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Abstract. The growing popularity of Internet-of-Things (IoT) has cre-
ated the need for network-based traffic anomaly detection systems that
could identify misbehaving devices. In this work, we propose a lightweight
technique, IoTguard, for identifying malicious traffic flows. IoTguard
uses semi-supervised learning to distinguish between malicious and be-
nign device behaviours using the network traffic generated by devices.
In order to achieve this, we extracted 39 features from network logs and
discard any features containing redundant information. After feature se-
lection, fuzzy C-Mean (FCM) algorithm was trained to obtain clusters
discriminating benign traffic from malicious traffic. We studied the fea-
ture scores in these clusters and use this information to predict the type
of new traffic flows. IoTguard was evaluated using a real-world testbed
with more than 30 devices. The results show that IoTguard achieves
high accuracy (≥ 98%), in differentiating various types of malicious and
benign traffic, with low false positive rates. Furthermore, it has low re-
source footprint and can operate on OpenWRT enabled access points
and COTS computing boards.

Keywords: Network · Security · Traffic Monitoring· Classification ·
Anomaly Detection · Semi-supervised Learning

1 Introduction

The Internet-of-Things (IoT) trend has significantly increased the number de-
vices connected to the Internet. Predictions forecast this number to exceed 20
billion by year 2020 [22]. Despite its benefits, a number of security concerns have
been raised about the connected devices themselves. Majority of smart devices
operate on limited power and computational resources and hence do not sup-
port host-based security software such as anti-malware. Also, IoT products are
mostly developed by product development teams who have limited resources and
who may not follow standard security practices e.g. reusing code snippets, weak
encryption keys, lack of security-by-design etc. [2, 23,24].

IoT devices are lucrative targets for attackers who want to obtain user-related
information or to perform large scale network attacks. Due to the poor security
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of many IoT devices, network-based security solutions are often the only line of
defence against incoming attacks that target these devices.

Unfortunately, traditional network security solutions, such as network in-
trusion detection/prevention systems (NIDS/NIPS) and firewalls, fall short in
distinguishing and filtering malicious traffic generated by these smart devices
for a number of reasons. Firstly, it is infeasible to collect signatures for all pos-
sible network interactions for these devices, due to heterogeneity in devices and
firmware versions. In practice, a device’s network behaviour may vary signifi-
cantly in different firmware releases. Secondly, the costs of deploying and main-
taining traditional NIDS/NIPS and firewall solution is high for small-office and
home networks. Lastly, amount of network traffic data that needs to be processed
may overwhelm the NIDS/NIPS systems that perform traffic analysis. Therefore,
it is necessary to research new solutions for traffic monitoring and classification,
which are self-adaptive, cost efficient and do not require specialized hardware.

In this work, we propose a self-adaptive semi-supervised learning based clas-
sification scheme named as IoTguard, which predicts traffic class (i.e. malicious
or benign) based on the network activity of the device generating the traffic.

Our technique primarily uses the data extracted from network logs that are
obtained from access-points (APs) and gateways. IoTguard does not specifi-
cally rely on specialized logs obtained from domain-controllers, firewalls or NIDS,
because smaller networks (i.e. small-office and home networks, aka. SOHO net-
works) rarely have these. However, if available, our technique can use data also
from such specialized logs to further improve the efficiency and accuracy of the
system. All this data is combined to identify network-level patterns for differ-
ent kinds of traffic the devices generate, and use these patterns to identify any
malicious activities in the network. We resolved data imbalance issues by over-
sampling and under-sampling data from minority and majority class respectively.
Our choice of unsupervised learning is motivated by the reason that class labels
for most network logs are not available and classification scheme should be able
to learn from various patterns observed in network traffic.

Our work demonstrates that a simple, yet effective, clustering technique com-
bined with in-depth feature analysis enables real-time traffic classification, with-
out requiring dedicated hardware. Our key contributions are:

– We propose a pipeline detailing feature extraction, analysis and reduction
techniques, to develop the set of most useful features for performing cluster-
ing on network data.

– We propose traffic classification scheme using fuzzy C-Mean clustering and
fuzzy interpolation scheme, which is able to determine the degree of ma-
liciousness, therefore, giving more information for taking appropriate mea-
sures to handle different types of malicious traffic.

– We evaluate the performance of IoTguard in real-world environment with
off-the-shelf consumer-grade devices. IoTguard boasts high prediction ac-
curacy (≥ 98%) for both binary and multi-class problems with low false-
positive-rate ( ' 0.01).
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In the rest of paper, Sect. 2 discuss our threat model outlining the types of
attacks in IoT edge networks, followed by methodology in Sect. 3. The data set
and evaluation results are discussed in Sect. 4 and Sect. 5 respectively. Section 6
gives a comparison of IoTguard with existing approaches. Section 7 discusses
the some limitations of IoTguard, followed by concluding remarks.

2 Threat model

This work focuses on small-office and home networks. These networks usually
have a star topology where all devices are connected to an access point that
also provides Internet connectivity. IoT devices in such networks are often mis-
managed and not hardened. Thus, while the devices are intrinsically benign, an
attacker can easily compromise and use these devices for various follow-up at-
tacks. The list of attacks, which can be launched in a SOHO networks with an
aid of an already compromised device, is given as:

Network-scanning attacks, where an adversary tries to find any device
on the network, running services with open, unguarded ports. Network scanning
commonly include port-scan, port-sweep and address-sweep attacks.

Flooding attacks, where a (compromised) device participates in a large
scale Distributed Denial-of-Services (DDoS) attack. DDoS attacks are often used
as a smoke-screen to divert attention off dedicated attacks occurring in parallel.

Infection attacks, where a compromised or infected device actively tries to
infect to other devices in the network. For example, an attacker may try to make
repeated login attempts to services discovered by network-scanning, in order to
download malware on other devices in the network.

Spying attacks, where a device collects user data without explicit consent
and sends it to untrusted third party.

This work uses network-level semantics of these attacks to predict type of
traffic in the network. It does not individually profile each device’s behaviour
as benign or malicious. Instead, it uses feature scores observed in various traffic
types, to identify traffic, irrespective of what device generated it.

3 Methodology

3.1 Design challenge

A key limitation in using supervised learning algorithms for network traffic clas-
sification is the unavailability of labelled data covering all traffic classes seen in
real-world environments. With a huge variety of IoT devices and their heteroge-
neous mode of operations, it is expensive and infeasible to label all data collected
by monitoring network traffic. To overcome this challenge, unsupervised learning
provides a better alternative, as it does not require nor depend on labelled data.
Clustering can partition large volumes of network traffic data into small number
of clusters based on similar patterns observed in data.
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Any new data point will be added to a cluster based on its similarity with
existing data points in the cluster. Meanwhile, these clusters can be rearranged,
divided or combined depending on number of classes of data.

3.2 Feature extraction

IoTguard uses features collected from the access point and, if available, from
individual device logs. With an assumption of unique IP address per device, we
use the source and destination IP addresses together with timestamps (3-tuple
identifier) from each traffic flow, for identifying the feature vector for that flow.
Each feature vector consists of a total of 39 discrete and continuous features,
listed in Table 1.

Table 1: Discrete and continuous features extracted from network connections
Type Feature

D
is
c
re

te

L2 Protocol ARP, LLC
L3 Protocol IP, ICMP, ICMPv6, EAPoL
L4 Protocol TCP, UDP
L5 protocol HTTP, HTTPS, DHCP, BOOTP, SSDP, (M)DNS, NTP
IP Options Padding, Router Alert

C
o
n
ti
n
u
o
u
s

Src and dest # unique destination IP addresses
# unique source and destination ports

Counters # total connections, # connections to/from unique dest/src
Connection lengths, SYN packets & errors, REJ errors, URG packets

Data Total data transferred.
Total data from source to destination
Total data from destination to source
Packet sizes, payload signatures

Auth. Total login attempts (inc. SSH connection, using default credentials,
failed login attempts)

For some features (e.g. authentication and network discovery), we need ac-
curate time synchronization among all devices. In case if network does not use
time synchronization mechanisms such as NTP, we have to manually account
for the time differences between network and device logs.

We aggregate the same-host, same-service features over n latest connections
instead of using time-based aggregation. Time-based aggregation (used in KD-
DCup99 dataset [1]) aggregates the features over a definite time e.g. number
of connections made in last two seconds between Device-A and Device-B. This
scheme falls short in detecting attacks where attacker introduces a time-delay
between successive connection attempts. In contrast, connection-based aggrega-
tion techniques aggregate features over last n connections i.e. out of last n con-
nections made by Device-A, how many terminated at Device-B. This technique
accommodates the time-delay added to successive connections. However, if n is
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small and device connects to several destinations simultaneously i.e. behaviour
not observed commonly in compromised devices targeting certain destination,
connection-based aggregation may not work effectively.

3.3 Feature analysis

The value distributions of the features was studied in order to identify relative
importance of features, based on variance and modality. Any features with low
variance across different samples are discarded because they do not substantially
contribute to clustering. This dimensionality reduction also helps speed up the
clustering process.

Figure 1 shows cumulative distribution functions for three (of 39) extracted
features. The distributions in the figures are not Gaussian, but heavy tailed
with majority of probability mass lying in smaller values. For example Figure 1a
shows that ≥ 70% devices connect to ≤ 20 unique destinations but there are
some devices which connect to ≥ 6000 unique destinations. The tail of these
distributions is particularly interesting because it encapsulates events where a
device may be exhibiting anomalous behaviour. The knowledge from feature
value distributions is used to choose the features that will most likely result in
clusters with well defined boundaries and outliers.
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Fig. 1: CDF plots for a subset of connection metadata

3.4 Feature reduction

Feature reduction decreases the model complexity, reduces resource consump-
tion, and improves generalization. Therefore, correlation-based feature selection
(CFS), deviation method, and feature value distributions are used to identify and
remove any features that do not significantly contribute to clustering process.

Pearson coefficient provides fairly accurate results with bounded feature value
ranges when size of the dataset is large [8]. We use Pearson correlation coefficient
R to measure the linear dependencies of strongly correlated features. One of any
two strongly correlated features (i.e. R ≥ 0.99) can be discarded as redundant.

With deviation method, we first mine 1-length items from each feature to
obtain 39 feature vectors that contain frequent items for each of the seven activity
types listed in Table 2. The frequent items for binary features can be found
with algorithms such as Apriori [3] or FP-Growth [20]. For continuous variables,
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1-length items are found by comparing the frequency of a continuous variable
against a specified minimum support. If the deviation range for a feature overlaps
across all traffic types, we do not expect it to significantly contribute in clustering
and, therefore, remove it.

The normalized feature scores is studied for every feature in all clusters and
any features with similar values across differnet clusters are removed. To ensure
that no feature over-influences clustering, all feature values are normalized to
range [0, 1]. It was observed that the use of principal component analysis (PCA)
for dimensionality reduction prior to clustering does not benefit to our approach
because PCA fails to capture outliers (tail of distribution) in its principal com-
ponents and those outliers can be particularly useful for identifying anomalies.

3.5 Clustering

Fuzzy C-mean (FCM) clustering algorithm is used to separate data points based
on their self similarity. Our choice of FCM is based on its ability to maintain
weighted association of any point not only for the cluster which it is assigned to,
but for neighbouring clusters as well, where it is weakly associated [27]. These
weak associations are useful in predicting labels for unknown traffic flows since
all cluster associations are considered when assigning assigning a label. This
approach helps in reducing the number of false-positives.

Using FCM, initially a random membership value is assigned to each data
point Xj (j = 1, 2, ..., n) for every cluster Ci (i = 1, 2, ..., c). Each data point Xj

is represented as
(
f
(1)
j , f

(2)
j , ..., f

(k)
j , ..., f

(h)
j

)
where f

(k)
j is value for kth feature

in Xj and 1 ≤ k ≤ 39 (i.e. 39 features).
The membership value µij , (0 ≤ µij ≤ 1) for a data point Xj assigned

to cluster Ci is such that
∑c

i=1 µij = 1 for 1 ≤ i ≤ c and 1 ≤ j ≤ n. The
membership values µij and cluster centres Vi are optimized using Eq. 1, to
minimize objective function in Eq. 2.

µij =

 c∑
d=1

(∥∥Vi −Xj

∥∥∥∥Vd −Xj

∥∥
) 2

m−1


−1

; Vi =

n∑
j=1

(µij)
m ×Xj

n∑
j=1

(µij)m
; 1≤i≤c

1≤j≤n (1)

Jm =

c∑
i=1

n∑
j=1

µm
ij

∥∥Vi −Xj

∥∥2 (2)

where m is fuzziness index [32] and
∥∥Vi −Xj

∥∥ is the Euclidean distance between
cluster center Vi for cluster Ci and data point Xj .

Clusters labels are assigned based on feature value distribution for each clus-
ter. The labels can be manually verified using dataset ground truth. Each of
these clusters is translated to a fuzzy rule, used by fuzzy interpolation scheme
(FIS) for predicting type of given traffic flow.
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3.6 Parameter optimization

The optimal number of clusters i is determined by examining the degree of
cohesion among data points in a cluster, fuzzy partition coefficient [30] (FPC),
and trade-off between sensitivity, specificity and accuracy of our prediction.

The process is initialized with a range of possible values for i. Then, FCM
algorithm runs for n = 3000 iterations to calculate FPC and within-cluster-sums-
of-distances (WCSD) for each value of i. i with minimum WCSD is chosen, to
remove any initialization bias and prevent the output to reside in local min-
ima [8]. WCSD is calculated using Eq. 3, where c is the number of clusters, Si is
the set of data points belonging to ith cluster, and xki is the kth variable of Vi.

WCSD =

c∑
i=1

∑
j∈Si

p∑
k=1

∥∥xki − xji∥∥ (3)

Silhouette values [5] (using Eq. 4) are calculated for all data points xk and
verify our choice of i by studying how well a given data point belongs to the
cluster it is assigned to. The optimal choice for i will have minimum WCSD and
maximum average silhouette value.

s(x) =
b(x)− a(x)

max(a(x), b(x))
(4)

3.7 Prediction algorithm

IoTguard uses fuzzy interpolation scheme (FIS) to predict the type of traffic
using the rules obtained from clustering. FIS allows us to deduce a conclusion
using a sparse fuzzy rule base. Let us consider an sparse fuzzy rule set such as

Rule 1: if f1∈A11,f2∈A21, ... ,fk∈Ak1, ... ,fh∈Ah1 =⇒ y ∈ O1

Rule 2: if f1∈A12,f2∈A22, ... ,fk∈Ak2, ... ,fh∈Ah2 =⇒ y ∈ O2

...
Rule Q: if f1∈A1q,f2∈A2q, ... ,fk∈Akq, ... ,fh∈Ahq =⇒ y ∈ Oq

Observation: f1∈A∗
1 , f2∈A

∗
2 , ... ,fk∈A

∗
k, ... ,fh∈A

∗
h

Conclusion: y=O∗

where Ri (1 ≤ i ≤ Q) is ith rule in sparse fuzzy rule base generated from cluster
Ci.

Aki and Oi are triangular fuzzy sets for kth antecedent feature fk, 1 ≤ k ≤ h
and consequent variable y respectively. For any new observation, A∗k and O∗ are
triangular fuzzy sets for antecedent and consequent variable obtained as a result
of interpolation of spare fuzzy rule base.

The classification rules obtained from clusters generate the rule base such
that Ri is generated from Ci with h antecedent features and one consequent
label assigned to the given cluster.

Ri: if f1∈A1i,f2∈A2i, ... ,fk∈Aki, ... ,fh∈Ahi =⇒ y ∈ Bi
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The characteristic points aki, bki, cki for triangular fuzzy set are calculated
for all antecedents Aki and consequent Bi in Ri. The weight Wi of given rule Ri

(i = 1, 2, ..., c) is calculated on the basis of input observations x1 = f
(1)
j , x2 =

f
2)
j , ..., xh = f

(h)
j as:

Wi =

 c∑
d=1

(‖r∗ − ri‖
‖r∗ − rd‖

)2
−1, (5)

where r∗ is the input feature vector
(
f
(1)
j , f

(2)
j , ..., f

(h)
j

)
and ri is set of de-

fuzzified values5 of antecedent fuzzy sets in Ri. The final inferred output is
calculated as

O∗j =

c∑
i=1

Wi ×Df (Bi) (6)

where Df (Bi) is the de-fuzzified value of consequent fuzzy variables Bi with
0 ≤ Wi ≤ 1 and

∑c
i=1Wi = 1. The type for the traffic is assigned on the basis

of inferred output.

4 Dataset

The data set was collected using a real-world testbed with 30+ typical user
devices. These devices include smartphones, tablets, smart appliances and per-
sonal computing devices etc., running popular operating systems including iOS,
Android, Windows, MAC OS, Tizen and webOS. All devices support wireless
connectivity with 32 devices supporting Bluetooth as well.

Testbed setup: The testbed represents a typical SOHO network, where all
user devices connected to an AP through wired/wireless medium and the AP is
connected to Internet. Data was collected by connecting all devices to an AP
setup running wireless and wired networks, with one interface connected to the
Internet. All traffic over wireless and wired interfaces in both LAN and WAN
networks was collected.

Scenarios: Table 2 shows seven different scenarios used for data collection.
These scenarios represent benign and (commonly expected) malicious device
activity. Data collection for each scenario was repeated for n = 20 times to
avoid any discrepancies and peculiarities in the data. For each iteration, a set
of devices (may vary depending on scenario) was connected to the network and
data was collected from both WiFi and Ethernet interfaces, to record all traffic
within and across the network, including the traffic among wireless clients. After
each iteration, the testbed (including devices) was reset to get a clean-slate for
next iteration. Non-overlapping set of devices was used for data collection in
similar scenarios, to minimize any redundancy and remove any device specific
behaviors from the dataset. Any duplicate data points were removed from the
dataset to prevent any bias in the learning algorithm.

5 d : D | d(Aki) = (1/4)(aki + 2× bki + cki) for triangular set Aki
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Table 2: Scenarios for data collection, representing network activity types

Scenario Description

Auth. attack (A) A compromised host makes multiple login attempts to other host(s)
Botnet activity (B) A compromised host opens many connections to one or more usu-

ally remote destination hosts.
Normal (N) Typical, non-malicious, usage pattern
Port Sweep
(P-Sweep)

A compromised host scans all ports on a destination host.

Port Scan (P-Scan) A compromised host scans a subset of all ports of a target.
Spying (S) A compromised host tries to send user data to a remote destination.
Worm (W) A compromised host scans the network for access to other hosts

and tries to copy malicious content on destination host(s).

Due to real-world testbed setting, dataset imbalance issues result in benign
traffic becoming majority class and malicious traffic becoming minority class. It
is because devices rarely exhibit malicious behavior [15,16]. In order to prevent
the imbalanced data problem, data points from majority class are undersampled.
The experiments showed that under-sampling does not affect the accuracy of
prediction because the majority class data is correlated and under-sampling does
not result in loss of significant traits in the data. Meanwhile, minority class data
points were over-sampled using SMOTE [9] to get 7 : 3 ratio for benign:malicious
class data points. All six sub-classes in minority class contain equal data points.

5 Evaluation

Feature extraction, feature analysis, clustering and prediction scheme was im-
plemented with Python using dpkt, imbalanced-learn and scikit-learn li-
braries. After feature reduction, clustering was performed to groups all the data
points into clearly differentiable clusters based on self-similarity. Figure 2a shows
the clusters obtained by performing FCM clustering on our dataset. The figure
was plotted by mapping 22 dimensional feature space to 2 dimensional surface
using multi-dimensional scaling (MDS) [26]. Figure 2a shows that our technique
produces clearly differentiable clusters with distinct boundaries. Moreover, the
figure shows that the clustering algorithm can also easily among distinguish
different sub-classes of malicious traffic. After clustering, the feature value dis-
tributions in each of the clusters are shown in Figure 2a.

Figure 3 show clearly distinguishable normalized features scores for each
of the clusters. Out of the 39 features extracted from network metadata (see
Sect. 3.2), the normalized feature scores of 18 features was studied. Features
f1-f9 correspond to connection-related data (e.g. connection count, unique IPs),
f10-f13 correspond to flagged packets (e.g. urgent, SYN, REJ), f14-f18 corre-
spond to data (e.g. SRC2DST, DST2SRC), and f19-f22 correspond to authen-
tication related features (e.g. SSH connections, login attempts).
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Fig. 2: (a): Clusters obtained as a result of applying FCM clustering algorithm.
(b): CDF plot for the number of classification rules required to predict traffic
class
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Fig. 3: Normalized feature averages for distinguishing features representing clus-
ters for each attack scenario.

Table 3 shows the prediction accuracy for binary-class problem, where IoT-
guard achieves 98.61% accuracy with a precision of 0.985 and 0.99 score for
both sensitivity and specificity, giving us an overall F1-score of 0.986.

The decision to preserve information in outliers (tail of distribution) helped
in clearly differentiating between otherwise overlapping classes, resulting in good
prediction accuracy. By removing the features containing redundant information,
FCM algorithm was able to generate clusters with distinct boundaries, resulting
in low false positives and false negatives. The choice of FCM algorithm was
also helpful in improving accuracy because it allowed us to use the weighted
association with neighbouring clusters to predict class labels for new traffic flows.

Table 4a shows the prediction accuracy for detecting individual attack types.
It shows that, on average, IoTguard achieved 98% accuracy with 0.94 F1-score
in multi-class prediction.

Although IoTguard was able to predict P-Sweep and P-Scan with high ac-
curacy, the highest number of inaccurate predictions have been made for these
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Table 3: Confusion matrix for binary-class problem
Predicted

benign malicious Total

Actual
benign 533 7 540
malicious 8 532 540

Total 541 539 1080

Table 4: (a): Confusion matrix for the malicious activity types. A=Actual,
P=Predicted; (b): Prediction performance for subclasses of malicious traffic

(a)

@
@@A
P

A B PS Ps S W

A 86 0 0 0 0 3
B 0 83 0 2 2 0
PS 0 0 81 9 0 0
Ps 3 0 3 84 0 0
S 0 0 0 0 86 1
W 3 2 0 0 0 84

(b)

Measure/ A B PS Ps S W Mean

Accuracy 0.98 0.98 0.98 0.96 0.98 0.98 0.98
Precision 0.93 0.95 0.96 0.87 0.95 0.95 0.94
Specificity 0.96 0.92 0.90 0.93 0.96 0.93 0.94
Sensitivity 0.99 0.99 0.99 0.97 0.99 0.99 0.99
F1-score 0.95 0.94 0.93 0.90 0.95 0.94 0.94

two classes. Figure 3a and Figure 3b show that this behaviour is due to overlap-
ping the feature scores of these classes e.g., the instances of P-Scan attack over
a large range of ports will result in so many connections that it is predicted as
P-Sweep attack. Similarly, a P-Sweep attack over a limited range of ports may
be predicted as P-Scan attack.

6 Comparison with existing approaches

A number of researchers have used machine learning (ML) algorithms to de-
tect malicious traffic [7, 21]. Their proposals use data mining [12], supervised
ML [4], and unsupervised ML techniques [8, 28] to build network intrusion
detection systems (NIDS). Bekerman et al. [7] used 942 features to identify mal-
ware by analysing network traffic. Strayer et al. [29] and Lu et al. [14] studied
network behaviour and application classification to identify bots in networks.
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BotMiner [11] used clustering technique for detecting botnets independent of
underlying command-and-control protocol and strategy. Bohara et al. [8] used
unsupervised learning to predict class labels for unlabelled network.

IoT Sentinel [19] uses device type information to limit the network access of
vulnerable devices whereas PorfilIoT [18] uses a multi-stage classification tech-
nique for differentiating IoT from non-IoT devices and then finding the actual
type of IoT device. IoT Sentinel and ProfilIoT rely on fingerprints generated
from devices’ network activity to train classification models, and thus fail to
detect impersonation attacks. Roux et al. [13] propose the use of RSSI using
radio probes to detect an attacker trying to hijack user devices. Cheng et. al [10]
propose running time patching of access points to block malicious traffic flows in
the network. Barrera et al. [6] proposed a security policy enforcement framework
for restricting IoT devices communication to necessary interactions.

Table 5: Qualitative comparison of anomaly detection techniques

System Feature count Learning algorithm Functionality

Strayer et al. [29] 16 supervised Botnet detection
IoT Sentinel [19] 23 supervised Device identification
Beckerman et al. [7] 972 supervised Malware detection
Yi et al. [31] 5 supervised Anomaly detection
Median et al. [17] 274 supervised Device identification
IoTguard 18-39 semi-supervised Anomaly detection

Meidan et al. [18] used machine learning approach for detecting device types
for 17 IoT devices with 99.4% accuracy. Ran et al. [25] proposed a self-adaptive
technique for traffic classification based on semi-supervised machine learning,
which dynamically choose optimal system parameters to achieve high accuracy.
Yi et al. [31] proposed an algorithm using decision trees (DT) and co-training
to detect abnormal/botnet traffic generated by a webcam.

Table 5 presents a qualitative comparison of IoTguard with current state of
the art in traffic classification and IoT security research. IoTguard is considered
semi-supervised only because the labels assigned to the clusters are manually
verified.

7 Discussion

The evaluation of IoTguard shows that our approach allows us to successfully
accurately predict the various type of traffic, discussed in our threat model.

The ability to use unlabelled data can be useful in improving the traffic
classification schemes for a number of reasons. It will save the effort of labelling
all traffic data used for model training and makes the system more flexible to
adapt.
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This work mainly use the data extracted from network and device logs. There-
fore, our technique can be used in various network settings irrespective of what
devices are connected to the network. Our model allows us to extend the clas-
sification to identify more types of malicious traffic seen in the network e.g.
crypto-jacking attacks, which usually exhibit traffic patterns as seen in spying
attacks. IoTguard can also be extended further to classify the sub-types of nor-
mal user traffic. This information could then be used for on-demand bandwidth
provisioning and dynamic traffic management based on the traffic patterns.

A possible limitation of IoTguard is that it can only identify a device’s ma-
licious activity if it communicates over the network. That is, IoTguard cannot
tell if an attacker physically accessed a device e.g. smart door-bell, and extracted
information by directly connecting to it over physical, serial connection. How-
ever, IoTguard will be able to identify the (misbehaving) tampered device as
soon as it connects to the network, and prevents it from executing any attacks
against local or remote destinations.

IoTguard has been evaluated using devices with both wireless and wired
network connection. However, its performance is not analysed for lower power
communication protocols such as Zigbee, Z-Wave, Bluetooth LE etc. The process
of verifying labels assigned to clusters can be automated, by cross-referencing
the information from other sources. We expect the future research to explore
new set of features to extend the types of attacks this approach can classify.

Finally, software updates in devices may change their network behaviour,
which can initially be detected as malicious. However, IoTguard can adapt
to this new network behaviour quickly, to stop prevent any false-positives. This
behaviour was intentional, as it can be used to detect firmware versions of devices
connected to the network.

8 Conclusion

This paper present a lightweight semi-supervised learning based technique, IoT-
guard, for identifying benign and several types of malicious traffic in edge net-
works. This paper introduces a threat model based on the most common attacks
in IoT landscape and a real-world testbed setup for collecting network data and
device level logs. Our proposed pipeline for feature extraction, analysis, and re-
duction identifies the set of features that yield most value to the IoT device
activity detection. Evaluation results for IoTguard show that using clustering
and FIS, various types of malicious and benign traffic can be predicted with high
accuracy in real-time.

In specific, IoTguard is able to predict traffic class in 250 ms, without re-
quiring specialized hardware. IoTguard can be extended to identify more at-
tack types, other than the ones considered in this paper. The technique can also
be re-purposed for detecting devices, firmware versions and improving network
bandwidth management, traffic routing problem based on the traffic patterns
observed in the networks.
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