Skip to main content

Impedance Characteristics of the Skin-Electrode Interface of Dry Textile Electrodes for Wearable Electrocardiogram

  • Conference paper
  • First Online:
  • 1206 Accesses

Part of the book series: Internet of Things ((ITTCC))

Abstract

Long-term dynamic Electrocardiogram (ECG) monitoring is considered as one of the main methods of preventing heart diseases. Ag/AgCl wet electrodes, although used clinically, are not suitable for long-time wearing. Dry textile electrodes, however, have won much attention for surmounting these drawbacks. This essay explains the impedance characteristics of the skin-electrode interface of wearable dry textile electrodes for measuring ECG. Specifically, through analyzing the characteristics of dry textile electrodes, the skin-electrode interface equivalent circuit models were built, the textile electrodes were made and the electrochemical impedance spectroscopy (EIS) for the skin-electrode interface was measured. Finally, the influence of each parameter to the interface was assessed. The research illustrated that interface of dry textile electrodes were more complicated than that of standard Ag/AgCl electrodes. The interface impedance |Z| and the interface phase were relevant to the signal frequency and the key of descending the interface impedance was to lower the polarization resistance. The textile electrodes have the Constant Phase Angle Element (CPE) behavior due to the dispersion effect of the time constant within the Frequency of ECG measuring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sahoo, S., Biswal, P., Das, T., Sabut, S.: De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol. 25, 68–75 (2016)

    Article  Google Scholar 

  2. Weder, M., Hegemann, D., Amberg, M., Hess, M., Boesel, L.F., Abcherli, R., Meyer, V.R., Rossi, R.M.: Embroidered electrode with silver/titanium coating for long-term ECG monitoring. Sensors 15, 1750 (2015)

    Article  Google Scholar 

  3. Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  Google Scholar 

  4. Yokus, M.A., Jur, J.S.: Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans. Biomed. Eng. 63, 423 (2016)

    Article  Google Scholar 

  5. Meziane, N., Yang, S., Shokoueinejad, M., Webster, J.G., Attari, M., Eren, H.: Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography. Physiol. Meas. 36, 513 (2015)

    Article  Google Scholar 

  6. Meziane, N., Webster, J.G., Attari, M., Nimunkar, A.J.: Dry electrodes for electrocardiography. Physiol. Meas. 34, R47–R69 (2013)

    Article  Google Scholar 

  7. Dai, M., Xiao, X., Chen, X., Lin, H., Wu, W., Chen, S.: A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australas. Phys. Eng. Sci. Med. 39, 1–12 (2016)

    Article  Google Scholar 

  8. Andreoni, G., Fanelli, A., Witkowska, I., Perego, P., Fusca, M., Mazzola, M., Signorini, M.G.: Sensor validation for wearable monitoring system in ambulatory monitoring. In: International Conference on Pervasive Computing Technologies for Healthcare, pp. 169–175 (2013)

    Google Scholar 

  9. Xu, P.J., Zhang, H., Tao, X.M.: Textile-structured electrodes for electrocardiogram. Text. Prog. 40, 183–213 (2008)

    Article  Google Scholar 

  10. Mottaghitalab, V., Haghi, A.K., Haghdoost, F.: Comfortable textile-based electrode for wearable electrocardiogram. Sens. Rev. 35, 20–29 (2015)

    Article  Google Scholar 

  11. Pola, T., Vanhala, J.: Textile electrodes in ECG measurement. In: International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 635–639 (2007)

    Google Scholar 

  12. Puurtinen, M.M., Komulainen, S.M., Kauppinen, P.K., Malmivuo, J.A.V.: Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. In: International Conference of the IEEE Engineering in Medicine and Biology Society, p. 6012 (2006)

    Google Scholar 

  13. Beckmann, L., Neuhaus, C., Medrano, G., Jungbecker, N., Walter, M., Gries, T., Leonhardt, S.: Characterization of textile electrodes and conductors using standardized measurement setups. Physiol. Meas. 31, 233 (2010)

    Article  Google Scholar 

  14. Marozas, V., Petrenas, A., Daukantas, S., Lukosevicius, A.: A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. IEEE Trans. Instrum. Meas. 63, 1412–1422 (2014)

    Article  Google Scholar 

  15. Taji, B., Shirmohammadi, S., Groza, V., Batkin, I.: Impact of skin-lectrode interface on electrocardiogram measurements using conductive textile electrodes. J. Electrocardiol. 44, 189 (2011)

    Google Scholar 

  16. Norlin, A., Pan, J., Leygraf, C.: Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomol. Eng. 19, 67 (2002)

    Article  Google Scholar 

  17. Mcadams, E.T., Jossinet, J., Lackermeier, A., Risacher, F.: Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography. Med. Biol. Eng. Comput. 34, 397–408 (1996)

    Article  Google Scholar 

  18. Mcadams, E.T., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16, A1–13 (1995)

    Article  Google Scholar 

  19. Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R., Webster, J.G.: Skin impedance from 1 Hz to 1 MHz. IEEE Trans. Biomed. Eng. 35, 649–651 (1988)

    Article  Google Scholar 

  20. Mcadams, E.: Biomedical Electrodes for Biopotential Monitoring and Electrostimulation, pp. 31–124. Springer, US (2011)

    Google Scholar 

  21. McAdams, E.T., Jossinet, J.: DC nonlinearity of the solid electrode-electrolyte interface-impedance. Innov. Technol. Biol. Med. 12, 329–343 (1991)

    Google Scholar 

  22. Kerner, Z., Pajkossy, T.: On the origin of capacitance dispersion of rough electrodes. Innov. Technol. Biol. Med. 46, 207–211 (2015)

    Article  Google Scholar 

  23. Webster, J.G.: Medical instrumentation-application and design. J. Clin. Eng. 3, 306 (1998)

    Article  Google Scholar 

  24. Webster, J.G., Clark, J.W.: Medical Instrumentation: Application and Design, pp. 197–221. Mifflin, Houghton

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (no. 61572110) and National Key Research and Development Plan of China (no. 2016YFB1001401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, F., Chen, D., Chen, Z., Jin, C., Dai, S. (2019). Impedance Characteristics of the Skin-Electrode Interface of Dry Textile Electrodes for Wearable Electrocardiogram. In: Fortino, G., Wang, Z. (eds) Advances in Body Area Networks I. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-02819-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02819-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02818-3

  • Online ISBN: 978-3-030-02819-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics