Skip to main content

Fast Learning for Accurate Object Recognition Using a Pre-trained Deep Neural Network

  • Conference paper
  • First Online:
  • 397 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10632))

Abstract

Object recognition is a relevant task for many areas and, in particular, for service robots. Recently object recognition has been dominated by the use of Deep Neural Networks (DNN), however, they required a large number of images and long training times. If a user asks a service robot to search for an unknown object, it has to deal with selecting relevant images to learn a model, deal with polysemy, and learn a model relatively quickly to be of any use to the user. In this paper we describe an object recognition system that deals with the above challenges by: (i) a user interface to reduce different object interpretations, (ii) downloading on-the-fly images from Internet to train a model, and (iii) using the outputs of a trimmed pre-trained DNN as attributes for a SVM. The whole process (selecting and downloading images and training a model) of learning a model for an unknown object takes around two minutes. The proposed method was tested on 72 common objects found in a house environment with very high precision and recall rates (over 90%).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  3. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

  6. Ouyang, W., et al.: DeepID-Net: deformable deep convolutional neural networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2015)

    Google Scholar 

  7. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  9. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

  10. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv preprint arXiv:1412.6553 (2014)

  11. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutionalnetworks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2016)

    Article  Google Scholar 

  12. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through FFTs. arXiv preprint arXiv:1312.5851 (2013)

  13. Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015)

  14. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International Conference on Machine Learning, pp. 2285–2294 (2015)

    Google Scholar 

  15. Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_78

    Chapter  Google Scholar 

  16. Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land use classification in remote sensing images by convolutional neural networks. arXiv preprint arXiv:1508.00092 (2015)

  17. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  18. Penatti, O.A., Nogueira, K., dos Santos, J.A.: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 44–51 (2015)

    Google Scholar 

  19. Ng, H.-W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 443–449. ACM (2015)

    Google Scholar 

  20. Litjens, G., et al.: A survey on deep learning in medical image analysis. arXiv preprint arXiv:1702.05747 (2017)

  21. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 118–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_15

    Chapter  Google Scholar 

  22. Akilan, T., Wu, Q.J., Yang, Y., Safaei, A.: Fusion of transfer learning features and its application in image classification. In: IEEE 30th Canadian Conference on Electrical and Computer Engineering, pp. 1–5. IEEE (2017)

    Google Scholar 

  23. D’Innocente, A., Carlucci, F.M., Colosi, M., Caputo, B.: Bridging between computer and robot vision through data augmentation: a case study on object recognition. arXiv preprint arXiv:1705.02139 (2017)

  24. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Lobato-Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lobato-Ríos, V., Tenorio-Gonzalez, A.C., Morales, E.F. (2018). Fast Learning for Accurate Object Recognition Using a Pre-trained Deep Neural Network. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Soft Computing. MICAI 2017. Lecture Notes in Computer Science(), vol 10632. Springer, Cham. https://doi.org/10.1007/978-3-030-02837-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02837-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02836-7

  • Online ISBN: 978-3-030-02837-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics