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Abstract. Alzheimer’s disease (AD) is characterized by complex and
largely unknown progression dynamics affecting the brain’s morphology.
Although the disease evolution spans decades, to date we cannot rely
on long-term data to model the pathological progression, since most of
the available measures are on a short-term scale. It is therefore difficult
to understand and quantify the temporal progression patterns affecting
the brain regions across the AD evolution. In this work, we tackle this
problem by presenting a generative model based on probabilistic matrix
factorization across temporal and spatial sources. The proposed method
addresses the problem of disease progression modelling by introducing
clinically-inspired statistical priors. To promote smoothness in time and
model plausible pathological evolutions, the temporal sources are defined
as monotonic and independent Gaussian Processes. We also estimate an
individual time-shift parameter for each patient to automatically position
him/her along the sources time-axis. To encode the spatial continuity
of the brain sub-structures, the spatial sources are modeled as Gaussian
random fields. We test our algorithm on grey matter maps extracted from
brain structural images. The experiments highlight differential temporal
progression patterns mapping brain regions key to the AD pathology,
and reveal a disease-specific time scale associated with the decline of
volumetric biomarkers across clinical stages.

1 Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized
by morphological and molecular changes of the brain, and ultimately lead to

*Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf.
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cognitive and behavioral decline [8]. To date there is no clear understanding of
the dynamics regulating the disease progression. Consequently several attempts
have been made to model the disease evolution in a data-driven way, using sets
of biomarkers extracted from different imaging acquisition techniques, such as
Magnetic Resonance Imaging (MRI) [13]. However available data are mostly
represented by cross-sectional measures or time-series acquired on a short-term
time span, while the ultimate goal is to unveil the “long-term” disease evolution
spreading over decades. Therefore there is a critical need to define the AD evo-
lution in a data-driven manner with respect to an absolute time scale associated
to the natural history of the pathology.

To this end, in [9] the authors introduce a disease progression score for each
patient in order to identify a data-driven disease scale. This score is based on a
set of biomarkers and was shown to correlate with the decline of brain cognitive
abilities. A similar approach was proposed by [13] and [6] with scalar biomark-
ers. In [3], a disease progression score was estimated using higher-dimensional
biomarkers from molecular imaging. However these methods don’t provide infor-
mation about the brain structures involved in AD, and how the disease affects
them along time. To overcome these limitations, [14] proposes a spatio-temporal
model of disease progression explicitly accounting for different temporal dynam-
ics across the brain. This is done by decomposing cortical thickness measure-
ments as a mixture of spatio-temporal processes, by associating each vertex to
a temporal progression modeled by a sigmoid function. The approach also es-
timates a disease progression score for each subject as a linear transformation
of time. However since the proposed formulation does not account for spatial
correlation between vertices, it may be potentially sensitive to spatial variation
and noise, thus leading to poor interpretability.

The challenge of spatio-temporal modelling in brain images is a classical prob-
lem widely addressed via Independent Component Analysis (ICA [7]), especially
on functional MRI (fMRI) data [4]. ICA aims at decomposing the data via
matrix factorization, looking for a reduced number of spatio-temporal latent
sources. Although successful in fMRI analysis, ICA cannot find straightforward
applications to the modelling of AD progression. First, ICA retrieves maximally
independent latent sources best explaining the data. However, although brain re-
gions can exhibit different atrophy rates, this doesn’t necessarily imply statistical
independence between them. Second, differently from fMRI data, the absolute
time axis of AD spatio-temporal observations is unknown. Thus estimating the
pathology timing is a key step in order to model the disease progression, and
cannot be performed with standard dimensionality reduction methods such as
ICA. Finally, fMRI time series are defined over hundreds of time points, while we
work essentially in a cross-sectional setting with one or a few images per-subject.

In this work we present a novel spatio-temporal generative model of disease pro-
gression aimed at quantifying the independent dynamics of changes in the brain.
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We model the observed data through matrix factorization across temporal and
spatial sources, with a plausibility constraint introduced by clinically-inspired
statistical priors. To promote smoothness in time and model steady evolution
from normal to pathological stages, the temporal sources are defined as mono-
tonic independent Gaussian Processes (GPs). We also estimate an individual
time-shift parameter for each patient to automatically position him along the
sources time-axis. To encode the spatial continuity of the brain sub-structures,
the spatial sources are modeled as Gaussian random fields. The framework is
efficiently optimized through stochastic variational inference. In the next sec-
tions we detail the method formulation and show its application on synthetic
and real data composed by a large dataset of MRIs from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI). Further information can be found in the
Appendix.

2 Method

We assume that the spatio-temporal data Y (x, t) = [Y1(x, t1),Y2(x, t2), ..,YP (x, tp)]
is stored in a matrix with dimensions P ×F , where P is the number of patients,
F the number of image features, and Yi(x, ti) is the image of an individual i
observed at position x and at time ti. We postulate a generative model in order
to decompose the data in Ns spatio-temporal sources such that :

Yp(x, tp) = S(θ, t+ tp)A(ψ, x) + E. (1)

S is a P × Ns matrix where each column represents a temporal trajectory, tp
the individual time-shift parameter, and θ the set of parameters related to the
temporal sources. A is a Ns×F matrix where each row represents a spatial map,
and ψ is a set of spatial parameters. E is a N (0, σ2I) Gaussian noise. According
to the generative model the likelihood is :

p(Y |A,S, σ) =

P∏
p=1

1

(2πσ2)
F
2

exp(− 1

2σ2
||Yp − S(θ, t+ tp)A(ψ, x)||2). (2)

For each latent source n, the row An of A is provided with a N (0, I) prior, while
each column Sn of S is a GP modeled as in [5]. This setting leverages on kernel
approximation through sampling of basis functions in the spectral domain [15].
For specific choices of the covariance, such as the Radial Basis Function (RBF)
used in our work, the GPs can be approximated as a Bayesian neural network
with form : Sn(t) = φ(Ωnt)Wn. According to [5], in this formulation Ωn is the
projection in the spectral domain provided with a N (0, 1

ln
I) prior, φ is defined as

the (cos, sin) function in order to obtain a RBF kernel for the covariance matrix,
and the regression parameter Wn is provided with a N (0, I) prior. The GPs are
estimated using variational inference by introducing approximated distributions
of Ω = {Ωn, n ∈ [1, Ns]} and W = {Wn, n ∈ [1, Ns]}.
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To account for the steady increase of the sources from normal to pathological
stages we introduce a monotonicity prior over the GPs. To do so, we constrain
the space of the temporal sources to the set C = {S(t) | S′(t) ≤ 0 ∀t}, follow-
ing [12]. This leads to a second likelihood term constraining the dynamics of the
temporal sources :

p(C|S′, λ) = (1 + exp(−λS′(t)))−1. (3)

We jointly optimize (2) according to priors and constraints, by maximizing the
data evidence :

log(p(Y , C|σ, λ)) = log[

∫
A

∫
S

∫
S′
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S,S′|λ)dAdSdS′]

= log[

∫
A

∫
S

∫
S′
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S′|S, λ)p(S)dAdSdS′].

(4)

By observing that S′ is completely identified by S, formula (4) can be written
as :

log(p(Y , C|σ, λ)) = log[

∫
A

∫
S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)dAdS]. (5)

Since this integral is intractable, we tackle the optimization of (5) via stochastic
variational inference. Following [10] and [5] we introduce approximations q1(A),
q2(Ω) and q3(W ) to derive the lower bound :

log(p(Y , C|σ, λ)) > EA∼q1,Ω∼q2,W∼q3 [log(p(Y |A,Ω,W , σ))] + EΩ∼q2,W∼q3 [log(p(C|Ω,W , λ))]

−D[q1(A)||p(A)]−D[q2(Ω)||p(Ω)]−D[q3(W )||p(W )].

(6)

Where D refers to the Kullback-Leibler divergence.

We specify the approximated distribution of the spatial activation maps q1 such
that q1(A) =

∏Ns
n=1N (µn,Σ(α, β)). To introduce spatial correlations and model

a smooth signal decay in the maps across voxels with coordinates (ui,uj), we
choose Σi,j(α, β) = α exp(−||ui − uj ||2/2β). Moreover, we can use the sepa-
rability properties of the exponential to decompose the covariance between two
locations ui = (xi, yi, zi) and uj = (xj , yj , zj) :

Σi,j(α, β) = α exp(− (xi − xj)2

2β
) exp(− (yi − yj)2

2β
) exp(− (zi − zj)2

2β
). (7)

Thanks to this property Σ can be decomposed into the Kronecker product of
1D processes, Σ = Σx ⊗Σy ⊗Σz, as shown in [11], allowing us to deal with
large-size matrices.

The approximated distributions q2(Ω) and q3(W ) are factorized across GPs
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such that q2(Ω) =
∏Ns

n=1 q2(Ωn) =
∏Ns

n=1

∏Nrf

j=1 N (rn,j , p
2
n,j) and q3(W ) =∏Ns

n=1 q3(Wn) =
∏Ns

n=1

∏Nrf

j=1 N (mn,j , s
2
n,j), where Nrf is the number of ran-

dom features used for the projection in the spectral domain.

Since we only work with Gaussian distributions we can obtain a closed-form
for the Kullback-Leibler terms in (6). The expectations are approximated by
using the reparameterization trick as presented in [10], and the lower bound is
efficiently optimized through backpropagation. We chose to alternate the op-
timization between the spatio-temporal parameters and the time-shift. We set
λ to the minimum value that gives monotonic sources, while σ was arbitrarily
determined from the data. A detailed derivation of the model and lower-bound
can be found in the Appendix.

3 Results

3.1 Benchmark on Synthetic Data

We tested the algorithm on synthetic data to assess its ability to separate spatio-
temporal sources from mixed data, and to provide a model selection via the
variational lower bound. We generated three monotonically increasing functions
Si(t) such that Si(t) = 1/(1 + exp(−t+ αi)), and three synthetic Gausian acti-
vation maps A1,A2,A3 with a 30× 30 resolution, to mimick grey matter brain
areas (Figures 1a and 1b). The data was generated as Y p,j = S(tp)A+ Ej over
40 time points tp, where tp is uniformly distributed in [0,1]. We sampled 50 im-
ages at instants tp and applied our method. To simulate a pure cross-sectional
setting the time associated to each input image was set to zero. Figures 1c and
1d show the estimated spatio-temporal processes when fitting the model with
three latent sources. In Figure 2, we see that the individual time-shift parameter
estimated for each subject correlates with the original time used to generate
the data. This means that the algorithm correctly positions each subject on the
temporal trajectories.

To test the model selection, we generated the data as described above using
respectively one, two, or three sources over ten folds. For each fold we ran the
algorithm looking for one to four sources. Figure 3 shows mean and standard
deviation of the lower bound. We observe that when the number of sources is
under-estimated the lower bound is higher. When the number of sources is over-
estimated, although the lower bound for model selection is more uncertain, by
looking at the extracted spatial maps we observe that the additional sources are
mainly set to zero or have low weights (see the map of Figure 3). These exper-
imental results indicate that the optimal number of sources should be selected
by inspection of both the lower bound and the extracted spatial sources.
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Fig. 1: (a)-(b) Ground truth temporal and spatial sources. (c) Red : raw temporal
sources against the original time axis. Blue : recovered temporal sources against
the estimated time scale. (d) Estimated spatial maps.

Fig. 2: The red points represent the values of the estimated subjects’ time-shift
against their associated ground truth value.
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Fig. 3: (a)-(b)-(c) : Distribution of the lower bound against the number of fitted
sources. (d) : 4th extracted spatial map with data generated by 3 latent sources.
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3.2 Comparison with ICA

We performed a comparison of our algorithm with ICA on an example similar to
the one of section 3.1. However, since standard ICA can’t be applied when the
time associated to each image is unknown, the data was generated in a simplified
setting. To do so we assigned the ground truth parameter tp beforehand. The
goal was to compare the separation performances of both our algorithm and
ICA, on data generated with three latent spatio-temporal processes. In Figure 4
we observe that the sources estimated by ICA are more noisy and uncertain than
the ones estimated by our method, highlighting the importance of the priors and
constraints introduced in our model.
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Fig. 4: Ground truth and estimations of the spatio-temporal processes given by
both our method and ICA.

3.3 Application on Real Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. For up-to-date information, see www.adni-info.org.
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In this section we present an application of the algorithm on real data, using
grey matter maps extracted from structural MRI. We selected a cohort of 555
subjects from ADNI composed by 94 healthy controls, 343 MCI, and 118 AD pa-
tients. We processed the baseline MRI of each subject to obtain high-dimensional
grey matter density maps in a standard space [1]. We extracted the 90 × 100
middle coronal slice for each patient, to obtain a data matrix Y with dimen-
sions 555 × 9000, and applied our algorithm looking for three spatio-temporal
sources (see Figure 5). The middle spatial map shows a strong activation of the
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Fig. 5: (a)-(b) Temporal and Spatial sources extracted from the data.

hippocampus, while the left and right plots show an activation on the temporal
lobes, with two similar temporal behaviours, characterized by a less pronounced
grey matter loss compared to the hippocampus. More specifically, we observe
that the hippocampal trajectory has a strong acceleration in opposition to the
other brain areas. This pattern quantified by our model in a pure data-driven
manner is compatible with empirical evidence from clinical studies [2]. In Figure
6 we observe the estimated time of each patient against standard volumetric and
clinical biomarkers. We see a strong correlation between brain volumetric mea-
sures and the estimated time, as well as a non-linear relation in the evolution of
ADAS11. The latter result indicates an acceleration of clinical symptoms along
the estimated time course.
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Fig. 6: Evolution of volumetric and clinical biomarkers along the estimated time.
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4 Conclusion

We presented a method for analyzing spatio-temporal data, which provides both
independent spatio-temporal processes at stake in AD, and a disease progression
scale. Applied on grey matter maps, the model highlights different brain regions
affected by the disease, such as the hippocampus and the temporal lobes, along
with their differential temporal trajectory. We also show a strong correlation
between the estimated disease progression scale and different clinical and vol-
umetric biomarkers. We are currently extending the approach to scale to 3D
volumetric images by parallelization on multiple GPUs. The lower bound prop-
erties will be also further investigated to better assess its reliability, in order to
improve the model comparison. Moreover the method will be extended beyond
the cross-sectional application of section 3.3, to account for time-series of brain
images, as well as for multimodal imaging biomarkers. Finally we will investi-
gate the use of the approach for prognosis purposes, to provide a data-driven
assessment of disease severity in testing patients.
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Appendix

A. Lower bound derivation

In this section we detail the derivation of the lower bound :

log(p(Y , C|σ, λ)) = log[

∫
A

∫
S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)dAdS]

= log[

∫
A

∫
Ω

∫
W

p(Y |A,Ω,W , σ)p(C|Ω,W , λ)p(A)p(Ω,W )dAdΩdW ]

= log[

∫
A

∫
Ω

∫
W

p(Y |A,Ω,W , σ)p(C|Ω,W , λ)p(A)p(Ω)p(W )dAdΩdW ]

= log[

∫
A

∫
Ω

∫
W

p(Y |A,Ω,W , σ)p(C|Ω,W , λ)p(A)p(Ω)p(W )
q1(A)q2(Ω)q3(W )

q1(A)q2(Ω)q3(W )
dAdΩdW ]

= log[EA∼q1,Ω∼q2,W∼q3 [
p(Y |A,Ω,W , σ)p(C|Ω,W , λ)p(A)p(Ω)p(W )

q1(A)q2(Ω)q3(W )
]]

> EA∼q1,Ω∼q2,W∼q3 [log[
p(Y |A,Ω,W , σ)p(C|Ω,W , λ)p(A)p(Ω)p(W )

q1(A)q2(Ω)q3(W )
]]

= EA∼q1,Ω∼q2,W∼q3 [log[p(Y |A,Ω,W , σ)]] + EΩ∼q2,W∼q3 [log[p(C|Ω,W , λ)]]

−D[q1(A)||p(A)]−D[q2(Ω)||p(Ω)]−D[q3(W )||p(W )].

(1)

In the Method section we introduced the approximation q1(A) =
∏Ns

n=1N (µn,Σ(α, β)).
The covariance matrix is shared by all the spatial processes which gives us the
set of spatial parameters :

ψ = {µn, n ∈ [1, Ns], α, β}. (2)

We defined the approximated distributions q2(Ω) =
∏

n,j N (rn,j , p
2
n,j) and q3(W ) =∏

n,j N (mn,j , s
2
n,j), leading to the set of temporal parameters :

θ = {mn, sn, rn,pn, ln, n ∈ [1, Ns]}. (3)

Now we can obtain every term of (1). The Kullback-Leibler of a multivariate
Gaussian has a closed-from :

D[q1(A)||p(A)] =
1

2

Ns∑
n=1

Tr(Σ) + µn
Tµn − F − log[det(Σ)]. (4)

D[q2(Ω)|p(Ω)] =
1

2

Ns∑
n=1

∑
j

p2n,j ln + r2n,j ln,−1− log(p2n,j ln). (5)

D[q3(W )|p(W )] =
1

2

Ns∑
n=1

∑
j

s2n,j +m2
n,j − 1− log(s2n,j). (6)

As in [10] we employ the reparameterization trick to have an efficient way of
sampling the expectations of (1). Thus we have :
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– Ωn,j = rn,j + pn,j ∗ ζn,j ,
– W n,j = mn,j + sn,j ∗ εn,j ,
– An = µn +Σ

1
2 ∗ κ,

Which gives us :

EA∼q1,Ω∼q2,W∼q3 [log(p(Y |A,Ω,W , σ))] = Eε,ζ,κ[log(p(Y |m, s, r,p,µ,Σ, σ))],
(7)

EΩ∼q2,W∼q3 [log(p(C|Ω,W , λ))] = Eε,ζ [log(p(C|m, s, r,p, λ))]. (8)

Where ζn, εn and κ follow a N (0, I) distribution.
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AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Ara-
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Inc.;Cogstate;Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; Eu-
roImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.;
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Re-
search & Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.;Lumosity;Lundbeck;Merck & Co., Inc.; Meso Scale Diagnos-
tics, LLC.;NeuroRx Research; Neurotrack Technologies;Novartis Pharmaceuti-
cals Corporation; Pfizer Inc.; Piramal Imaging;Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics.The Canadian Institutes of Health Re-
search is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the Northern Califor-
nia Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of Southern Cal-
ifornia. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.
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