Skip to main content

Full Model Selection in Big Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10632))

Abstract

The increasingly larger quantities of information generated in the world over the last few years, has led to the emergence of the paradigm known as Big Data. The analysis of those vast quantities of data has become an important task in science and business in order to turn that information into a valuable asset. Many data analysis tasks involves the use of machine learning techniques during the model creation step and the goal of these predictive models consists on achieving the highest possible accuracy to predict new samples, and for this reason there is high interest in selecting the most suitable algorithm for a specific dataset. This trend is known as model selection and it has been widely studied in datasets of common size, but poorly explored in the Big Data context. As an effort to explore in this direction this work propose an algorithm for model selection in Big Data.

Supported by CONACyT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Apacheorg: ML tuning: model selection and hyperparameter tuning, August 2016. http://spark.apache.org/docs/latest/ml-tuning.html

  2. Bansal, B., Sahoo, A.: Full model selection using bat algorithm. In: 2015 International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1–4. IEEE (2015)

    Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Ceruti, C., Bassis, S., Rozza, A., Lombardi, G., Casiraghi, E., Campadelli, P.: DANCo: dimensionality from angle and norm concentration. arXiv preprint arXiv:1206.3881 (2012)

  5. Chatelain, C., Adam, S., Lecourtier, Y., Heutte, L., Paquet, T.: A multi-model selection framework for unknown and/or evolutive misclassification cost problems. Pattern Recogn. 43(3), 815–823 (2010). https://doi.org/10.1016/j.patcog.2009.07.006

    Article  MATH  Google Scholar 

  6. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach. Learn. Res. 10(Feb), 405–440 (2009)

    Google Scholar 

  7. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in the MapReduce framework. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25591-5_39

    Chapter  MATH  Google Scholar 

  8. Guller, M.: Big Data Analytics with Spark: A Practitioners Guide to Using Spark for Large Scale Data Analysis. Apress, New York (2015). http://www.apress.com/9781484209653

    Chapter  Google Scholar 

  9. Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)

    Article  Google Scholar 

  10. Kaneko, H., Funatsu, K.: Fast optimization of hyperparameters for support vector regression models with highly predictive ability. Chemom. Intell. Lab. Syst. 142, 64–69 (2015). https://doi.org/10.1016/j.chemolab.2015.01.001, http://linkinghub.elsevier.com/retrieve/pii/S0169743915000039

    Article  Google Scholar 

  11. Lessmann, S., Stahlbock, R., Crone, S.F.: Genetic algorithms for support vector machine model selection. In: 2006 International Joint Conference on Neural Networks. IJCNN 2006, pp. 3063–3069. IEEE (2006)

    Google Scholar 

  12. Lombardi, G., Rozza, A., Ceruti, C., Casiraghi, E., Campadelli, P.: Minimum neighbor distance estimators of intrinsic dimension. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 374–389. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_24

    Chapter  Google Scholar 

  13. Rosales-Pérez, A.: Surrogate-assisted multi-objective model selection for support vector machines. Neurocomputing 150(2015), 163–172 (2015)

    Article  Google Scholar 

  14. Rosales-Pérez, A., Gonzalez, J.A., Coello Coello, C.A., Escalante, H.J., Reyes-Garcia, C.A.: Multi-objective model type selection. Neurocomputing, 146, 83–94 (2014). https://doi.org/10.1016/j.neucom.2014.05.077, http://linkinghub.elsevier.com/retrieve/pii/S0925231214008789

    Article  Google Scholar 

  15. Sánchez-Monedero, J., Gutiérrez, P.A., Pérez-Ortiz, M., Hervás-Martínez, C.: An n-spheres based synthetic data generator for supervised classification. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 613–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4_62

    Chapter  Google Scholar 

  16. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855. ACM (2013)

    Google Scholar 

  17. Tlili, M., Hamdani, T.M.: Big data clustering validity. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 348–352. IEEE (2014)

    Google Scholar 

  18. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  19. Yu, K., Ji, L., Zhang, X.: Kernel nearest-neighbor algorithm. Neural Process. Lett. 15(2), 147–156 (2002)

    Article  Google Scholar 

  20. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Díaz-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Pacheco, A., Gonzalez-Bernal, J.A., Reyes-García, C.A., Escalante-Balderas, H.J. (2018). Full Model Selection in Big Data. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Soft Computing. MICAI 2017. Lecture Notes in Computer Science(), vol 10632. Springer, Cham. https://doi.org/10.1007/978-3-030-02837-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02837-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02836-7

  • Online ISBN: 978-3-030-02837-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics