
HAL Id: hal-01992707
https://hal.science/hal-01992707

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component Design and Adaptation Based on Behavioral
Contracts

Samir Chouali, Sebti Mouelhi, Hassan Mountassir

To cite this version:
Samir Chouali, Sebti Mouelhi, Hassan Mountassir. Component Design and Adaptation Based on
Behavioral Contracts. International Workshop : Formal models for mastering multifaceted systems,
Oct 2018, Marrakesh, Morocco. pp.217 - 230. �hal-01992707�

https://hal.science/hal-01992707
https://hal.archives-ouvertes.fr

Component Design and Adaptation Based on
Behavioral Contracts

Samir Chouali1, Sebti Mouelhi2, and Hassan Mountassir1

1 Univ. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, Besançon, France
schouali@femto-st.fr, hmountas@femto-st.fr

2 ECE Paris - Graduate School of Engineering, Paris, France
sebti.mouelhi@ece.fr

Abstract. In this paper, our objective is to propose an adaptation ap-
proach to generate a component adaptor that ensures a correct interac-
tion between mismatched components. Compared to the related works on
component adaptation, the originality of our proposition relies on two
main contributions. In the first, we design component behavioral con-
tracts in order to generate component adaptor. So, we propose to specify
component interfaces as behavioral contracts, to enrich the exhibited in-
formations in component interfaces. Our behavioral contracts express all
component facets: their action signatures, their actions semantics, and
their protocol. We consider that these informations are important when
generating component adaptors. In the second contribution, we propose
to specify component behavioral contracts with the formalism based on
interface automata that we enrich to specify the semantics of component
actions. So, our adaptation approach is also an extension of the interface
automata approach to handle the problem of component adaptation.

Keywords: Components · behavioral contracts · adaptation.

1 Introduction

The development of component-based systems is principally based on component
reusability which allows the use of components in diverse environments without
affecting their codes. However, in many cases, reusability is constrained with
mismatches that may occur between components and their new environments
during their interaction. The mismatches are caused by components that do not
match perfectly the requirements of their environment. In this case, component
adaptation should be performed in order to generate software entities, called
adaptors, capable of enabling a correct interaction between components when
mismatches occur.

In this paper, we focus on adapting components whose interfaces are de-
scribed with behavioral contracts, which exhibit all component facets at the
levels of action signatures (signatures of component operations), component pro-
tocols (scheduling of operation calls), and action semantics (semantic of com-
ponent operations). We believe that consideration of all these informations in
component interfaces lead to generate suitable and reliable adaptors. To spec-
ify formally component contracts, we propose to exploit the interface automata

S. Chouali et al.

formalism [1] that we enrich by the semantic of component actions, because
interface automata express only the scheduling of components actions without
their semantics. So, we annotate the actions in interface automata by pre and
post-conditions expressed on their parameters. This new formalism led us to
adapt the compatibility verification approach, based on interface automata, to
handle with the semantic of actions, because the adaptor generation relies on
the verification of component compatibility.

Previously, we treated only adaptation at the protocol level [6]. Our purpose
was to generate automatically an adaptor (interface automaton in-the-middle)
for exactly two component interface automata according to a mapping that es-
tablishes a number of rules relating their mismatched input and output actions.
In this paper, the main contribution relies on proposing a methodological ap-
proach to treat the problem of component adaptation at signature, semantic, and
protocol levels, by exploiting component behavioral contracts. We show how to
cooperate between the adaptation at the protocol level, and the semantic adap-
tation to generate a suitable adaptor for components specified with enriched
interface automata that specify component contracts.

The paper is organized as follows. In Section 2, we present the formalization
of component behavioral contracts with the interface automata, enriched with
the semantics of component actions. In Section 3, we show how to verify the
compatibility between components specified with behavioral contracts. When
the compatibility does not hold between components, we present in Section 4 the
specification of the mapping rules between the mismatched components that we
exploit to generate adaptors. Section 5, is dedicated to present our proposition
to adapt components at signature, semantic, and protocol levels. Finally, we
discuss the related work to our approach in Section 6 and conclude the paper in
Section 7.

2 Component Behavioral Contracts

Interface automata (IAs) have been defined by L. Alfaro and T. Henzinger [1],
to model the behavior of software component. Every component is described
with an interface, which is specified with one interface automaton. This latter
describes the scheduling of input, output, and hidden component actions, such
that, input actions are used to model methods that can be called, and the end
of receiving messages from communication channels, as well as the return val-
ues from such calls. Output actions are used to model method calls, message
transmissions via communication channels, and exceptions that occur during
the methods executions. Local operations are called hidden actions. The alpha-
bet of an interface automaton consists of the names of actions annotated by
”?” for input actions, by ”!” for output actions, and by ”;” for hidden actions.
In the interface automata approach, the verification of the compatibility be-
tween two component is based on the composition of their interface automata,
which is achieved by synchronizing their shared input and output actions. The
compatibility holds between two interface automata where there is an environ-
ment (third component) which prevents the reachability of illegal states (states

Component Design and Adaptation Based on Behavioral Contracts

where the synchronization between the shared actions is not achieved) in their
composition. This approach is considered optimistic because the existence of il-
legal states in the composition is not sufficient to decide on the incompatibility
between components. The composition approach of the other automata-based
formalisms describing the interface protocols of components are considered pes-
simistic.

In this paper, we propose to specify component behavioral contracts with
interface automata formalism, enriched with the explicit description of the se-
mantics of each action. These contracts specify component behaviors by showing
the scheduling of the actions calls, and the interface automata formalism is suit-
able to specify component behaviors. However our behavioral contracts should
express also the semantics of component actions, with pre and post conditions
that should be satisfied by the environment in order to call or to provide com-
ponent actions. And interface automata are not enough expressive to specify the
semantics of component actions, therefore we propose to enrich this formalism
to cope with action semantics.

In our proposal, we consider that the signature of an input (resp. output)
component action a is of the form a(i1,...,in) → (o). The set P i

a = {i1, ..., in}
represents the set of input parameters of a. The set of output parameters P o

a is
defined by the singleton {o} (we assume that an action has at most a unique
return value). The set of all parameters of an action a is denoted by Pa. The
absence of input or output parameters is denoted by (). For a parameter p, we
define a domain Dp which is a set of values that p can take. The semantics of
actions is represented by the pre and post-conditions defined on action param-
eters. We express these conditions as formulas of the first-order logic. Given a
set of variables V, we denote by Preds(V), the set of first-order logic predicates
whose free variables belong to V.

Definition 1 (Interface Automaton for a behavioral contract) Let B be
a behavioral contract associated to a component interface. An interface automa-
ton to specify B is a tuple A = 〈SA, iA, ΣI

A, ΣO
A , ΣH

A , δA, ΨA〉 such that:

– SA is a finite set of states. A is called empty iff SA = ∅;
– iA ∈ SA is the initial state;
– ΣI

A, ΣO
A , and ΣH

A are respectively the sets of names of input, output, and
hidden actions. Let ΣA = ΣI

A ∪ΣO
A ∪ΣH

A ;
– δA ⊆ SA ×ΣA × SA is the set of transitions betweens states;
– ΨA is a function, ΨA : ΣA 7→ Preds(P i

a) × Preds(P i
a ∪ P o

a), that associates,
for each action a ∈ ΣA, a tuple 〈PreΨA(a), PostΨA(a)〉 that represents the pre
and post conditions of component actions.

We require that interface automata are deterministic, i.e. for all (s, a, s1) ∈
δA and (s, a, s2) ∈ δA, we have s1 = s2.

The set Σext
A of external actions of interface automaton A is defined by the

union ΣI
A ∪ ΣO

A . The set Σloc
A of locally controlled actions of A is defined by

the union ΣO
A ∪ ΣH

A . We define by ΣI
A(s), ΣO

A (s), ΣH
A(s), Σext

A (s), and Σloc
A (s)

respectively the input, output, hidden, external and locally controlled actions
enabled from s. The set ΣA(s) includes all the enabled actions from s.

S. Chouali et al.

1 2 3

456

login!

error?
ok?

re
q

!

arg!finish!

te
rm

in
a

te
?

Client

login

ok

terminate

req

arg

error finish

1 2 3 4

56

7 8

usr? pass?

Server

connected!

open?

close?

terminate!

admin-md?
usr?

error!

usr

pass

value

close

terminate

admin-md connected error

Fig. 1. A variant of a client/server system

Example 1. Let us consider the two composable interface automata Client and
Server, that specify component behavioral contracts, shown in Figure 1. After
authentication, Client sends a request req ! to open a file in read-only or write
mode. After that, it sends an action arg ! containing the name of a file to be
open. Server receives the two actions by executing an action open? that open
the file in readonly or write mode. After using the file, Client sends a signal
finish! indicating to Server that the file is ready to be closed (action close?).
Finally, Server sends a signal terminate! to terminate the session. The action
admin-md? is a super signal received from the administrator of the system to
open a super user session. When a client username is received by the server after
receiving the admin-md ! signal from an administrator, then an error is detected.
For example, the signatures and the semantics of the action login in Client and
usr in Server are defined as follows.

Signatures: login(uname, passwd, lu, lp)→ (exist),
usr(username, lengthu)→ () .

The semantics of the action login is defined as:
PreΨClient(login) ≡ 1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10,
PostΨClient(login) ≡ exist = 1 ∨ exist = 0

The semantics of the action usr is defined as:
PreΨServer(usr) ≡ 1 < lengthu ≤ 30, PostΨServer(usr) ≡ true

3 Component Compatibility Based on Behavioral
Contracts

In this section we show how to verify the compatibility between two components
specified with their behavioral contracts. Our proposition relies on the extension
of the interface automata approach to cope with the semantics of component
actions expressed with their pre and post condition on their parameters. To
verify the compatibility between two components that are specified with two

Component Design and Adaptation Based on Behavioral Contracts

interface automata A1 and A2, we have first to verify their composability and
then compute their composition by their synchronized product.

Before defining the composition between, A1 and A2, we present in the fol-
lowing the conditions that should be respected by both automata, that specify
component behavioral contracts, in order to authorize their composition.

The Composability conditions: Two interface automata A1 and A2 as-
sociated to two behavioral contracts are composable if :

– The condition on the non shared input and output actions is satisfied:

ΣI
A1
∩ΣI

A2
= ΣO

A1
∩ΣO

A2
= ΣH

A1
∩ΣA2

= ΣH
A2
∩ΣA1

= ∅.

– The condition on the shared actions is satisfied:
Shared(A1,A2) = (ΣI

A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared input

and output actions of A1 and A2. For each action a ∈ Shared(A1,A2) such
that its signature is given by a(i1,...,in) → (o) in A1 and by a(i′1,...,i′n) →
(o′) in A2 then, D ik ⊆ D i′k

for 1≤k≤ n and Do ⊆ Do′ in the case where

a(i1,...,in)→ (o) ∈ ΣO
A1

and a(i′1,...,i′n)→ (o′) ∈ ΣI
A2

. Otherwise, D ik ⊇ D i′k
for 1≤k≤ n and Do ⊇ Do′ . This property is called the domain inclusion of
the parameters of shared actions. The intuition behind this condition comes
from the fact that the output actions specify the method calls and the input
ones specify the methods that can be called.

If the above conditions are satisfied between two interface automata A1 and
A2, then we have to perform the renaming of parameter names in their pre and
post-conditions in order to realize their composition.

Definition 2 (Parameter renaming) Given an action a in Shared(A1, A2),
the signature of a is defined by a(i1,...,in)→ (o) in A1 and by a(i′1,...,i′n)→ (o′)
in A2. The renaming of parameters in the semantics ΨA1

(a) and ΨA2
(a) is the

substitution of i′1 by i1,..., i′n by in, and o′ by o in PreΨA2
(a) and PostΨA2

(a) or
the opposite in PreΨA1

(a) and PostΨA1
(a).

We denote by ΨA1/A2
(a) and ΨA2/A1

(a), the semantics of a after the param-
eter renaming respectively in A1 and A2. We can now define properly the notion
of the semantic compatibility of shared external actions.

Definition 3 (Semantic compatibility) Given an action a ∈ Shared(A1,A2),
if one of the following conditions is true, then the action a in A1 is semanti-
cally compatible with the same action a in A2 i.e. SemCompa(A1, A2) is true
(otherwise ¬SemCompa(A1, A2) is true):

– if a ∈ ΣO
A1
∧ PreΨA1/A2

(a) ⇒ PreΨA2/A1
(a) ∧ PostΨA2/A1

(a) ⇒ PostΨA1/A2
(a),

– if a ∈ ΣI
A1
∧ PreΨA2/A1

(a) ⇒ PreΨA1/A2
(a) ∧ PostΨA1/A2

(a) ⇒ PostΨA2/A1
(a).

Definition 4 (Synchronized product ⊗) Given two composable interface au-
tomata A1 and A2, the synchronized product A1 ⊗ A2 of A1 and A2 is defined
by:

S. Chouali et al.

– SA1⊗A2
= SA1

× SA2
and iA1⊗A2

= (iA1
, iA2

); ΣI
A1⊗A2

= (ΣI
A1
∪ ΣI

A2
) \

Shared(A1, A2);
– ΣO

A1⊗A2
= (ΣO

A1
∪ ΣO

A2
) \ Shared(A1, A2); ΣH

A1⊗A2
= ΣH

A1
∪ ΣH

A2
∪ {a ∈

Shared(A1, A2) | SemCompa(A1, A2)};
– ((s1, s2), a, (s′1, s

′
2)) ∈ δA1⊗A2 iff

• a /∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1 ∧ s2 = s′2 or a /∈ Shared(A1, A2) ∧

(s2, a, s
′
2) ∈ δA2

∧ s1 = s′1 or a ∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1

∧
(s2, a, s

′
2) ∈ δA2 ∧ SemCompa(A1, A2);

– ΨA1⊗A1 is defined by:

• ΨA1 for a ∈ ΣA2 \ Shared(A1, A2);
• ΨA2 for a ∈ ΣA2 \ Shared(A1, A2);
• 〈PreΨA1

(a),PostΨA2
(a)〉 for a ∈ Shared(A1, A2)∩ ΣO

A1
such that SemCompa(A1, A2);

• 〈PreΨA2
(a),PostΨA1

(a)〉 for a ∈ Shared(A1, A2)∩ ΣI
A1

such that SemCompa(A1, A2);

The incompatibility between two interface automata A1 and A2 could happen
due to (i) the existence of states (s1,s2) in the product A1 ⊗ A2 such that
there exists at least one action a in Shared(A1,A2) enabled from s1 and it is
not from s2 or inversely, or (ii) the action a is enabled from s1 and s2 but
¬SemCompa(A1, A2) is valid. These states are therefore illegal in the product
A1 ⊗A2.

Definition 5 (Illegal states) The set of illegal states, denoted by Illegal(A1,A2)
⊆ SA1

×SA2
, inA1⊗A2 is defined by {(s1, s2) ∈ SA1

×SA2
| (∃ a ∈ Shared(A1, A2) |

the condition C1 ⊕ C2 is true3)}.

C1 =

(
(a ∈ ΣO

A1
(s1) ∧ a /∈ ΣI

A2
(s2)) ∨ (a ∈ ΣO

A1
(s1) ∧ a ∈ ΣI

A2
(s2)

∧¬SemCompa(A1, A2))

)

C2 =

(
(a ∈ ΣO

A2
(s2) ∧ a /∈ ΣI

A1
(s1)) ∨ (a ∈ ΣO

A2
(s2) ∧ a ∈ ΣI

A1
(s1)

∧¬SemCompa(A1, A2))

)
Reaching states in Illegal(A1, A2) is not sufficient to decide that A1 and A2

are incompatible (according to optimistic approach). Indeed, in this approach,
if there is at least one environment that requests the appropriate input actions
in A1 ⊗ A2, and allows the no reachability of illegal states, then A1 and A2

can be assembled without producing deadlocks. The composition of A1 and A2,
denoted by A1||A2, is the restriction of their product to the set of states called
compatible, denoted by Comp(A1,A2). They are the states through which the
interaction between the two components of A1 and A2 passes without having
the risk of reaching illegal states by enabling only the locally controllable actions
(input and hidden actions). The verification steps in this approach are similar to
those described in [1], except that we consider the semantics of actions during the
compatibility check by verifying the condition of semantic compatibility between
the shared actions.

3 ⊕ is XOR

Component Design and Adaptation Based on Behavioral Contracts

4 Component Behavioral Contracts and Mismatches

The definitions of component interface mismatches [5, 2, 4] are essentially due to
the reuse of components in a system design which is often harmed by mismatch
cases such as: (i) names of exchanged messages between components do not
correspond which may lead to deadlock situations, components regularly interact
on the same action names; (ii) the orderings of messages or actions in both
component protocols do not correspond; (iii) an action in a component that has
no counterpart in the other one, or correspond to more than one action.

For component behavioral contracts specified with interface automata, the
behavioral mismatch cannot be detected by applying the synchronized product
between two composable interface automata as it was defined in Definition 4,
because the case where there is no correspondence between the action names
leads to them being absent from the set of shared actions. Thus, all of mis-
matched actions are interleaved asynchronously in the product. To avoid this
constraint, our adaptation specification starts by establishing an abstract way
to denote the composition requirements. We corroborate the explicit description
of interactions between components thanks to rules. They relate the mismatched
actions used in different components which are supposed to implement some in-
teractions. Rules relate actions even if they do not really label some transitions
in the automaton as required by the optimistic approach of interface automata.

The minimal adaptor specification of two interface automata A1 and A2 is the
set of rules called a mapping. The mapping does not represent any behavioural
detail about the adaptor.

Definition 6 (Rules and Mappings) A rule α for two composable interface

automata A1 and A2, is a pair 〈L1, L2〉 ∈ (2Σ
O
A1 × 2Σ

I
A2)∪ (2Σ

I
A1 × 2Σ

O
A2)4 such

that (L1 ∪ L2)∩Shared(A1, A2) = ∅ and if |L1| > 1 (or |L2| > 1) then |L2| = 1
(or |L1|= 1);

A mapping Φ(A1, A2) for two composable interface automata A1 and A2 is
a set of rules αi, for 1 ≤ i ≤ |Φ(A1, A2)|.

According to the above definition, a rule in our approach deals with one-
to-one, many-to-one, and one-to-many correspondences between actions. More
clearly, the adaptation may in general relate either an action or a group of
actions of one automaton with one action in the other. For instance, a client
authenticates itself by sending first its user name and then a password while
the server accepts both data in a single login shot. We denote the set of the
mismatched actions by MismatchΦ(A1, A2) = {a ∈ Σext

A1
∪Σext

A2
| ∃ α ∈ Φ(A1, A2)

. a ∈ Π1(α) ∨ a ∈ Π2(α)}5.

Example 2. To illustrate the mapping relation, we define this latter between the
actions of the interface automata Client and server as described in Figure 1 by:
Φ(Client,Server) = {〈 {login}, {usr, pass}〉, 〈{finish}, {close}〉, 〈{ok}, {connected}〉
〈{req,arg}, {open}〉 }. The set Shared(A1, A2) = {error,terminate}.
4 For some set S, 2S is its power set.
5 Π1(〈a, b〉) = a and Π2(〈a, b〉) = b are respectively the projection on the first element

and the second element of the couple 〈a, b〉.

S. Chouali et al.

Given two composable interface automata A1 and A2 and a mapping Φ(A1,
A2), if Φ(A1, A2) = ∅, the adaptation of A1 and A2 has no sense and their
synchronization is defined by their product A1⊗A2 as it was defined in section 3.
Otherwise, we proceed on two steps: (i) we check first the semantic adaptability
between the mismatched actions in the mapping Φ(A1, A2). (ii)if the semantic
adaptability check was successfully made without giving rise to incompatibilities,
we generate the adaptor of A1 and A2 according to the mapping Φ(A1, A2). If
the generated adaptor is non-empty and it is compatible with both of A1 and
A2, we say that A1 and A2 are adaptable.

5 Component Adaptation

In this section we present our approach to adapt components specified with
behavioral contracts.

5.1 Semantic Adaptability

The semantic adaptability between the mismatched actions of two composable
interface automata has to be made before generating the adaptor. The mis-
matched actions have to respect some constraints at the level of their seman-
tics. Let us consider two interface automata A1 and A2 and a given mapping
Φ(A1, A2). To perform the semantic adaptability check between A1 and A2 ac-
cording to Φ(A1, A2), it is required that for each rule α = 〈L1, L2〉 ∈ Φ(A1, A2)
the following conditions hold:

1.
∑
a∈L1

| P i
a | =

∑
b∈L2

| P i
b |;

2.
∑
a∈L1

| P o
a | =

∑
b∈L2

| P o
b |;

3. if |L1| = 1 and | L2| ≥ 1 where L1 = {a}, L2 = {b1, ..., b|L2|}, and P o
a = {oa}

then there exists exactly one action bk ∈ L2 (1≤k≤ | L2 |) such that P o
bk

=
{obk}, P o

bl
= ∅ for 1≤l≤ | L2 | and l 6=k, and the two output parameters oa

and obk have to satisfy the domain inclusion condition:
– if L1 ⊆ ΣO

A1
, then Doa ⊆ Dobk

;
– else Doa ⊇ Dobk

;

θα denotes the tuple (a,bk). If P o
a = {}, (a,bk) is not defined;

4. the condition is analogous to the previous one with |L1|≥ 1 and |L2| = 1
where L1 = {a1, ..., a|L1|} and L2 = {b};

5. there exists a function ϕi
α :
⋃
a∈L1

P i
a →

⋃
b∈L2

P i
b that associates each input

parameter p of actions in L1 with an input parameter q of actions in L2.
The function ϕi

α have to satisfy the domain inclusion condition:
– if L1 ⊆ ΣO

A1
, then Dp ⊆ Dϕi

α(p)
where p ∈

⋃
a∈L1

P i
a ;

– else Dϕi
α(p)
⊆ Dp where p ∈

⋃
a∈L1

P i
a.

The first and the second conditions state that the number of input (respec-
tively output) parameters of actions in L1 is equal to the number of input (re-
spectively output) parameters of actions in L2. The third condition states the
relations between the output parameter of the action a ∈ L1 and the one of the

Component Design and Adaptation Based on Behavioral Contracts

action bk ∈ L2. We assume that the other actions in L2 \ {bk} have no output
parameters. The intuition behind these conditions is to avoid conflicts between
the pre and post-conditions during the semantic adaptability check by ensuring
the equality between the number of input and output parameters.

The renaming of the input and output parameter in the semantics of actions
in MismatchΦ(A1, A2) is defined as follows. For all a ∈ L1 and b ∈ L2, the
parameter renaming is defined by the substitution of each input parameter i of a
in PreΨA1

(a) and PostΨA1
(a) by ϕi

α(i) or the substitution of each input parameter

i′ of b in PreΨA2
(b) and PostΨA2

(b) by ϕi
α
−1

(i′)6. If the couple θα = (a, b) exists,
the parameter renaming is defined by the substitution of the output parameter oa
in PostΨA1

(a) by ob or the substitution of the output parameter ob in PostΨA2
(b)

by oa.
We denote by ΨA1/α(a) and ΨA2/α(b) respectively the semantics of actions in

Π1(α) and actions in Π2(α) after the parameter renaming.

Definition 7 (Semantic Adaptability) Given two composable interface au-
tomata A1 and A2 and an adaptation mapping Φ(A1, A2) such that the con-
ditions 1, 2, 3, 4, and 5 introduced in Section 5.1 are satisfied, the semantic
adaptability SemAdapα(A1, A2) of a rule α in Φ(A1, A2) is satisfied iff the fol-
lowing conditions are fulfilled:

1. If Π1(α) ⊆ ΣO
A1

, then
∧

a∈Π1(α)

PreΨA1/α
(a) ⇒

∧
b∈Π2(α)

PreΨA2/α
(b)

∧∧
a∈Π1(α)

PostΨA1/α
(a) ⇐

∧
b∈Π2(α)

PostΨA2/α
(b)

2. If Π1(α) ⊆ ΣI

A1
, then the condition is analogous to the previous one by

inversing the implications.

We say that A1 and A2 are semantically adaptable according to the mapping
Φ(A1, A2) if the semantic adaptability of each rule α ∈ Φ(A1, A2) holds.

The semantic adaptability conditions are stated in a similar way as the se-
mantic compatibility of the shared actions defined in Definition 3 except that
for adaptation, we treat sets of mismatched actions associated by the rules of
the mapping.

Example 3. To illustrate mismatches between actions belonging to two behav-
ioral contracts, we consider the two composable interface automata Client and
Server, that specify component behavioral contracts, shown in Figure 1 and a
mapping Φ(Client,Server) as defined in Example 2.

The mismatched actions are described and classified by the rules in Ta-
ble 1. The function ϕi

α2
is defined by {msg 7→logmsg}. The function ϕi

α4
is not

defined. The function ϕiα1
is defined by and {uname 7→username, lu 7→lengthu,

6 f −1 is the inverse function of f.

S. Chouali et al.

Table 1. The signatures of actions in MismatchΦ(Client,Server)

Client Server
α1 login(uname,passwd,lu,lp)→(exist) usr(username,lengthu)→()

pass(password,lengthp)→(exist)
α2 ok(msg)→() connected(logmsg)→()
α3 req(read)→() open(readonly,filename)→(open)

arg(file)→(status)
α4 finish()→(status) close()→(closed)

Table 2. The semantics of actions in MismatchΦ(Client,Server)

Client Server
PreΨClient(login) ≡ 1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10 PreΨServer(usr) ≡ 1 < lengthu ≤ 30
PostΨClient(login) ≡ exist = 1 ∨ exist = 0 PostΨServer(usr) ≡ true

PreΨServer(pass) ≡ 6 ≤ lengthp ≤ 10
PostΨServer(pass) ≡ exist = 1 ∨ exist = 0

PreΨClient(ok) ≡ true PreΨServer(connected) ≡ true
PostΨClient(ok) ≡ true PostΨServer(connected) ≡ true

PreΨClient(req) ≡ read = 0 ∨ read = 1 PreΨServer(open) ≡ readonly = 0 ∨ readonly = 1
PostΨClient(req) ≡ true PostΨServer(open) ≡ open = 0 ∨ open = 1
PreΨClient(arg) ≡ true
PostΨClient(arg) ≡ status = 0 ∨ status = 1

PreΨClient(finish) ≡ true PreΨServer(close) ≡ true
PostΨClient(finish) ≡ status = 0 ∨ status = 1 PostΨServer(close) ≡ closed = 0 ∨ closed = 1

passwd 7→password, lp 7→lengthp}. The function ϕi
α3

is defined by {read 7→readonly,

file 7→filename}. The function ϕi
α4

is empty. θα1
= (login,pass), θα2

is not defined,
θα3 = (arg,open), and θα4 = (finish,close). The parameters uname, passwd, user-
name, password, msg, logmsg, file, and filename are strings. The parameters lu,
lp, lengthu, lengthp, read, readonly, status, open, and closed are integers. As the
reader can conclude, the conditions to perform the semantic adaptability check
hold for all α in Φ(A1, A2):

– for all α ∈ Φ(A1, A2),
∑
a∈Π1(α)

|P i
a| =

∑
b∈Π2(α)

|P i
b| and

∑
a∈Π1(α)

|P o
a | =∑

b∈Π2(α)
|P ob |;

– the domain inclusion conditions are satisfied for θ∗ and ϕi∗ where * ∈ Φ(Client,
Server).

The semantics of the mismatched actions respectively for Client and Server
are listed in Table 2. After unifying the mismatched actions in MismatchΦ(Client,
Server), the reader can easily verify the semantic adaptability for all α in
Φ(Client, Server) holds. For example, for the rule α1,

Component Design and Adaptation Based on Behavioral Contracts

PreΨClient/α1
(login) ⇒ (PreΨServer/α1

(usr) ∧ PreΨServer/α1
(pass)) is satisfiable

((1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10) ⇒ (1 < lu ≤ 30 ∧ 6 ≤ lp ≤ 10)). Also,
PostΨClient/α1

(login) ⇐ (PostΨServer/α1
(usr) ∧ PostΨServer/α1

(pass)) is satisfiable

((exist = 1 ∨ exist = 0)⇐ (true ∧ (exist = 1 ∨ exist = 0))). We can deduce that
Client and Server are semantically adaptable according to Φ(Client,Server).

5.2 Adaptor Specification and Construction

After verifying the semantic adaptability between two composable interface au-
tomata A1 and A2 according to a mapping Φ(A1, A2), we treat in this section the
interface automaton specification and construction of their adaptor. The adaptor
must be composable with A1 and A2, and must also satisfy the mapping rules
and respect the component protocols specified by A1 and A2.

Definition 8 (Adaptor) Given two composable interface automata A1, A2,
and a mapping Φ(A1, A2), an adaptor for A1 and A2 according to the mapping
Φ(A1, A2) is an interface automaton Ad = 〈 SAd, IAd, ΣI

Ad, ΣO
Ad, ΣH

Ad, δAd 〉
such that

– ΣI
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩(ΣO

A1
∪ΣO

A2
)};

. For all a ∈ ΣI
Ad, ΨAd(a) = ΨA1(a) if a ∈ ΣO

A1
. Otherwise, ΨAd(a) =

ΨA2
(a);

– ΣO
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩(ΣI

A1
∪ΣI

A2
)};

. For all a ∈ ΣO
Ad, ΨAd(a) = ΨA1

(a) if a ∈ ΣI
A1

. Otherwise, ΨAd(a) =
ΨA2(a);

– ΣH
Ad ⊆ {ε}; in the adaptor this set represents the internal actions that do

nothing, which are associated to input/output actions in mismatched compo-
nents which are not concerned with the mapping (the adaptation);

– δAd ⊆ SAd ×ΣI
Ad ∪ΣO

Ad ∪ {ε} × SAd;
– Shared(Ad,A1) =

⋃
α∈Φ(A1,A2)

Π1(α); Shared(Ad,A2) =
⋃
α∈Φ(A1,A2)

Π2(α);

The adaptor must satisfy the following condition in order to ensure that
the mapping rules are respected, therefore the mismatch between components is
resolved.

The condition on the adaptor paths: For all execution path σ = s1a1s2a2...
siai...sn in the adaptor Ad , such that si ∈ SAd and ai ∈ ΣO

Ad ∪ ΣI
Ad, if

∃α ∈ Φ(A1, A2) such that the output actions (enabled as input in Ad) of α are
present in σ then they are succeed, in σ, by there correspondent input actions
(enabled as output in Ad).

Property 1 An adaptor Ad for two interface automata A1 and A2 according
to a mapping Φ(A1, A2) is composable with A1 and A2.

The property can be easily verified according to Definition 8. Indeed, by consid-
ering the set of actions of Ad, ΣI

Ad and ΣO
Ad, the condition of composability, as

defined in Section 4, can be easily verified with the set of actions of A1 and A2.

S. Chouali et al.

α β γ δ ε

ζηθϑι

login? usr! pass! connected?

ok!

req?arg?open!finish?

close!

login

usr

pass

req

arg

open

finish

close

connectedok

Fig. 2. The adaptor Adaptor for Client and Server

The composition of A1 and A2 is performed by synchronizing first Ad with
either A1 or A2, computing their composition according to our extended ap-
proach, and then by composing the resulting composition with the remaining
automaton. We suppose that the actions of the adaptor have the same signa-
tures and semantics as actions in MismatchΦ(A1,A2). If the composite interface
automaton A1 ‖ Ad ‖ A2 is non empty then A1 and A2 are compatible after
their adaptation at the protocol and the semantic levels.

To generate the adaptor Ad from A1, A2 , and the mapping Φ(A1, A2), we
have to explore in parallel the states and the transitions of both automata A1

and A2. For the lack of space, the details of the algorithm to perform adaptor
generation is not described in this paper, however this algorithm is the same
as our algorithm in [6] that constructs an adaptor for two composable interface
automata A1, A2, and a given non empty mapping Φ(A1, A2). In fact the con-
tribution of this paper compared to the approach in [6] is the handling of action
semantics in component adaptability thanks to the design of components with
behavioral contracts. The step for generating the interface automaton of the
adaptor comes after verifying the semantic compatibility between A1 and A2.
However in [6] we considered only the protocol level in the adaptation. So, the
algorithm is basically a loop which reads in parallel A1 and A2 and constructs
as one goes along the set of states and the set of transitions of the adaptor. The
algorithm is executed by respecting the reordering of events of both interfaces
A1 and A2. The algorithm marks and removes from the generated graph all the
fragments of paths that do not respect the condition on the adaptor paths.

The part of the algorithm that constructs the set of states and transitions
has the time complexity O(|SA1 × SA2 |.(|δA1 |+ |δA2 |)). The time complexity of
the part that removes the undesired path fragments is linear in the number of
the generated states.

Example 4. As the reader can conclude, Adaptor is composable with both Client
and Server presented in Example 1 and it satisfies all the items of Definition 8.
Our proposed algorithm in [6] generates exactly the same interface automaton
shown in Figure 2. Suppose that the semantic compatibility between the shared
actions error and terminate holds, then Adaptor is compatible with both Client
and Server. The composite interface automaton (Client ‖ Adaptor) ‖ Server is
non empty which makes Client and Server compatible after their adaptation.

Component Design and Adaptation Based on Behavioral Contracts

6 Related Work

Several techniques of adaptation show how to automatically derive adaptors in
order to eliminate mismatches between components during their interactions.
In [13], the authors propose an interesting approach based on finite state ma-
chines to adapt components specified by interfaces describing component proto-
col and action signatures. This approach deals with one-to-one relations between
actions. In [8], the authors propose the Smart Connectors approach which al-
lows the construction of adaptors using the provided and required interfaces of
the components in order to resolve partial matching problems in COTS com-
ponent acquisition. In [2], the authors have proposed a formal approach based
on calculus to generate automatically adaptors using the Prolog language. The
authors in [3] present an approach based on session types, exploited to spec-
ify component behaviors, to adapt heterogeneous components that may present
mismatching interaction behaviors. In [7], Hemer has proposed, using template
from the CARE language, to define adaptation strategies for modifying and
combing components. In [9], the authors have proposed a model of adaptors
expressed in the B formal method, allowing to define the interoperability be-
tween components. In [11] the authors introduce the concept of parameterized
contracts and a model for component interfaces, they also present algorithms
and tools for specifying and analyzing component interfaces in order to check
interoperability and to generate adapted component interfaces. In [12], the au-
thors propose to generate semi-automatically adaptors, at the protocol level, for
concurrent components that are specified with finite state machines. Another
approach that deals with the adaptation of component at the protocol level is
presented in [10]. The authors proposed an algorithmic approach for checking
whether incompatible interaction protocols of component interfaces can be made
compatible by inserting a protocol converter between them. The approaches de-
scribed above propose solutions for the component adaptation based on different
specification formalisms of component interfaces. Our approach is different from
the others, because we propose a solution to adapt particular components that
are specified by interface automata. This formalism allows to exploit optimistic
approach [1] to check to component interoperability. This adaptation approach
deals with the signature, the semantic, and the protocol levels, and deals also
with possibly complex adaptation scenarios : one-to-one and one-to-many cor-
respondences between actions.

7 Conclusion

In this paper, we proposed a formal approach for the automatic development of
component adaptors, allowing the elimination of mismatches between interacting
components. Our component interfaces are described with behavioral contracts,
which allow to handle all component facets for their adaptation, by consider-
ing component informations at levels of action signatures, their semantics, and
their protocols. So, we proposed a formal framework for component adapta-
tion, based on the following concepts: behavioral contracts, their composability,

S. Chouali et al.

their synchronization, and their semantic compatibility. Therefore we specified
these contracts with interface automata enriched by the action semantics. We
exploited the obtained formalism to adapt the interface automata approach to
verify compatibility between components specified with behavioral contracts.
When components are incompatible due to mismatches, we proposed to specify
a correspondence mapping between the mismatched actions of two components
as a first abstract specification of the adaptor. This mapping deals with one-to-
one and one-to-many correspondences between the actions. Finally, we proposed
an approach that generates the adaptor for two composable interface automata
according to a fixed mapping. The generated adaptor allows to eliminate mis-
matches at signature, semantic, and protocol levels.

References

1. Alfaro, L., Henzinger, T.A.: Interface automata. ACM Press, 9th Annual Sympo-
sium of FSE (Foundations of Software Engineering) pp. 109–120 (2001)

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74, 45–54 (2005)

3. Brogi, A., Canal, C., Pimentel, E.: Behavioural types and component adaptation.
In: Algebraic Methodology and Software Technology: 10th International Confer-
ence, AMAST 2004, volume 3116 / 2004 of LNCS. pp. 42–56. Springer-Verlag
GmbH (2004)

4. Canal, C., Murillo, J., Poizat, P.: Software adaptation. Special Issue on Software
adaptation 12(1), 9–31 (2006)

5. Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in software
composition. Proc. of FMOODS’06, LNCS 6, 63–77 (2006)

6. Chouali, S., Mouelhi, S., Mountassir, H.: Adapting component behaviours using
interface automata. IEEE Computer Society proceedings, Euromicro SEAA 2010
conference (September 2010)

7. Hemer, D.: A formal approach to component adaptation and composition. In Pro-
ceedings of the Twenty-eighth Australasian conference on Computer Science ACSC
’05 Newcastle, Australia pp. 259–266 (2005)

8. Min, H., Choi, S., Kim, S.: Using smart connectors to resolve partial matching
problems in cots component acquisition. LNCS, Springer-Verlag, Berlin, Germany
3054, 40–47 (2004)

9. Mouakher, I., Lanoix, A., Souquières, J.: Component Adaptation: Specification
and Verification. In: 11th International Workshop on Component Oriented Pro-
gramming (WCOP 2006). p. 8. ECOOP 2006, Nantes, France (07 2006)

10. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.:
Convertibility verification and converter synthesis: two faces of the same coin
[ip block interfaces]. In: IEEE/ACM ICCAD 2002. pp. 132–139 (Nov 2002).
https://doi.org/10.1109/ICCAD.2002.1167525

11. Reussner, R.: Automatic component protocol adaptation with the coconut/j tool
suite. Future Generation Computer Systems 19(5), 627–639 (2003)

12. Schmidt, H., Reussner, R.: Generating adaptors for concurrent component protocol
synchronisation. In the proceeding of the Fifth IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems pp. 213–229 (2002)

13. Yellin, D., Strom, R.: Protocol specifications and components adaptors. ACM
Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

