
VisAuth: Authentication over a Visual Channel
using an Embedded Image

Jack Sturgess (�) and Ivan Martinovic

Department of Computer Science, University of Oxford, Oxford, UK
{firstname.surname}@cs.ox.ac.uk

Abstract. Mobile payment systems are pervasive; their design is driven
by convenience and security. In this paper, we identify five common prob-
lems in existing systems: (i) specialist hardware requirements, (ii) no
reader-to-user authentication, (iii) use of invisible channels, (iv) depen-
dence on a client-server connection, and (v) no inherent fraud detection.
We then propose a novel system which overcomes these problems, so as
to mutually authenticate a user, a point-of-sale reader, and a verifier over
a visual channel, using an embedded image token to transport informa-
tion, while providing inherent unauthorised usage detection. We show
our system to be resilient against replay and tampering attacks.

1 Introduction

The popularity of cashless payments has risen sharply in recent years, surpass-
ing cash payments in some places [1]. Consumers moved from cash to cashless
payment cards primarily for convenience, not security—the first generation of
magnetic strip payment cards were authenticated with an easily-forged, hand-
written signature. These systems were widely replaced with Europay, Master-
Card, and Visa (EMV)1 payment card systems, protected by a chip and secret
personal identification number (PIN). The payment card is inserted into a spe-
cialist reader and the PIN is entered and verified by the chip to authenticate the
user and authorise the payment; more recent cards support contactless payments
using near field communication (NFC) between card and reader.

Attacks (e.g., [2, 3]) on payment card systems and incidences of fraud con-
tinue to occur, so consumers move to new cashless systems with the promise of
greater security and convenience. Furthermore, carrying a dedicated payment
card is increasingly regarded as inconvenient [4], so newer systems integrate di-
rectly with a device which the user would already be carrying, such as a smart-
phone. Strong reasons for the widespread adoption of tap-and-pay systems in-
clude usability and security [5]. Tap-and-pay systems require the user to install
an app on a device and provision a payment card to a virtual wallet. In Apple
Pay2, a token is created for each card and stored in the device’s secure element;
payments are made between the client and a compatible reader over NFC, with

1 www.emvco.com/about emvco.aspx (last accessed: June 2017).
2 www.apple.com/business/docs/iOS Security Guide.pdf (last accessed: June 2017).



the user authenticating to the app using TouchID (fingerprint) or a passcode
to authorise the payment. Android Pay3 and Samsung Pay4 are similar, but all
card data processing and tokenisation is handled on a cloud server (due to the
greater range of supported devices and their differing levels of security), so the
client must connect to the server regularly to acquire new tokens; this has a
negative impact on usability in areas where WiFi availability is poor.

It is difficult to prevent eavesdropping over invisible channels (e.g., [6, 7]) and
limiting the range to reduce the risk is not reliable (e.g., [8, 9]). Some systems
communicate over a visual channel between the client and reader, giving the user
more control over the broadcast, potentially making it difficult for an adversary
to intercept without being noticed. In Yoyo Wallet5, a virtual wallet is hosted on
a cloud server; the user authenticates to the app using a PIN, then a QR token
is passed between the client and a specialist reader to authorise a payment. Each
QR token may be used up to three times before the client needs to reconnect to
the server, meaning it is more connection-dependent than tap-and-pay systems.
Two similar systems, WeChat6 and AliPay7, both currently very popular in
China, support QR codes and barcodes to transfer information.

There is little compatibility between newer payment systems, and exclusion-
ary business models often mandate the use of specialist or dedicated point-of-sale
readers. Merchants struggle to accept them all, so brand loyalty and local trends
may factor into consumer decisions, detracting focus from security. Furthermore,
the physical presence of a specialist reader may give a false perception of trust
to a user that the reader is legitimate (a rogue reader could easily be dressed
to look genuine). Anti-phishing systems exist in other forms [10, 11] and some
banking interfaces (e.g., DoubleSafe8) use a personalised greeting message to
authenticate to the user before requesting a PIN or password, but we are yet
to see this feature in point-of-sale readers—instead, we see measures such as
payment limits, which mitigate damage at the expense of usability. Purnomo et
al. [12] present a system where mutual authentication is achieved via a trusted
third party, however it requires a connection throughout.

None of the systems offer an inherent mechanism whereby unauthorised usage
is easily detected by the user, aside from manually checking the account balance.
Yoyo Wallet comes close: if an adversary were to expend the three uses of a stolen
QR token, it would become useless and so indicate a problem when the user next
tries to use it (unless the user is online, in which case the token will automatically
refresh before use).

In this paper, due to space limitations, we focus on popular, real world sys-
tems. We identify five common drawbacks in these systems and propose a new
mobile payment scheme with the goal of overcoming those drawbacks.

3 support.google.com/androidpay (last accessed: June 2017).
4 www.samsung.com/us/support/answer/ANS00043790 (last accessed: June 2017).
5 www.yoyowallet.com/support.html (last accessed: June 2017).
6 pay.weixin.qq.com/index.php/public/wechatpay (last accessed: June 2017).
7 global.alipay.com/products/spot (last accessed: June 2017).
8 www.tangerine.ca/en/security (last accessed: Oct. 2017).



2 Objectives and Assumptions

Design Objectives. The purpose of our system is to authenticate a user to
a verifier using a client and via a point-of-sale reader to authorise a payment;
the system should also provide the following features to overcome the common
drawbacks identified in existing systems:

– No specialist hardware requirement.
– Mutual authentication: the system should authenticate the user to the verifier

via the reader; it should also authenticate the verifier and the reader to the
user before he authenticates to it, so as not to reveal secrets to a rogue reader.

– Visual channel: the system should operate over a visual channel between the
client and the reader.

– No client-to-verifier connection requirement.
– Unauthorised usage detection: the user should be told if an unauthorised user

has impersonated him, in a way that the intruder cannot avoid or erase.

System Model. The system consists of four components: a user (prover); a
client—i.e., a user device, such as a smartphone, with a camera, a screen, and our
app installed on it; a verifier, such as an authentication server, which maintains
a database of users’ cryptographic materials (see §3); and a point-of-sale reader
with a camera, a screen, and a means to enter a PIN (such as a touchscreen).

During enrollment, we assume that there is a secure channel between the
client and the verifier over which they exchange cryptographic materials. The
user will choose a PIN and a personalised message; we assume the former can
be reset only by connecting with the verifier, whereas the latter can be changed
for freshness on the client at any time without connecting to the verifier.

During authentication, we assume that there is a visual channel between the
client and the reader, and a secure channel between the reader and the verifier.
The client captures the payment amount and embeds data into an image to
transfer it over the visual channel. For any given user, we assume that only one
authentication attempt may be active at a time; simultaneous attempts should
be rejected by the verifier. A visualisation of the system is shown in Figure 1.

The system verifies three factors to authenticate the user: possession of the
client (something he has), verified by the data it embeds into the image, and
knowledge of the image and PIN (something he knows). It is recommended,
but not assumed, that the client require the user to authenticate to it using a
biometric, such as a fingerprint, to add a fourth factor (something he is).

Threat Model. We assume that the adversary can watch and modify commu-
nications between the user and the verifier, such as by deploying a rogue reader.
We assume that he knows everything about the user and may have access to any
of the images used—e.g., the user may have shared them on social media, with
or without embedded data.

The goal of the adversary is to impersonate a legitimate user and either
authorise or modify a payment without that user’s knowledge. In the first case,



Fig. 1. The system model. The client reads the payment amount (1), embeds the
amount, a message, and some authentication data into an image, and displays the
image to the reader (2), which sends it to the verifier (3). The verifier returns the
message (4), which authenticates it to the user (5), who then enters his PIN (6), which
authenticates him to the verifier (7).

the adversary is a rogue user who may attempt to perform a replay attack, by
re-using a previous image token to authorise a new payment. In the second case,
the adversary is a rogue merchant who may attempt to perform a tampering
attack, by using a rogue reader to authorise a payment for an amount different
to what is displayed by modifying the image token.

In this paper, we will not consider attacks on the client, such as physical
theft, cloning, or malware—these are all to be covered in future work. We also
do not consider attacks that take place during the enrollment phase, attacks on
the verifier, or denial-of-service attacks.

3 System Architecture

Cryptographic Materials. During enrollment, the verifier exchanges some
cryptographic materials with the client. It shares its public key, Ie, and its public
symmetric transposition key, M , used for embedding. It generates the user a
unique identifier, ID, and two secret block cipher keys9, K, L: K is used by the
client to encrypt data while embedding it into the cover-image; L is not shared
with the client. It also generates the user two blocks of secret binary data, p, u: p
is used to authenticate the client to the verifier and its size should be sufficiently
large to authenticate with confidence (e.g., 1,000 bits); u is used to update K
and p after each authentication and its size should be large enough to cover both.

The user chooses a secret PIN of memorable size (e.g., 4 digits); PIN is
stored on the verifier and {PIN}L is returned and stored on the client. The user
also chooses a personalised greeting message, m, used to authenticate the reader
and the verifier to the user; it need not be remembered, only recognised, but its
size should be bounded to fit on a reader’s screen (e.g., up to 40 characters).

A summary of the materials used in the system is shown in Table 1.

9 An authenticated encryption algorithm should be chosen, such as AES-EAX.



Table 1. A summary of the materials used in the system.

Stored on Verifier Stored on Client Purpose
ID X X identifies user
Ie X X verifier’s public key
Id X × verifier’s private key
M X X verifier’s public transposition key
K X X secret key; used to encrypt a,m, p
L X × secret key; used to encrypt PIN
p X X authenticates client to verifier
u X X updates K, p
H X X hash function; modifies u

PIN X × authenticates user to verifier
m × X authenticates verifier and reader to user
a × × payment amount

Embedding Data. In this paper, we will restrict our attention to embedding
data in the spatial domain with a simple LSB-embedding algorithm. To embed
some data d into an image using a transposition cipher M , we apply M to the
image to rearrange its pixels, then we embed d into them sequentially; we denote
this by [d]M . After embedding, we recreate the image by inverting the rearrange-
ment. To extract d from the embedded image, we reapply the rearrangement.

To protect the confidentiality of the data as it passes over the visual channel,
we encrypt it before embedding it using some key k; we denote this by [{d}k]M .

To protect the integrity of the embedded data as it passes over the visual
channel, we strengthen the algorithm with repeat embedding. To do so, we choose
an odd number n > 1 and then embed {d}k into the image n times sequentially;
we denote this by [{d}nk ]M . When extracting, we treat any discrepant bit as
having whichever value was extracted for it most frequently.

Image and Storage. To use the client, the user must authenticate to it by
selecting the correct cover-image from a set containing decoy images (benefi-
cially, this is more human-usable than recalling a password [13]). To prevent an
adversary from identifying the cover-image by metadata examination, we embed
junk data into the decoys whenever the cover-image is updated.

We will store ID and {PIN}L embedded in the cover-image, such that an
adversary with access to the client would need to identify it to find them. For
this embedding, we can either use M or define a local key. Other cryptographic
materials are stored securely within the client, using a secure element if available.

Unauthorised Usage Detection. After authentication, we update K and p
for freshness; this provides resistance to replay attacks by making each embedded
image good for only one use. To do so, we modify u using a hash function, H,
which (i) preserves the size of u and (ii) ensures that its future values are not
predictable; we use a to achieve the latter, since a is known to both the client
and the verifier at the time of hashing,

u = H(u‖a).



Fig. 2. The enrollment protocol.

We then apply our new u as a stream cipher to update K and p,

{K, p} = u⊕ {K, p}.

We do this on both the client and the verifier to keep the values synchronised.

By updating K and p after each authentication, we achieve inherent unau-
thorised usage detection. If an adversary were to successfully impersonate the
user, the K and p values on his client and the verifier would update, unavoid-
ably de-synchronising the user’s client’s K and p values from the verifier’s. The
system can be reset by exchanging new cryptographic materials with the verifier
over a secure channel. In the case of unauthorised usage, the verifier can identify
the last legitimate transaction by using the client’s value of u and recreating the
verifier’s current value of u, since the latter is the result of deterministic hashes
of the former with ordered payment values known to the verifier.

Enrollment Protocol. A secure channel is established between the client and
the verifier to register an account and exchange cryptographic materials, such
that the user can later authenticate. The protocol is shown in Figure 2.

Steps 1-5. When the user registers an account, the verifier generates him a
new ID, K, L, p, and u and stores them. The verifier knows M , Ie, and Id and
has values set for n and H. The verifier sends Ie, M , ID, K, p, and u to the
client, which stores them.

Steps 6-12. The client prompts the user to choose PIN and m; it stores m,
sends PIN to the verifier, and gets {PIN}L back, which it stores.



Fig. 3. The authentication protocol.

Authentication Protocol. A visual channel between the client and the reader
and a secure channel between the reader and the verifier are required for the
system to achieve mutual authentication. For any given user, only one authen-
tication attempt may be active at a time. The protocol is shown in Figure 3.

Steps 1-6: User Authenticates to Client. The user authenticates to the client
by selecting the cover-image; the client extracts ID and {PIN}L. The reader
sends a to the verifier to initiate the transaction and displays a. The client
captures a using its camera and embeds [{ID}nIe , {PIN}nL, {a,m, p}nK ]M into
the image to create the image token. The user may change m before embedding
the data, since the required keys are stored on the client.

Steps 7-11: Client Authenticates to Verifier. In a commitment scheme [14],
the user displays the image token to the reader, which sends it to the verifier.
Firstly, the verifier knows M and so extracts {ID}Ie , {PIN}L, and {a,m, p}K .
Secondly, it uses ID to look up K to decrypt a, m, and p. Thirdly, it verifies
that a and p match its expectations; this authenticates the client to the verifier.

Steps 12-14: Reader and Verifier Authenticate to User. The reader and veri-
fier authenticate to the user (and confirm a) by displaying m on the reader.

Steps 15-18: User Authenticates to Verifier. The user enters PIN to the
reader, which sends it to the verifier. The verifier compares the entered PIN ,



the {PIN}L extracted from the image token, and its own stored version to
ensure that all three of them match; this authenticates the user to the verifier.

Steps 19-20: Client and Verifier Modify u and Update K and p. The verifier
modifies u using a hash function H(u‖a) and uses u to update its K and p values.
The client does likewise such that their respective values remain the same.

4 Discussion

The system provides real-time authentication and achieves its design objectives.
Firstly, it requires no specialist hardware: the reader needs only a camera, a
screen, and a touchscreen, which can be satisfied by any modern smartphone or
tablet, making it easily deployable. Secondly, the authentication protocol pro-
vides resistance to phishing attacks in the form of mutual authentication by
ensuring that the user authenticates to the client, the client to the verifier, the
reader and verifier to the user (before PIN needs to be revealed), and the user
to the verifier. The system authenticates the user to the verifier by transferring
information, embedded in an image token, over a visual channel, meaning that
it does not require a client-to-verifier connection nor the use of invisible chan-
nels, such as NFC, which risk interception. The user is informed of unauthorised
usage as an inherent part of the protocol. Furthermore, since the image token
contains the payment amount, the system does not only authenticate the user
(which might be misused), but also binds the amount to be authorised.

The system relies on the user in two ways. Firstly, it is conceivable that a poor
choice of cover-image weakens user-to-client authentication [15]; this reliance is
alleviated if a biometric is used to authenticate the user to the client. Secondly,
one benefit of using a visual channel over an invisible channel is that the user,
with reasonable care, has greater control over who or what can see the image
token; however, such care cannot be reasonably expected of all users.

For the replay attack, the adversary attempts to impersonate a legitimate user
to authorise a payment by replaying a captured image token that was previously
sent to the verifier. At the end of the transaction from which it was captured,
the data embedded in the image token became out-of-date. In order to update
it, the adversary would need to know K, p, u, and a. While the adversary may
know a, and then be able to determine K and p by brute force, u is not stored
in the image at all. To glean any useful knowledge of u by observing its effects
over time would require an impractical number of transactions. Therefore, the
system is resistant to replay attacks.

For the tampering attack, the adversary attempts to have a legitimate user
authorise a payment for a different amount a′ 6= a by using a rogue reader to
modify the embedded data in the image token before sending it to the verifier.
At step 2 of the authentication protocol, the adversary sends a′ to the verifier
while displaying a to the user at step 3. At step 8, the adversary can extract
{a,m, p}K from the image since M is public; however, he would need to com-
promise the secret key, K, to change a or the attack will fail at step 11 when the
verifier decrypts and compares it with a′ from step 2. Assuming K is a strong,



authenticated encryption key, then it is unlikely that the adversary will be able
to compromise it in the short time available before the user becomes suspicious.
Therefore, the system is resistant to tampering attacks.

5 Conclusion and Future Work

Our system meets its design objectives by providing a novel means to mutually
authenticate a user, reader, and verifier over a visual channel without any spe-
cialist hardware nor a connection between client and verifier; it is resistant to
replay and tampering attacks and offers inherent and unavoidable unauthorised
usage detection. It makes use of three factors in a convenient manner: a device
which would be carried anyway, a chosen image familiar to the user, and a PIN.

In future work, we intend to investigate attacks on the client, including phys-
ical theft, cloning, and malware. We note that PIN is not stored on the client,
meaning that the system provides some resistance to indiscriminate malware
infections; the adversary would need to observe the user entering PIN sepa-
rately in each case, increasing the work required in such an attack. We also plan
to run user studies to better understand user requirements, such as acceptable
transaction durations and system intuitiveness, and to study in greater detail
the technical constraints of using an embedded image, such as allowable noise
and the use of gridlines to handle rotation.

References

1. British Retail Consortium. Debit Cards Overtake Cash to Become Number One
Payment Method in the UK. 2017.

2. Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei Skorobogatov, and Ross
Anderson. Chip and Skim: Cloning EMV Cards with the Pre-play Attack. IEEE
Symposium on Security and Privacy (SP), 2014.

3. Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon, and Aad van Moorsel. Har-
vesting High Value Foreign Currency Transactions from EMV Contactless Credit
Cards Without the PIN. ACM Conference on Computer and Communications Se-
curity (CCS), 2014.

4. Jupiter Research. Integrated Handsets: Balancing Device Functionality with Con-
sumer Desires. 2005.

5. Jun Ho Huh, Saurabh Verma, Swathi Sri V Rayala, Rakesh B Bobba, Konstantin
Beznosov, and Hyoungshick Kim. I Dont Use Apple Pay Because Its Less Secure...:
Perception of Security and Usability in Mobile Tap-and-Pay. Proceedings of the
Workshop on Usable Security (USEC), 2017.

6. Steven J Murdoch, Saar Drimer, Ross Anderson, and Mike Bond. Chip and PIN is
Broken. IEEE Symposium on Security and Privacy (SP), 2010.

7. Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markantonakis.
On the security issues of NFC enabled mobile phones. International Journal of In-
ternet Technology and Secured Transactions, 2010.

8. Henning Kortvedt and S Mjolsnes. Eavesdropping near field communication. The
Norwegian Information Security Conference (NISK), 2009.



9. Thomas P. Diakos, Johann A. Briffa, Tim W. C. Brown, Stephan Wesemeyer. Eaves-
dropping near-field contactless payments: a quantitative analysis. The Journal of
Engineering, 2013.

10. Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The Em-
peror’s New Security Indicators. IEEE Symposium on Security and Privacy, 2007.

11. Claudio Marforio, Ramya J. Masti, Claudio Soriente, Kari Kostiainen, and Srdjan
apkun. Evaluation of Personalized Security Indicators as an Anti-Phishing Mecha-
nism for Smartphone Applications. CHI Conference on Human Factors in Comput-
ing Systems, pp. 540-551, 2016.

12. Ariana T. Purnomo, Yudi S. Gondokaryono, Chang-Soo Kim. Mutual authentica-
tion in securing mobile payment system using encrypted QR code based on public
key infrastructure. IEEE 6th International Conference on System Engineering and
Technology (ICSET), 2016.

13. Robert Biddle, Sonia Chiasson, and P. C. van Oorschot. Graphical Passwords:
Learning from the First Twelve Years. ACM Computing Surveys (CSUR), vol. 44,
2012.

14. Gilles Brassard, David Chaum, and Claude Crepeau. Minimum Disclosure Proofs
of Knowledge. Journal of Computer and System Sciences, vol. 37, pp. 156189, 1988.

15. Darren Davis, Fabian Monrose, and Michael K. Reiter. On User Choice in Graph-
ical Password Schemes. USENIX Security Symposium, vol. 13, pp. 11-11, 2004.


