Skip to main content

A Framework Based on Eye-Movement Detection from EEG Signals for Flight Control of a Drone

  • Conference paper
  • First Online:
  • 480 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10633))

Abstract

There is a considerable number of people with some disability they may go from partial limb disability to total incapacity. For these people, technology is an opportunity to bring them back some capabilities. In this work, we present a framework where we envisage a system that can be used by a disabled person who can not move but still possesses eye movements. Therefore, by using electroencephalographic (EEG) signals, we recognize and classify eye movements, which are then translated to control commands. Based on the latter, we developed an application to illustrate how such commands could be used to control a drone that could be used to deliver messages or carry out any other activity that involves the drone having to fly from a start point to a final destination. The results obtained in this study indicate that ocular movements are recognized with an accuracy of 86%, which suggests the feasibility of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McDonald, J.W., Sadowsky, C.: Spinal-cord injury. Lancet 359(9304), 417–425 (2002)

    Article  Google Scholar 

  2. Gautham, G., Kumar, K., Manjunath, S., Khaleel, M.M.P.: Wheel chair movement control using eye blink sensors and smart phone. Imp. J. Interdiscip. Res. 2(7) (2016)

    Google Scholar 

  3. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics. ISER, Citeseer (2010)

    Google Scholar 

  4. Parasuraman, R., Cosenzo, K.A., De Visser, E.: Adaptive automation for human supervision of multiple uninhabited vehicles: effects on change detection, situation awareness, and mental workload. Mil. Psychol. 21(2), 270 (2009)

    Article  Google Scholar 

  5. Mala, S., Latha, K.: Demystification of electrooculogram signals: an introductory approach to activity recognition

    Google Scholar 

  6. Donoghue, J.P.: Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5, 1085–1088 (2002)

    Article  Google Scholar 

  7. Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., Başar, E.: Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int. J. Psychophysiol. 24(1), 101–112 (1996)

    Article  Google Scholar 

  8. Croft, R., Barry, R.: Removal of ocular artifact from the EEG: a review. Neurophysiol. Clin./Clin. Neurophysiol. 30(1), 5–19 (2000)

    Article  Google Scholar 

  9. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10(4), 046003 (2013)

    Article  Google Scholar 

  10. Makeig, S., et al.: Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol. 2(6), e176 (2004)

    Article  Google Scholar 

  11. Huang, R.-S., Jung, T.-P., Delorme, A., Makeig, S.: Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking. NeuroImage 39(4), 1896–1909 (2008)

    Article  Google Scholar 

  12. Klimesch, W., Freunberger, R., Sauseng, P., Gruber, W.: A short review of slow phase synchronization and memory: evidence for control processes in different memory systems? Brain Res. 1235, 31–44 (2008)

    Article  Google Scholar 

  13. Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7(4), 374–385 (1997)

    Article  Google Scholar 

  14. Picton, T.: Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. J. Clin. Neurophysiol. 7(3), 450–451 (1990)

    Article  Google Scholar 

  15. Valentino, D.A., Arruda, J., Gold, S.: Comparison of QEEG and response accuracy in good vs poorer performers during a vigilance task. Int. J. Psychophysiol. 15(2), 123–133 (1993)

    Article  Google Scholar 

  16. Makeig, S., Jung, T.-P.: Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cogn. Brain Res. 4(1), 15–25 (1996)

    Article  Google Scholar 

  17. Kim, M., Kim, B.H., Jo, S.: Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 159–168 (2015)

    Article  Google Scholar 

  18. Ribo, M., Pinz, A., Fuhrmann, A.L.: A new optical tracking system for virtual and augmented reality applications. In: Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, IMTC 2001, vol. 3, pp. 1932–1936. IEEE (2001)

    Google Scholar 

  19. Åström, K.J., Hägglund, T.: Advanced PID control. Systems and Automation Society, ISA-The Instrumentation (2006)

    Google Scholar 

  20. Harmony, T., et al.: EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int. J. Psychophysiol. 24(1), 161–171 (1996)

    Article  Google Scholar 

  21. Buzsaki, G.: Rhythms of the Brain. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  22. Baumann, S.B., Wozny, D.R., Kelly, S.K., Meno, F.M.: The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44(3), 220–223 (1997)

    Article  Google Scholar 

  23. Herrmann, C.S.: Human eeg responses to 1–100 hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3–4), 346–353 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Royal Society through the Newton Advanced Fellowship with reference NA140454.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Zecua Corichi , José Martínez Carranza , Carlos Alberto Reyes García or Luis Villaseñor Pineda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corichi, E.Z., Carranza, J.M., García, C.A.R., Pineda, L.V. (2018). A Framework Based on Eye-Movement Detection from EEG Signals for Flight Control of a Drone. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02840-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02839-8

  • Online ISBN: 978-3-030-02840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics