∈ Π(x) such that M, π[i] |= pn+1, for every
i > 0. By construction of M

′, π is a path is M
′; thus, we can apply the

inductive hypothesis to conclude that M
′, π 6|= α. Therefore, M′, x 6|= ∀α, as

required. Conversely, assume that M
′, x 6|= ∀α. Then, M′, π 6|= α, for some

π ∈ Π(x). Clearly, π is a path in M. Since pn+1 is true at every state in M
′,

and thus, at every state in π, using the inductive hypothesis, we conclude that
M, x 6|= ∀(✷pn+1 → α′).

The cases for the temporal connectives are straightforward.
✷

Lemma 3.2 If ϕ̂ is satisfiable, then it is satisfied in a model where pn+1 is true
at every state.

Proof. If ϕ̂ is satisfiable, then, as has been shown in the proof of Lemma 3.1, ϕ
is satisfied in a model where pn+1 is true at every state; i.e., M, s |= ϕ for some
M = (S, 7−→, V ) such that pn+1 is true at every state in S and some s ∈ S.
Since ϕ is equivalent to ϕ̂[pn+1/⊤], clearly M, s |= ϕ̂. ✷

Next, we model all the variables of ϕ̂ by single-variable formulas A1, . . . , Am.
This is done in the following way. Consider the class M of models that, for each
m ∈ {1, . . . , n+ 1}, contains a model Mm = (Sm, 7−→, Vm) defined as follows:

• Sm = {rm, b
m, am1 , a

m
2 , . . . , a

m
2m};

• 7−→ = {〈rm, b
m〉, 〈rm, a

m
1 〉} ∪ {〈ami , a

m
i+1〉 : 1 ≤ m ≤ 2m− 1} ∪

{〈s, s〉 : s ∈ Sm};

• s ∈ Vm(p) if, and only if, s = rm or s = am
2k, for some k ∈ {1, . . . ,m}.

The model Mm is depicted in Figure 1, where circles represent states with
loops. With every such Mm, we associate a formula Am, in the following way.
First, inductively define the sequence of formulas

χ0 = ∀✷ p;
χk+1 = p ∧ ∃ ❣(¬p ∧ ∃ ❣χk).

Next, for every m ∈ {1, . . . , n+ 1}, let

Am = χm ∧ ∃ ❣∀✷¬p.

Lemma 3.3 Let Mk ∈ M and let x be a state in Mk. Then, Mk, x |= Am if,
and only if, k = m and x = rm.

Proof. Straightforward. ✷
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✻

✻

✻

❅
❅

❅
❅■

✻

✻

...

Figure 1: Model Mm

Now, for every m ∈ {1, . . . , n+ 1}, define

Bm = ∃ ❣Am.

Finally, let σ be a (substitution) function that, for every i ∈ {1 . . . n + 1},
replaces pi by Bi, and let

ϕ∗ = σ(ϕ̂).

Notice that the formula ϕ∗ contains only a single variable, p.

Lemma 3.4 Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Suppose that ϕ is not satisfiable. Then, in view of Lemma 3.1, ϕ̂ is not
satisfiable. Then, ¬ϕ̂ ∈ CTL

∗ and, since CTL
∗ is closed under substitution,

¬ϕ∗ ∈ CTL
∗. Thus, ϕ∗ is not satisfiable.

Suppose that ϕ is satisfiable. Then, in view of Lemmas 3.1 and 3.2, ϕ̂ is
satisfiable in a model M = (S, 7−→, V ) where pn+1 is true at every state. We
can assume without a loss of generality that every x ∈ S is connected by some
path to s. Define model M′ as follows. Append to M all the models from M

(i.e., take their disjoint union), and for every x ∈ S, make rm, the root of Mm,
accessible from x in M

′ exactly when M, x |= pm. The evaluation of p is defined
as follows: for states from each Mm ∈ M, the evaluation is the same as in Mm,
and for every x ∈ S, let x /∈ V ′(p).

We now show that M
′, s |= ϕ∗. It is easy to check that M

′, s |= σ(Θ). It
thus remains to show that M′, s |= σ(ϕ′). Since M, s |= ϕ′, it suffices to prove
that M, x |= ψ′ if, and only if, M′, x |= σ(ψ′), for every state x in M and every

9



state subformula ψ of ϕ; and that M, π |= α′ if, and only if, M′, π |= σ(α′),
for every path π in M and every path subformula α of ϕ. This can be done by
simultaneous induction on ψ and α.

Let ψ = pi, so ψ
′ = pi and σ(ψ

′) = Bi. Assume that M, x |= pi. Then, by
construction of M′, we have M

′, x |= Bi. Conversely, assume that M′, x |= Bi.
As M

′, x |= Bi implies M
′, x |= ∃ ❣p and since M, y 6|= p, for every y ∈ S,

this can only happen if x 7−→M
′

rm, for some m ∈ {1, . . . , n+ 1}. Since, then,
rm |= Ai, in view of Lemma 3.3, m = i, and thus, by construction of M′, we
have M, x |= pi.

The Boolean cases are straightforward.
Let ψ = ∀α, so ψ′ = ∀(✷pn+1 → α′) and σ(ψ′) = ∀(✷Bn+1 → σ(α′)).

Assume that M, x 6|= ∀(✷pn+1 → α′). Then, for some π ∈ Π(x) such that
M, π[i] |= pn+1 for every i > 0, we have M, π 6|= α′. Clearly, π is a path in
M

′, and thus, by inductive hypothesis, M′, π[i] |= Bn+1, for every i > 0, and
M

′, π 6|= σ(α′). Hence, M′, x 6|= ∀(✷Bn+1 → σ(α′)), as required. Conversely,
assume that M

′, x 6|= ∀(✷Bn+1 → σ(α′)). Then, for some π ∈ Π(x) such that
M

′, π[i] |= Bn+1 for every i > 0, we have M
′, π 6|= σ(α′). Since by construction

ofM′, no state outside of S satisfies Bn+1, we know that π is a path inM. Thus,
we can use the inductive hypothesis to conclude that M, x 6|= ∀(✷pn+1 → α′).

The cases for the temporal connectives are straightforward.
✷

Lemma 3.4, together with the observation that the formula ϕ∗ is polynomial-
time computable from ϕ, give us the following:

Theorem 3.5 There exists a polynomial-time computable function e assigning
to every CTL

∗-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is sat-
isfiable if, and only if, ϕ is satisfiable.

Theorem 3.6 The satisfiability problem for the single-variable fragment of CTL
∗

is 2EXPTIME-complete.

Proof. The lower bound immediately follows from Theorem 3.5 and 2EXPTIME-
hardness of satisfiability for CTL

∗ [37]. The upper bound follows from the
2EXPTIME upper bound for satisfiability for CTL

∗ [37]. ✷

We now show how the argument presented above forCTL
∗ can be adapted to

CTL. First, we notice that if our sole purpose were to prove that satisfiability for
the single-variable fragment of CTL is EXPTIME-complete, we would not need
to work with the entire set of connectives present in the language of CTL,—
it would suffice to work with a relatively simple fragment of CTL containing
the modal operators ∀ ❣ and ∀✷, whose satisfiability, as follows from [12], is
EXPTIME-hard. We do, however, also want to establish that the single-variable
fragment of CTL is as expressive the entire logic; therefore, we embed the
entire CTL into its single-variable fragment. To that end, we can carry out an
argument similar to the one presented above for CTL

∗.
First, we define the translation ·′ as follows:
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pi
′ = pi where i ∈ {1, . . . , n};

(⊥)′ = ⊥;
(φ→ ψ)′ = φ′ → ψ′;
(∀ ❣φ)′ = ∀ ❣(pn+1 → φ′);
(∀ (φ Uψ))′ = ∀ (φ′ U(pn+1 ∧ ψ

′));
(∃ (φ Uψ))′ = ∃ (φ′ U(pn+1 ∧ ψ

′)).

Next, let
Θ = pn+1 ∧ ∀✷(∃ ❣pn+1 ↔ pn+1).

and define
ϕ̂ = Θ ∧ ϕ′.

Intuitively, the translation ·′ restricts the evaluation of formulas to the states
where pn+1 is true. Formula Θ acts as a guard making sure that all states in
a model satisfy this property. We can then prove the analogues of Lemmas 3.1
and 3.2.

Lemma 3.7 Formula ϕ is satisfiable if, and only if, formula ϕ̂ is satisfiable.

Proof. Analogous to the proof of Lemma 3.1. In the right-to-left direction,
inductive steps for modal connectives rely on the fact that in a submodel we
constructed every state makes the variable pn+1 true. ✷

Lemma 3.8 If ϕ̂ is satisfiable, then it is satisfied in a model where pn+1 is true
at every state.

Proof. Analogous to the proof of Lemma 3.2. ✷

Next, we model propositional variables p1, . . . , pn+1 in the formula ϕ̂ exactly
as in the argument for CTL

∗, i.e., we use formulas Am and their associated
models Mm, where m ∈ {1, . . . , n + 1}. This can be done since formulas Am

are, in fact, CTL-formulas. Lemma 3.3 can, thus, be reused for CTL, as well.
We then define a single-variable CTL-formula ϕ∗ analogously to the way it

had been done for CTL
∗:

ϕ∗ = σ(ϕ̂),

where σ is a (substitution) function that, for every i ∈ {1 . . . n+ 1}, replaces pi
by Bi = ∃ ❣Ai. We can then prove the analogue of Lemma 3.4.

Lemma 3.9 Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Analogous to the proof of Lemma 3.4. In the left-to-right direction,
the inductive steps for the modal connectives rely on the fact that the formula
Bn+1 is true precisely at the states of the model that satisfies ϕ. ✷

We, thus, obtain the following:
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Theorem 3.10 There exists a polynomial-time computable function e assign-
ing to every CTL-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is
satisfiable if, and only if, ϕ is satisfiable.

Theorem 3.11 The satisfiability problem for the single-variable fragment of
CTL is EXPTIME-complete.

Proof. The lower bound immediately follows from Theorem 3.10 and EXPTIME-
hardness of satisfiability for CTL [12]. The upper bound follows from the EX-
PTIME upper bound for satisfiability for CTL [9]. ✷

4 Alternating-time temporal logics

Alternating-time temporal logics ATL
∗ and ATL can be conceived of as gener-

alisations ofCTL
∗ andCTL, respectively. Their models incorporate transitions

occasioned by simultaneous actions of the agents in the system rather than ab-
stract transitions, as in CTL

∗ and CTL, and we now reason about paths that
can be forced by cooperative actions of coalitions of agents, rather than just
about all (∀) and some (∃) paths. We do not lose the ability to reason about all
and some paths in ATL

∗ and ATL, however, so these logics are generalisations
of CTL

∗ and CTL, respectively.
The language of ATL

∗ contains a non-empty, finite set AG of names of
agents (subsets of AG are called coalitions); a countable set Var = {p1, p2, . . .}
of propositional variables; the propositional constant ⊥; the Boolean connective
→; coalition quantifiers 〈〈C〉〉, for every C ⊆ AG; and temporal connectives ❣

(“next”), U (“until”), and ✷ (“always in the future”). The language contains
two kinds of formulas: state formulas and path formulas. State formulas ϕ and
path formulas α are simultaneously defined by the following BNF expressions:

ϕ ::= p | ⊥ | (ϕ→ ϕ) | 〈〈C〉〉ϑ,

ϑ ::= ϕ | (ϑ → ϑ) | (ϑ Uϑ) | ❣ϑ | ✷ϑ,

where C ranges over subsets of AG and p ranges over Var. Other Boolean and
temporal connectives are defined as for CTL

∗.
Formulas are evaluated in concurrent game models. A concurrent game

model is a tuple M = (AG,S, Act, act, δ, V ), where

• AG = {1, . . . , k} is a finite, non-empty set of agents;

• S is a non-empty set of states;

• Act is a non-empty set of actions;

• act : AG×S 7→ 2Act is an action manager function assigning a non-empty
set of “available” actions to an agent at a state;
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• δ is a transition function assigning to every state s ∈ S and every action
profile α = (α1, . . . , αk), where αa ∈ act(a, s), for every a ∈ AG, an
outcome state δ(s, α);

• V is a (valuation) function V : Var → 2S .

A few auxiliary notions need to be introduced for the definition of the sat-
isfaction relation.

A path is an infinite sequence s0, s1, . . . of states in M such that, for every
i > 0, the following holds: si+1 ∈ δ(si, α), for some action profile α. The set of
all such sequences is denoted by Sω . The notation π[i] and π[i,∞] is used as for
CTL

∗. Initial segments π[0, i] of paths are called histories ; a typical history is
denoted by h, and its last state, π[i], is denoted by last(h). Note that histories
are non-empty sequences of states in S; we denote the set of all such sequences
by S+.

Given s ∈ S and C ⊆ AG, a C-action at s is a tuple αC such that
αC(a) ∈ act(a, s), for every a ∈ C, and αC(a

′), for every a′ /∈ C, is an un-
specified action of agent a′ at s (technically, a C-action might be thought of as
an equivalence class on action profiles determined by a vector of chosen actions
for every a ∈ C); we denote by act(C, s) the set of C-actions at s. An action
profile α extends a C-action αC , symbolically αC ⊑ α, if α(a) = αC(a), for
every a ∈ C. The outcome set of the C-action αC at s is the set of states
out(s, αC) = {δ(s, α) | α ∈ act(AG, s) and αC ⊑ α}.

A strategy for an agent a is a function stra(h) : S
+ 7→ act(a, last(h)) assign-

ing to every history an action available to a at the last state of the history. A
C-strategy is a tuple of strategies for every a ∈ C. The function out(s, αC) can
be naturally extended to the functions out(s, strC) and out(h, strC) assigning to
a given state s, or more generally a given history h, and a given C-strategy the
set of states that can result from applying strC at s or h, respectively. The set
of all paths that can result when the agents in C follow the strategy strC from
a given state s is denoted by Π(s, strC) and defined as {π ∈ Sω | π[0] = s and
π[j + 1] ∈ out(π[0, j], strC), for every j > 0}.

The satisfaction relation between models M, states s, and state formulas
ϕ, as well as between models M, paths π, and path formulas ϑ, is defined as
follows:

• M, s |= pi ⇌ s ∈ V (pi);

• M, s |= ⊥ never holds;

• M, s |= ϕ1 → ϕ2 ⇌ M, s |= ϕ1 implies M, s |= ϕ2;

• M, s |= 〈〈C〉〉ϑ1 ⇌ there exists a C-strategy strC such that M, π |= ϑ1
holds for every π ∈ Π(s, strC);

• M, π |= ϕ1 ⇌ M, π[0] |= ϕ1;

• M, π |= ϑ1 → ϑ2 ⇌ M, π |= ϑ1 implies M, π |= ϑ2;
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• M, π |= ❣ϑ1 ⇌ M, π[1,∞] |= ϑ1;

• M, π |= ✷ϑ1 ⇌ M, π[i,∞] |= ϑ1, for every i > 0;

• M, π |= ϑ1 Uϑ2 ⇌ M, π[i,∞] |= ϑ2 for some i > 0 and M, π[j,∞] |= ϑ1
for every j such that 0 6 j < i.

An ATL
∗-formula is a state formula in this language. An ATL

∗-formula is
satisfiable if it is satisfied by some state of some model, and valid if it is satisfied
by every state of every model. Formally, by ATL

∗ we mean the set of all valid
ATL

∗-formulas; notice that this set is closed under uniform substitution.
Logic ATL can be thought of as a fragment of ATL

∗ containing only formu-
las where a coalition quantifier is always paired up with a temporal connective.
This, as in the case of CTL, eliminates path-formulas. Such composite “modal”
operators are 〈〈C〉〉 ❣, 〈〈C〉〉✷, and 〈〈C〉〉 U . Formulas are defined by the following
BNF expression:

ϕ ::= p | ⊥ | (ϕ→ ϕ) | 〈〈C〉〉 ❣ϕ | 〈〈C〉〉✷ϕ | 〈〈C〉〉(ϕ Uϕ),

where C ranges over subsets of AG and p ranges over Var. The other Boolean
connectives and the constant ⊤ are defined as for CTL.

The satisfaction relation between concurrent game models M, states s, and
formulas ϕ is inductively defined as follows (we only list the cases for the “new”
modal operators):

• M, s |= 〈〈C〉〉 ❣ϕ1 ⇌ there exists a C-action αC such that M, s′ |= ϕ1

whenever s′ ∈ out(s, actC);

• M, s |= 〈〈C〉〉✷ϕ1 ⇌ there exists a C-strategy strC such that M, π[i] |= ϕ1

holds for all π ∈ out(s, strC) and all i > 0;

• M, s |= 〈〈C〉〉(ϕ1 Uϕ2) ⇌ there exists a C-strategy strC such that, for all
π ∈ out(s, strC), there exists i > 0 with M, π[i] |= ϕ and M, π[j] |= ϕ
holds for every j such that 0 6 j < i.

Satisfiable and valid formulas are defined as for ATL
∗. Formally, by ATL we

mean the set of all valid ATL
∗-formulas; this set is closed under substitution.

Remark 4.1 We have given definitions of satisfiability and validity for ATL
∗

and ATL that assume that the set of all agents AG present in the language
is “fixed in advance”. At least two other notions of satisfiability (and, thus,
validity) for these logics have been discussed in the literature (see, e.g., [40])—
i.e., satisfiability of a formula in a model where the set of all agents coincides
with the set of agents named in the formula and satisfiability of a formula in
a model where the set of agents is any set including the agents named in the
formula (in this case, it suffices to consider all the agents named in the formula
plus one extra agent). In what follows, we explicitly consider only the notion
of satisfiability for a fixed set of agents; other notions of satisfiability can be
handled in a similar way.
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5 Finite-variable fragments of ATL∗ and ATL

We start by noticing that satisfiability for variable-free fragments of both ATL
∗

and ATL is polynomial-time decidable, using the algorithm similar to the one
outlined for CTL

∗ and CTL. It follows that variable-free fragments of ATL
∗

and ATL cannot be as expressive as entire logics.
We also notice that, as is well-known, satisfiability for CTL

∗ is polynomial-
time reducible to satisfiability forATL

∗ and satisfiability forCTL is polynomial-
time reducible to satisfiability for ATL, using the translation that replaces all
occurrences of ∀ by 〈〈∅〉〉 and all occurrences of ∃ by 〈〈AG〉〉. Thus, Theorems 3.6
and 3.11, together with the known upper bounds [19, 35, 32], immediately give
us the following:

Theorem 5.1 The satisfiability problem for the single-variable fragment of ATL
∗

is 2EXPTIME-complete.

Theorem 5.2 The satisfiability problem for the single-variable fragment of ATL

is EXPTIME-complete.

In the rest of this section, we show that single-variable fragments of ATL
∗

and ATL are as expressive as the entire logics by embedding both ATL
∗ and

ATL into their single-variable fragments. The arguments closely resemble the
ones for CTL

∗ and CTL, so we only provide enough detail for the reader to be
able to easily fill in the rest.

First, consider ATL
∗. The translation ·′ is defined as for CTL

∗, except that
the clause for ∀ is replaced by the following:

(〈〈C〉〉α)′ = 〈〈C〉〉(✷pn+1 ∧ α
′).

Next, we define

Θ = pn+1 ∧ 〈〈∅〉〉✷(〈〈AG〉〉 ❣pn+1 ↔ pn+1)

and
ϕ̂ = Θ ∧ ϕ′.

Then, we can prove the analogues of Lemmas 3.1 and 3.2.
We next model all the variables of ϕ̂ by single-variable formulas A′

1, . . . , A
′
m.

To that end, we use the class of concurrent game models M = {M′
1
, . . . ,M′

m
}

that closely resemble models M1, . . . ,Mm used in the argument for CTL
∗. For

every M
′
i, with i ∈ {1, . . . ,m}, the set of states and the valuation V are the

same as for Mi; in addition, whenever s 7−→ s′ holds in Mi, we set δ(s, α) = s′,
for every action profile α. The actions available to an agent a at each state of
Mi are all the actions available to a at any of the states of the model M to which
we are going to attach models M′

i when proving the analogue of Lemma 3.4, as
well as an extra action da that we need to set up transitions from the states of
M to the roots of M′

is.
With every M

′
i we associate the formula A′

i. First, inductively define the
sequence of formulas
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χ′
0 = 〈〈∅〉〉✷ p;
χ′
k+1

= p ∧ 〈〈AG〉〉 ❣(¬p ∧ 〈〈AG〉〉 ❣χk).

Next, for every m ∈ {1, . . . , n+ 1}, let

A′
m = χ′

m ∧ 〈〈AG〉〉 ❣〈〈∅〉〉✷¬p.

Lemma 5.3 Let M′
k ∈ M and let x be a state in M

′
k. Then, M′

k, x |= A′
m if,

and only if, k = m and x = rm.

Proof. Straightforward. ✷

Now, for every m ∈ {1, . . . , n+ 1}, define

B′
m = 〈〈AG〉〉 ❣A′

m.

Finally, let σ be a (substitution) function that, for every i ∈ {1, . . . , n + 1},
replaces pi by B

′
i, and let

ϕ∗ = σ(ϕ̂).

This allows us to prove the analogue of Lemma 3.4.

Lemma 5.4 Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Analogous to the proof of Lemma 3.4. When constructing the model
M

′, whenever we need to connect a state s in M to the root ri of M
′
i, we make

an extra action, da, available to every agent a, and define δ(s, 〈da〉a∈AG) = ri. ✷

Thus, we have the following:

Theorem 5.5 There exists a polynomial-time computable function e assigning
to every ATL

∗-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is sat-
isfiable if, and only if, ϕ is satisfiable.

We then can adapt the argument for ATL form the one just presented in the
same way we adapted the argument for CTL from the one for CTL

∗, obtaining
the following:

Theorem 5.6 There exists a polynomial-time computable function e assigning
to every ATL-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is satis-
fiable if, and only if, ϕ is satisfiable.

6 Discussion

We have shown that logics CTL
∗, CTL, ATL

∗, and ATL can be polynomial-
time embedded into their single-variable fragments; i.e., their single-variable
fragments are as expressive as the entire logics. Consequently, for these logics,
satisfiability is as computationally hard when one considers only formulas of
one variable as when one considers arbitrary formulas. Thus, the complexity
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of satisfiability for these logics cannot be reduced by restricting the number of
variables allowed in the construction of formulas.

The technique presented in this paper can be applied to many other modal
and temporal logics of computation considered in the literature. We will not
here attempt a comprehensive list, but rather mention a few examples.

The proofs presented in this paper can be extended in a rather straight-
forward way to Branching- and Alternating-time temporal-epistemic logics [21,
35, 39, 16], i.e., logics that enrich the logics considered in this paper with the
epistemic operators of individual, distributed, and common knowledge for the
agents. Our approach can be used to show that single-variable fragments of
those logics are as expressive as the entire logics and that, consequently, the
complexity of satisfiability for them is as hard (EXPTIME-hard or 2EXPTIME-
hard) as for the entire logics. Clearly, the same approach can be applied to
epistemic logics [11, 14, 18], i.e., logics containing epistemic, but not tem-
poral, operators—such logics are widely used for reasoning about distributed
computation. Our argument also applies to logics with the so-called univer-
sal modality [13] to obtain EXPTIME-completeness of their variable-free frag-
ments. The technique presented here has also been recently used [29] to show
that propositional dynamic logics are as expressive in the language without
propositional variables as in the language with an infinite supply of proposi-
tional variables. Since our method is modular in the way it tackles modalities
present in the language, it naturally lends itself to modal languages combining
various modalities—a trend that has been gaining prominence for some time
now.

The technique presented in this paper can also be lifted to first-order lan-
guages to prove undecidability results about fragments of first-order modal and
related logics,—see [31].

We conclude by noticing that, while we have been able to overcome the
limitations of the technique from [20] described in the introduction, our modi-
fication thereof has limitations of its own. It is not applicable to logics whose
semantics forbids branching, such as LTL or temporal-epistemic logics of linear
time [21, 15]. Our technique cannot be used, either, to show that finite-variable
fragments of logical systems that are not closed under uniform substitution—
such as public announcement logic PAL [27, 36]—have the same expressive
power as the entire system. This does not preclude it from being used in estab-
lishing complexity results for finite-variable fragments of such systems provided
they contain fragments, as is the case with PAL [24], that are closed under
substitution and have the same complexity as the entire system.
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