
Context-aware Failure-oblivious Computing as a
Means of Preventing Buffer Overflows?

Manuel Rigger1, Daniel Pekarek1, and Hanspeter Mössenböck1

Johannes Kepler University Linz, Austria
{manuel.rigger,daniel.pekarek,hanspeter.moessenboeck}@jku.at

Abstract. In languages like C, buffer overflows are widespread. A com-
mon mitigation technique is to use tools that detect them during exe-
cution and abort the program to prevent data leakage or the diversion
of control flow. However, for server applications, it would be desirable
to prevent such errors while maintaining availability of the system. To
this end, we present an approach to handling buffer overflows without
aborting the program. This approach involves implementing a recovery
logic in library functions based on an introspection function that allows
querying the size of a buffer. We demonstrate that introspection can
be implemented in popular bug-finding and bug-mitigation tools such
as LLVM’s AddressSanitizer, SoftBound, and Intel-MPX-based bounds
checking. We evaluated our approach in a case study of real-world bugs
and show that for tools that explicitly track bounds data, introspection
results in a low performance overhead.

Keywords: memory safety · reliability · dependability · availability ·
fault tolerance

1 Introduction

Buffer overflows in C, where an out-of-bounds pointer is dereferenced, belong to
the most dangerous software errors [5,32]. Unlike higher-level languages, buffer
overflows invoke Undefined Behavior and are not prevented during execution;
programmers also cannot handle them using exception or similar mechanisms,
since the language lacks them. Buffer overflows allow attackers to overflow func-
tion addresses stored on the stack or heap and thus to maliciously divert execu-
tion of the program [28] and to leak sensitive data [31]. A plethora of tools exist
that make their exploitation more difficult or detect them and abort execution of
the program [34,32,36,30]. However, when availability of an application is impor-
tant (e.g. for production servers), it would be preferable to continue execution
as long as security is not compromised [24]. This could, for example, make it

? The final authenticated version is available online at https://doi.org/10.1007/

978-3-030-02744-5_29. We thank Oracle Labs for funding this research. We thank
Gergö Barany, Roland Yap, and Fabio Niephaus for their useful feedback on an
early draft of this paper. We thank Ingrid Abfalter for proofreading and editorial
assistance.

ar
X

iv
:1

80
6.

09
02

6v
3 

 [
cs

.C
R

] 
 2

2 
N

ov
 2

01
8

https://doi.org/10.1007/978-3-030-02744-5_29
https://doi.org/10.1007/978-3-030-02744-5_29


harder to perform a denial-of-service attack where a buffer overflow is exploited
to crash the program or inject code.

To safely maintain execution in the presence of buffer overflows, we have come
up with the concept of context-aware failure-oblivious computing. Our core idea
is that library writers (e.g., the libc maintainers) can query run-time data such as
bounds information in library functions by using an introspection interface. This
information can then be used to implement a recovery logic that can mitigate
incorrect execution states instead of aborting the program. Library writers can
implement a custom recovery logic that depends on each function’s semantics,
which is why we refer to our technique as being context-aware. For example,
a libc function that processes an unterminated string could prevent an out-of-
bounds access by checking for the end of the buffer to handle the fault and
continue execution. We expect that this recovery logic would be used mainly in
a production context, as it would be preferable that execution is aborted if an
error occurs during development and testing so that programmers can fix the
error.

Our work is based on a combination of failure-oblivious computing [25] and
our previous work on an introspection interface for C to increase the robustness of
libraries [23]. We show how the introspection interface can be used to implement
a failure-oblivious computing mechanism. We evaluated our approach by demon-
strating that introspection for preventing buffer overflows can be implemented
in popular bug-finding and bug-mitigation tools such as LLVM’s AddressSani-
tizer [27], SoftBound [15], and GCC’s Pointer Bounds Checker, which is based
on the Intel Memory Protection Extensions (MPX) [19]. Furthermore, we show
how our approach allows execution to continue in the presence of buffer overflows
found in real-world programs as described by the Common Vulnerabilities and
Exposures (CVE) database [33], and demonstrate that the performance overhead
for introspection implemented in approaches such as MPX is negligible.

2 Background

Failure-oblivious computing. One technique for maintaining availability in the
presence of buffer overflows is failure-oblivious computing, where invalid writes
are discarded and values for invalid reads are manufactured [25,26]. By carefully
selecting a sequence of return values for invalid reads, the program can success-
fully continue execution in most cases. However, a drawback of this approach is
that it is “blind”; that is, it cannot guess the context (i.e., a function’s seman-
tics) to return a meaningful value for all reads. In this paper, we address this
aspect by making failure-oblivious computing context-aware.

Introspection for C. As part of previous work, we demonstrated how use of intro-
spection (i.e., exposing run-time data) benefits the robustness of libraries [23].
The core idea of our approach was that bug-finding tools and runtimes for C
that track additional metadata such as object bounds or object types can expose
this data to library writers via an introspection interface, which programmers



can use to check the input of library functions. We showed that various intro-
spection functions can be used to detect bugs or to maintain availability of the
program. For example, to detect buffer overflows by means of introspection, the
size right() function can be applied, which expects a pointer and returns

the number of allocated bytes to the right of the pointee (or zero for invalid
pointers) and can therefore be used for bounds checks. In this paper, we expand
on how introspection can be used to increase availability, which we define as
context-aware failure-oblivious computing.

Evaluation of introspection. We have previously evaluated an introspection libc
using Safe Sulong [21,22], an LLVM IR interpreter on top of the Java Virtual
Machine (JVM) [20] which automatically keeps track of array lengths, object
sizes, and object types of C data [23]. Although the JVM tracks all relevant
run-time information necessary to implement our introspection mechanism, it is
not a typical environment in which to execute C code. In this paper, we address
this by evaluating our approach in the context of popular bug-finding and bug-
mitigation tools for buffer overflows and show that our refined introspection
approach prevents real-world errors while maintaining availability.

3 Introspection Interceptors

This section explains the implementation of the introspection-based libc func-
tions. These enhanced functions rely on the size right() introspection func-
tion to mitigate buffer overflows. Challenges to introducing them were that the
original code not be cluttered by the introspection checks, that the effort for
implementing these checks be low, and that the code behave in the same way as
the original library during correct execution.

Libc interceptors. Based on our requirements, we implemented the introspection-
based libc functions as interceptors, which are wrappers that intercept calls to
libc functions and which are used by many bug-checking and bug-mitigation
tools (including ASan, GCC’s Pointer Bounds Checker and SoftBound)1. The
introspection logic was kept separate from the normal code to avoid cluttering
of the original source code. The cost of adding introspection-based recovery logic
was low, as for each unsafe function that we considered (e.g., strlen()), libc
provides safer functions that expect an additional size argument, which we used
for our implementation (e.g., strnlen()). By reusing existing libc functions
from the same library, we expect correct execution to behave in the same way as
without the interceptors. For example, consider our strlen() interceptor, which
is based on the safer strnlen() function:

size_t strlen(const char *s) {

return ORIGINAL(strnlen)(s, _size_right(s));

}

1 Note that in our previous work we instead reimplemented parts of a libc to use intro-
spection, which made the libc less readable and required programs to be compatible
with this libc.



The ORIGINAL macro yields a reference to the function passed as its argument
that is part of the library and prevents recursively calling interceptors. We im-
plemented the size right() function in various memory-safety-checking tools,
as described in Section 4. Both the original strlen() implementation and this
interceptor behave correctly for strings that are terminated with a ‘\0’, which is
needed to determine their length. However, if an unterminated string is passed to
the original strlen() implementation, the function results in a buffer overflow
that causes bug-finding and bug-mitigation tools to abort execution. Using the
introspection-based interceptor instead prevents the buffer overflow, as the string
length can be computed even for strings for which the ‘\0’ is missing, because the
interceptor assumes the underlying buffer size to be the maximum length of the
string. Note that application-level functions can still cause bug-finding and bug-
mitigation tools to abort execution if these functions run over string bounds.
However, in many cases, application-level functions process strings up to the
length computed by strlen(), which consequently prevents an out-of-bounds
access.

As another example, an introspection interceptor can address the insecure
interface of gets(), which reads user input and writes it to a buffer whose size
is unknown to the function:

char *gets(char *s) {

return ORIGINAL(fgets)(s, _size_right(s), stdin);

}

Using introspection, gets() reads only as much user input as the buffer can
store.

Some introspection interceptors correct invalid parameters, for instance, in
memcpy:

void *memcpy(void *dest, const void *src,

size_t n) {

ssize_t dstsz = _size_right(dest);

size_t len = n;

if (dstsz < len) {

len = dstsz;

}

return ORIGINAL(memcpy)(dest, src, len);

}

If the size of the destination buffer is smaller than the number of bytes that
the function is expected to copy, the function ignores the writes that go out
of bounds. Note that another check for the size of the source buffer would be
applicable.

In contrast to our previous work [23], we treat the return value of
size right() as a conservative estimate of the object’s right bounds. This

estimate can be the real size of the object, in which case the introspection inter-
ceptors work most reliably. However, it can also be at least as large as the actual
allocation, which could include additional space due to alignment requirements
(e.g., to accommodate approaches that track only allocation sizes). Finally, if



no bounds information is available for a given pointer, returning MAX LONG ef-
fectively disables the introspection interceptors. This is useful, since it allows
execution without recompilation of the code even when no tool is used that
could determine the bounds of an object.

4 Introspection in Tools

We implemented size right() by exposing existing bounds information in
three tools, namely LLVM’s AddressSanitizer [27], SoftBound [15], and GCC’s
Intel MPX-based Pointer Bounds Checker instrumentation. SoftBound and
LLVM’s AddressSanitizer (ASan) are both software-based approaches. Soft-
Bound provides access to bounds information in constant time, and is therefore
a favorable candidate for implementing introspection. ASan’s representation of
metadata is suboptimal for implementing introspection, because it does not ex-
plicitly maintain bounds information and finding the end of an object takes
linear time. By implementing introspection in ASan, we wanted to determine a
worst-case overhead for implementing introspection in existing tools. Intel MPX
instrumentation allowed us to additionally evaluate a hardware-based approach.

SoftBound. SoftBound is a bounds checker that has also been enhanced by a
mechanism (called CETS) to find temporal memory errors [16]. It tracks base and
bounds information for every pointer as separate metadata. To propagate this
metadata across call sites, SoftBound adds additional base and bounds metadata
to pointer arguments of functions. To implement size right(), we return the
right bounds of a pointee by subtracting its base address from its bounds, which
are associated with the pointer. For all SoftBound experiments, we used the
latest stable version 3.8.0, which is distributed together with CETS.

LLVM’s AddressSanitizer. ASan is one of the most widely used bug-finding
tools for C/C++ programs; it allows memory errors such as buffer overflows and
use-after-free errors to be found by instrumenting the program during compile
time. Its implementation is based on shadow memory [17], where a memory
cell allocated by the program has a corresponding shadow memory cell that
stores meta-information about the original allocation. To detect buffer overflows,
ASan allocates space between allocations and marks the corresponding shadow
memory as redzones; if a dereferenced pointer points to such a redzone, ASan
detects the overflow and aborts the program. Shadow memory is not a favorable
representation of metadata for introspection, since bounds information cannot
be accessed in constant time. We implemented size right() in linear time by
iterating over the current buffer until its associated shadow memory indicates
that a redzone has been reached. For all LLVM and ASan experiments, we used
the development branch of LLVM version 6.0.0 based on commit 1d871d6 in
compiler-rt.



Intel MPX. Intel MPX is an instruction set extension that adds instructions
for creating, maintaining, and checking bounds information. Although its per-
formance overhead is relatively high [19], providing buffer overflow protection
at the hardware level is a promising research direction [35]. To use Intel MPX,
we relied on GCC’s Pointer Bounds Checker instrumentation, which employs
Intel MPX to verify bounds. Similarly to SoftBound’s implementation, we im-
plemented size right() by querying the upper bounds (using a GCC builtin
function) and subtracted the pointer address from it. For all experiments, we
used GCC version 7.2.0.

Using libc. To use our introspection-based libc extensions, we redefined the
names of the libc functions by means of preprocessor macros. While this required
recompilation of the target application, it allowed the tools to also instrument
our introspection-based libc functions and did not require us to maintain bounds
information, as libc calls from our interceptors invoked the tools’ interceptors.
Note that our approach could be extended by using the dynamic loader to load
the interceptors to retain binary compatibility (e.g., using the LD PRELOAD mech-
anism); however, redefining the function names was less invasive.

5 CVE Case Study

To demonstrate the applicability of our approach in real-world projects, we con-
sidered recent (i.e., less than one year old) buffer overflows in widely-used soft-
ware such as Dnsmasq, Libxml2, and GraphicsMagick. We selected the first libc-
related bugs that we found in the CVE database for which an executable exploit
existed. For each buffer overflow, we evaluated whether our introspection-based
approach could mitigate the error and whether execution could successfully con-
tinue. Our approach prevented four out of five buffer overflows while successfully
continuing execution; in one case, execution was aborted due to a subsequent
buffer overflow in user-level code. Note that the unmodified tools also detected
those buffer overflows; however, they aborted the program instead of mitigating
the error and continuing execution. Since we performed this case study on com-
plex real-world applications, and because SoftBound is a research prototype, we
could not successfully execute any of these applications with it. The unmodified
SoftBound version was also unable to execute them.2 However, we extracted
the functions in which the errors occurred, which SoftBound could execute, and
created a driver to trigger the bug.

Dnsmasq. Dnsmasq is a lightweight DHCP server and caching DNS server which
is used in many home routers.3 In versions prior to 2.78, a bug existed that could
cause a stack-based buffer overflow that allowed attackers to execute arbitrary
code or to cause denial of service by crafting a DHCPv6 request with a wrong
size (see CVE-2017-14493). It occurred in memcpy(), to which an incorrect size

2 https://github.com/santoshn/softboundcets-3.8.0/issues/x ∈ {5, 6, 7, 8}
3 http://www.thekelleys.org.uk/dnsmasq/doc.html

http://www.thekelleys.org.uk/dnsmasq/doc.html


argument was passed:

state->mac_len = opt6_len(opt) - 2;

memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);

A similar bug could be exploited for denial of service attacks (see CVE-2017-
14496). It occurred in memset() and was triggered by an integer overflow:

/* Clear buffer beyond request to avoid risk of information disclosure. */

memset(((char *)header) + qlen, 0, (limit - ((char *)header)) - qlen);

When using our introspection interceptors, all tools continued execution by copy-
ing or setting up to as many bytes as the destination buffer could hold. The server
stayed fully functional.

Libxml2. Libxml2 is a widely used open-source XML parsing library.4 For ver-
sions up to 2.9.4, a vulnerability in the xmlSnprintfElementContent() function
enabled attackers to crash the application through a buffer overflow (see CVE-
2017-9047). It was caused by an incorrect length validation (at another code
location) followed by strcat():

if (content->name != NULL)

strcat(buf, (char *) content->name);

The introspection interceptor for strcat() mitigated the buffer overflow by
restricting the length of the concatenated string in all tools. The application
continued execution and printed the truncated string as part of an error message.
Although the error message was truncated, the output appeared reasonable from
the user’s point of view.

GraphicsMagick. GraphicsMagick is a widely used image processing tool.5 In
version 1.3.26, its DescribeImage() function allowed attackers to overflow and
corrupt the heap to execute arbitrary code or to cause denial-of-service at-
tacks (see CVE-2017-16352). As shown below, the size argument in the call
to strncpy() did not limit the number of copied bytes to the size of the buffer;
instead, the number was calculated by the length of the directory name (which
was determined by searching for the newline or NUL). Consequently, an overly
long directory name could be used to cause an overflow:

for (p=image->directory; *p != ’\0’; p++) {

q=p;

while ((*q != ’\n’) && (*q != ’\0’))

q++;

(void) strncpy(image_info->filename,p,q-p);

image_info->filename[q-p]=’\0’;

p=q;

// ...

}

4 http://xmlsoft.org/
5 http://www.graphicsmagick.org/

http://xmlsoft.org/
http://www.graphicsmagick.org/


The introspection interceptor for strncpy() successfully restricted the length of
the copied string to the length of the destination buffer image info->filename.
However, in the line after the call to strncpy(), the program attempted to write
a NUL character to the end of the string, which then caused an out-of-bounds ac-
cess in the user application. The introspection approach does not protect against
buffer overflows that happen in code that does not use introspection; however, we
intend introspection to be used together with a bounds-checking tool, which is
expected to abort execution for unhandled errors and thus prevent incorrect exe-
cution. In fact, all introspection-instrumented tools prevented this buffer overflow
by aborting execution.

LightFTP. LightFTP is a small FTP server.6 A logging function
writelogentry() in version 1.1 of LightFTP was vulnerable to a buffer overflow
that allowed denial of service or remote code execution (see CVE-2017-1000218).
As shown below, the program added log entries to a buffer with a hard-coded
size; as the log entries depended on user input that was restricted by another,
larger constant, a buffer overflow could be triggered:

char _text[512];

// ...

if (logtext1)

strcat(_text, logtext1);

if (logtext2)

strcat(_text, logtext2);

strcat(_text, CRLF);

The introspection interceptor for strcat() mitigated the error without crashing
the FTP server. Note that our mitigation truncated the log entry, but allowed
subsequent requests to be handled successfully.

6 Performance Evaluation

To determine the performance of the introspection-based interceptors, we used
LightFTP and Dnsmasq, which are the servers we also investigated in our CVE
case study. We selected them for their high attack surface and because they are
expected to be highly available. We evaluated the performance of ASan and Intel
MPX both with and without the introspection interceptors; SoftBound failed to
execute the servers, as explained above. Further, to establish a baseline, we
measured the performance of C programs compiled with the Clang compiler [13]
without using any bug-mitigation mechanisms. For all systems, we turned on
compiler optimizations by using the -O3 flag. We measured the throughput by
means of the load-testing tool JMeter version 3.3. We configured JMeter to use
4 threads, each of which each sent 250 requests to simulate multiple concurrent
users using the built-in FTP sampler and the UDP Protocol Support plugin. As
the Intel MPX instructions are not thread-safe [19], we also evaluated all tools

6 https://github.com/hfiref0x/LightFTP/

https://github.com/hfiref0x/LightFTP/


Clang (baseline) ASan MPX

1 thread
4 threads

original introspection original introspection

11.32
11.34
11.36
11.38

43.5
43.6
43.7
43.8

re
qu

es
ts

 p
er

 s
ec

on
d

Throughput on LightFTP

Clang (baseline) ASan MPX

1 thread
4 threads

original introspection original introspection

15000
15500
16000
16500
17000

30000
30250
30500
30750

re
qu

es
ts

 p
er

 s
ec

on
d

Throughput on Dnsmasq

Fig. 1. Throughput on LightFTP and Dnsmasq.

using only 1 thread. We performed each measurement 10 times to account for
variability. Our setup consisted of a quad-core Intel Core i7-6700HQ CPU at
2.60GHz on Ubuntu version 17.10 (with kernel 4.13.0-32-generic) with 16 GB of
memory.

Figure 1 shows boxplots of the results for LightFTP and Dnsmasq. On
LightFTP, the performance overhead for using introspection was below 1% for
ASan; MPX was even slightly faster when introspection was used. On Dnsmasq,
employing introspection caused a slowdown of around 1% when using only one
thread for both ASan and MPX. The performance difference to the baseline was
negligible on LightFTP, and up to 11% on Dnsmasq (between Clang and ASan
with introspection), which suggests that the applications’ performance was dom-
inated by factors other than instrumentation cost (e.g., networking overhead).
Thus, our measurements cannot be generalized to CPU-bound benchmarks.

To quantify the overhead on CPU-bound benchmarks, we also evalu-
ated the approaches on the SPEC2006 INT benchmarks, which consist of 12
benchmarks. We excluded all C++ benchmarks (471.omnetpp, 473.astar, and
483.xalancbmk), which we expected to make little use of C functions and thus
of our interceptors. Further, we excluded all benchmarks in which the tools de-
tected memory safety errors (400.perlbench and 403.gcc). ASan detected memory
leaks in two benchmarks (445.gobmk and 464.h264ref), and since we investigated
only buffer overflows in this work, we disabled memory leak detection to also
run them. SoftBound in its original and introspection versions detected memory
safety errors in all but one benchmark (458.sjeng), which were presumably false



bzip2 gobmk h264ref hmmer libquantum mcf sjeng
ASan

M
PX

SoftBound

original
introspection
original
introspection
original
introspection
original
introspection
original
introspection
original
introspection
original
introspection

2
3
4
5

2
3
4
5

4.35

4.40

ex
ec

ut
io

n 
tim

e 
re

la
tiv

e 
to

 C
la

ng
 -O

3

Execution times on SPEC CINT2006

Fig. 2. Execution times on the SpecInt2006 benchmarks.

positives. MPX had an additional known false positive [19] in one benchmark
(429.mcf), so we excluded this benchmark for MPX.

Figure 2 shows the execution times of the SPECInt2006 benchmarks rela-
tive to Clang -O3 as a baseline. On four of the seven benchmarks (429.mcf,
456.hmmer, 458.sjeng, 462.libquantum), the performance overhead was negli-
gible because no interceptors were executed in code that contributed to the
overall run-time performance of the respective benchmark. For SoftBound, the
introspection overhead was 3% on the only benchmark that it could execute.
Using introspection with ASan resulted in higher overheads, namely 140% on
h264ref, 43% on bzip2, and 81% on gobmk. For MPX, the performance over-
head of introspection was relatively low, with maximum overheads of 13% on
bzip2 and 6% on gobmk.

We also executed micro-benchmarks, measuring the direct overhead of inter-
ceptors. For example, we evaluated the performance of the strlen() interceptor,
which directly relies on size right() to call the safer strnlen() function. For
SoftBound, the overhead was not measurable. For Intel MPX, the overhead was
2× for strings with a length of 10; for longer strings (e.g., a length of 1000)
the overhead was not measurable. The overhead for ASan was the highest, as
our size right() implementation has to traverse the shadow memory, which
depends linearly on the length of the string. Its overhead varied between 2× and
10× with different string lengths.



7 Discussion

Availability. We have demonstrated that our introspection-based libc intercep-
tors are an effective means of mitigating the effects of buffer overflows. Our
main idea is to use run-time information that is tracked by existing tools to
prevent buffer overflows and to increase the availability of applications. Using
the introspection-based interceptors is useful only in production, because during
development and testing it would be preferable to abort execution so that the
programmer can fix bugs that cause errors.

Complementarity. We have designed our approach to complement existing ap-
proaches for handling buffer overflows. Our idea is that, for important functions,
programmers can implement custom semantics that mitigate the effects of buffer
overflows. For buffer overflows in other functions or in user-level code, existing
memory tools would continue to detect out-of-bounds accesses and would abort
execution in the case of an error. Alternatively, the interceptors could also be
used with the original failure-oblivious computing approach as a fallback for
functions that are not guarded by introspection checks.

Performance. The overhead of introspection and our interceptors depends
mainly on how efficiently a tool tracks bounds information. Our evaluation on
servers suggests that the overhead of introspection is often small compared to
the cost of network communication, making introspection especially applicable
for servers. Our evaluation on the CPU-bound SPEC benchmarks also seems to
suggest that libc functions are typically not part of the code that significantly
contributes to the overall performance of a program. While the MPX-based intro-
spection overhead was low on all benchmarks, only the ASan-based implementa-
tion caused larger overheads on three benchmarks. Overall, introspection-based
libc functions are feasible with a low overhead for approaches that maintain ex-
plicit bounds information (e.g., Intel MPX or SoftBound), but result in higher
overheads for approaches in which bounds information must be computed (e.g.,
in ASan). Furthermore, our implementation could be made more efficient by
using introspection directly in the libc functions.

Implementation. We have demonstrated implementations of the size right()

function for three popular bug-finding and bug-mitigation approaches and be-
lieve that implementing this function in many others (e.g., libcrunch [10,11]) is
also straightforward. Some tools cannot give precise estimates for all pointers,
which makes our approach less effective. For example, binary-instrumentation
tools such as Valgrind [18] and Dr. Memory [3] cannot reliably determine the
size of buffers located on the stack. Other approaches track run-time informa-
tion only for specific types of allocations (e.g., stack buffers [2]). Furthermore,
some tools give rough estimates in general or round up allocation sizes [1,2,6];
for example, after evaluating our approach with low-fat pointer checking [6,8],
we found that rounding up allocation sizes alone mitigated several of the buffer



overflows that we investigated.7 Note that conservative estimates (e.g., the max-
imum integer value if no information is available) ensure correct execution, but
might result in undetected errors.

8 Related Work

Failure-oblivious computing. Rinard et al. coined the term failure-oblivious com-
puting, where illegal read accesses yield predefined values and out-of-bounds
write accesses are ignored [25]. An extension of this work are boundless memory
blocks, where out-of-bounds writes store the value in a hash map that can be re-
turned for out-of-bounds reads to that address [4,12,26]. Furthermore, Long et al.
extended failure-oblivious computing by also covering divide-by-zero errors and
NULL-pointer dereferences [14]. In contrast to these approaches, introspection en-
ables programmers to handle out-of-bounds accesses by taking into account the
semantics of a function. However, the drawback of our approach is that library
developers must implement these checks manually.

Failure-oblivious computing models. Durieux et al. studied failure-oblivious com-
puting behaviors [9]. Their findings suggest that for many failures, multiple al-
ternative strategies exist that can mitigate the error. For example, to mitigate a
NULL-pointer dereference the access could be ignored, but the pointer could also
be initialized with the address of a newly-created or existing object.

Monitored execution. Sidiroglou et al. devised a system that monitors an ap-
plication for failures such as buffer overflows [29]. If a fault occurs, the current
function is aborted and—based on heuristics—an appropriate value is returned.
In order to avoid crashes because a pointer returns NULL, the heuristics take into
account whether the parent function dereferences the pointer thereafter. While
this approach takes into account the context of the fault, it lacks the ability of
our introspection approach to benefit from programmer knowledge.

Libsafe. Libsafe replaces libc functions with enhanced versions that prevent
buffer overflows from going beyond the stack frame [2]. It achieves this by travers-
ing frames to determine their bounds and aborting the program if the bounds
are exceeded. While we tried implementing the introspection function using the
traversal logic, we found that it is based on assumptions such as the location
of the stack, which no longer hold with modern mitigation techniques such as
address space layout randomization. Additionally, libsafe does not handle out-of-
bounds reads well, for which our approach, in contrast, can compute meaningful
results, for example, by letting strlen() return the length of the buffer under-
lying the string if it is unterminated.

7 EffectiveSan [7], an extension of the low-fat pointer approach, provides accurate
bounds but has not been released to the public as of June 2018.



9 Conclusion

In this paper, we have presented how implementation of an introspection function
that returns the length of an object can be used to implement failure-oblivious
computing mechanisms. We have also shown that such a mechanism is useful
in mitigating real-world errors and that the performance overhead when imple-
mented in approaches such as Intel MPX is negligible. For reproducibility and to
facilitate further research, we distribute all artifacts and experimentation scripts
at https://github.com/introspection-libc/main.

References

1. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In: Proceedings
of the 18th Conference on USENIX Security Symposium. pp. 51–66. SSYM’09,
USENIX Association, Berkeley, CA, USA (2009)

2. Baratloo, A., Singh, N., Tsai, T.: Libsafe: Protecting critical elements of stacks.
White Paper (1999), http://www.research.avayalabs.com/project/libsafe

3. Bruening, D., Zhao, Q.: Practical memory checking with dr. memory. In: Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization. pp. 213–223. CGO ’11, IEEE Computer Society, Washington,
DC, USA (2011)

4. Brunink, M., Susskraut, M., Fetzer, C.: Boundless memory allocations for
memory safety and high availability. In: Proceedings of the 2011 IEEE/I-
FIP 41st International Conference on Dependable Systems&Networks. pp.
13–24. DSN ’11, IEEE Computer Society, Washington, DC, USA (2011).
https://doi.org/10.1109/DSN.2011.5958203

5. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition, 2000. DISCEX’00. Proceedings. vol. 2, pp. 119–129.
IEEE (2000)

6. Duck, G.J., Yap, R.H.C.: Heap bounds protection with low fat pointers.
In: Proceedings of the 25th International Conference on Compiler Con-
struction. pp. 132–142. CC 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2892208.2892212

7. Duck, G.J., Yap, R.H.C.: Effectivesan: Type and memory error detection using
dynamically typed c/c++. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 181–195. PLDI 2018,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3192366.3192388

8. Duck, G.J., Yap, R.H., Cavallaro, L.: Stack bounds protection with low fat pointers.
In: Symposium on Network and Distributed System Security (2017)

9. Durieux, T., Hamadi, Y., Yu, Z., Baudry, B., Monperrus, M.: Exhaustive explo-
ration of the failure-oblivious computing search space. In: Proc. of the Int. Conf.
on Sotware Testing and Verification (ICST). ICST’18 (Apr 2018)

10. Kell, S.: Towards a dynamic object model within unix processes. In: 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!). pp. 224–239. Onward! 2015, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2814228.2814238

https://github.com/introspection-libc/main
http://www.research.avayalabs.com/project/libsafe
https://doi.org/10.1109/DSN.2011.5958203
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/2814228.2814238


11. Kell, S.: Dynamically diagnosing type errors in unsafe code. In: Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. pp. 800–819. OOPSLA 2016, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2983990.2983998

12. Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia, P., Felber, P.,
Fetzer, C.: SGXBOUNDS: Memory safety for shielded execution. In: Proceedings
of the Twelfth European Conference on Computer Systems. pp. 205–221. EuroSys
’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3064176.3064192

13. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis
transformation. In: CGO 2004. pp. 75–86 (March 2004)

14. Long, F., Sidiroglou-Douskos, S., Rinard, M.: Automatic runtime error re-
pair and containment via recovery shepherding. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 227–238. PLDI ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2594291.2594337

15. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: Softbound: Highly
compatible and complete spatial memory safety for c. In: Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. pp. 245–258. PLDI ’09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1542476.1542504

16. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: Cets: Compiler enforced
temporal safety for c pp. 31–40 (2010). https://doi.org/10.1145/1806651.1806657

17. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a
program. In: Proceedings of the 3rd International Conference on Virtual Exe-
cution Environments. pp. 65–74. VEE ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1254810.1254820

18. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic bi-
nary instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 89–100. PLDI ’07, ACM,
New York, NY, USA (2007). https://doi.org/10.1145/1250734.1250746

19. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., Fetzer, C.: Intel mpx ex-
plained: A cross-layer analysis of the intel mpx system stack. Proc. ACM Meas.
Anal. Comput. Syst. 2(2), 28:1–28:30 (Jun 2018). https://doi.org/10.1145/3224423

20. Rigger, M., Grimmer, M., Wimmer, C., Würthinger, T., Mössenböck, H.: Bring-
ing low-level languages to the jvm: Efficient execution of llvm ir on truffle. In:
Proceedings of the 8th International Workshop on Virtual Machines and Inter-
mediate Languages. pp. 6–15. VMIL 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2998415.2998416

21. Rigger, M., Schatz, R., Grimmer, M., Mössenböck, H.: Lenient execution of c on
a java virtual machine: Or: How i learned to stop worrying and run the code.
In: Proceedings of the 14th International Conference on Managed Languages
and Runtimes. pp. 35–47. ManLang 2017, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3132190.3132204

22. Rigger, M., Schatz, R., Mayrhofer, R., Grimmer, M., Mössenböck, H.: Sulong, and
Thanks For All the Bugs: Finding Errors in C Programs by Abstracting from
the Native Execution Model. In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS 2018. https://doi.org/10.1145/3173162.3173174

23. Rigger, M., Schatz, R., Mayrhofer, R., Grimmer, M., Mössenböck, H.: Introspec-
tion for C and its Applications to Library Robustness. The Art, Science, and

https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1145/2594291.2594337
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/3224423
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3173162.3173174


Engineering of Programming (2) (2018). https://doi.org/10.22152/programming-
journal.org/2018/2/4

24. Rinard, M.: Acceptability-oriented computing. In: Companion of the 18th An-
nual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications. pp. 221–239. OOPSLA ’03, ACM, New York, NY, USA
(2003). https://doi.org/10.1145/949344.949402

25. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., Beebee, Jr., W.S.:
Enhancing server availability and security through failure-oblivious computing. In:
Proceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6. pp. 21–21. OSDI’04, USENIX Association, Berkeley,
CA, USA (2004)

26. Rinard, M.C.: Failure-oblivious computing and boundless memory blocks (2005),
technical Report

27. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast
address sanity checker. In: USENIX Annual Technical Conference. pp. 309–318
(2012)

28. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. pp. 552–561. CCS ’07, ACM, New York,
NY, USA (2007). https://doi.org/10.1145/1315245.1315313

29. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a reactive
immune system for software services. In: Proceedings of the Annual Conference on
USENIX Annual Technical Conference. pp. 11–11. ATEC ’05, USENIX Associa-
tion, Berkeley, CA, USA (2005)

30. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.:
Sok: Sanitizing for security. IEEE Symposium on Security and Privacy (S&P’19)
Accepted. To Appear.

31. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: Proceedings of the Second European
Workshop on System Security. pp. 1–8. EUROSEC ’09, ACM, New York, NY, USA
(2009). https://doi.org/10.1145/1519144.1519145

32. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in mem-
ory. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy.
pp. 48–62. SP ’13, IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/SP.2013.13

33. The MITRE Corporation: Common vulnerabilities and exposures, https://cve.
mitre.org/

34. van der Veen, V., dutt Sharma, N., Cavallaro, L., Bos, H.: Memory errors:
The past, the present, and the future. In: Proceedings of the 15th Interna-
tional Conference on Research in Attacks, Intrusions, and Defenses. pp. 86–106.
RAID’12, Springer-Verlag, Berlin, Heidelberg (2012), https://doi.org/10.1007/
978-3-642-33338-5_5

35. Watson, R.N.M., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chis-
nall, D., Dave, N., Davis, B., Gudka, K., Laurie, B., Murdoch, S.J., Norton, R.,
Roe, M., Son, S., Vadera, M.: Cheri: A hybrid capability-system architecture for
scalable software compartmentalization. In: 2015 IEEE Symposium on Security
and Privacy. pp. 20–37 (May 2015). https://doi.org/10.1109/SP.2015.9

36. Younan, Y., Joosen, W., Piessens, F.: Runtime countermeasures for code injection
attacks against c and c++ programs. ACM Comput. Surv. 44(3), 17:1–17:28 (Jun
2012). https://doi.org/10.1145/2187671.2187679

https://doi.org/10.22152/programming-journal.org/2018/2/4
https://doi.org/10.22152/programming-journal.org/2018/2/4
https://doi.org/10.1145/949344.949402
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1519144.1519145
https://doi.org/10.1109/SP.2013.13
https://cve.mitre.org/
https://cve.mitre.org/
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/2187671.2187679

	Context-aware Failure-oblivious Computing as a Means of Preventing Buffer Overflows

