Skip to main content

Renovating Watts and Strogatz Random Graph Generation by a Sequential Approach

  • Conference paper
  • First Online:
  • 1527 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11233))

Abstract

Numerous data intensive applications call for generating gigantic random graphs. The Watts-Strogatz model is well noted as a fundamental, versatile yet simple random graph model. The Watts-Strogatz model simulates the “small world” phenomenon in real-world graphs that includes short average path lengths and high clustering. However, the existing algorithms for the Watts-Strogatz model are not scalable. This study proposes a sequential algorithm termed ZWS that generates exact Watts-Strogatz graphs with fewer iterations than the state-of-the-art Watts-Strogatz algorithm and therefore faster. Given the so-called edge rewiring probability p (\(0 \le p \le 1\)) of the Watts-Strogatz model and m neighbouring nodes of v nodes, ZWS needs \(p \times m \times v\) random decisions while the state-of-the-art Watts-Strogatz algorithm needs \(m \times v\), such that for large graphs with small probability, ZWS is able to generate Watts-Strogatz graphs with substantially less iterations. However, the less iterations in ZWS requires complex computation which avoids ZWS to achieve its full practical speedup. Therefore, we further improve our solution as PreZWS that enhances ZWS algorithm through pre-computation techniques to substantially speedup the overall generation process practically. Extensive experiments show the efficiency and effectiveness of the proposed scheme, e.g., PreZWS yields average speedup of 2 times over the state-of-the-art algorithm on a single machine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alam, M., Khan, M., Marathe, M.: Distributed-memory parallel algorithms for generating massive scale-free networks using preferential attachment model. In: HPC (2013)

    Google Scholar 

  2. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71(3), 036113 (2005)

    Article  Google Scholar 

  3. Bollobas, B.: Random graphs, 2nd edn. Academic Press (2001)

    Google Scholar 

  4. Broder, A.Z., et al.: Graph structure in the web. Comput. Netw. 33(1–6), 309–320 (2000)

    Article  Google Scholar 

  5. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012)

    Article  Google Scholar 

  6. Crisóstomo, S., Schilcher, U., Bettstetter, C., Barros, J.: Analysis of probabilistic flooding: how do we choose the right coin. In: IEEE ICC (2009)

    Google Scholar 

  7. Erdös, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen), vol. 6, pp. 290–297 (1959)

    Google Scholar 

  8. Fowler, J.H., Dawes, C.T., Christakis, N.A.: Model of genetic variation in human social networks. PNAS 106(6), 1720–1724 (2009)

    Article  Google Scholar 

  9. Ganesh, A., Massoulié, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: INFOCOM, pp. 1455–1466 (2005)

    Google Scholar 

  10. Hadian, A., Nobari, S., Minaei-Bidgoli, B., Qu, Q.: ROLL: fast in-memory generation of gigantic scale-free networks. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 1829–1842 (2016)

    Google Scholar 

  11. Hanhijärvi, S., Garriga, G., Puolamäki, K.: Randomization techniques for graphs. In: SDM, pp. 780–791 (2009)

    Google Scholar 

  12. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: mining graph data. Mach. Learn. 50(3), 321–354 (2003)

    Article  Google Scholar 

  13. Ioannides, Y.M.: Random graphs and social networks: an economics perspective. Technical report 0518, Department of Economics, Tufts University (2005)

    Google Scholar 

  14. Kaiser, M., Martin, R., Andras, P., Young, M.P.: Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25(10), 3185–3192 (2007)

    Article  Google Scholar 

  15. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: measurements, models, and methods. In: COCOON, pp. 1–17 (1999)

    Google Scholar 

  16. Leskovec, J.: Dynamics of large networks. Ph.D. thesis, CMU (2008)

    Google Scholar 

  17. Liu, S., Qu, Q.: Dynamic collective routing using crowdsourcing data. Transp. Res. Part B Methodol. 93, 450–469 (2016)

    Article  Google Scholar 

  18. Looz, M., Staudt, C., Meyerhenke, H., Prutkin, R.: Fast generation of dynamic complex networks with underlying hyperbolic geometry. CoRR (2015)

    Google Scholar 

  19. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: SIGMETRICS, pp. 258–259 (2002)

    Article  Google Scholar 

  20. Maayan, A., Lipshtat, A., Iyengar, R., Sontag, E.: Proximity of intracellular regulatory networks to monotone systems. Syst. Biol. 2(3), 103–112 (2008)

    Google Scholar 

  21. Majumdar, S.: Application of scale free network on wireless sensor network. Ph.D. thesis, Jadavpur University (2014)

    Google Scholar 

  22. Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)

    Article  Google Scholar 

  23. McDonald, D., Waterbury, L., Knight, R., Betterton, M.: Activating and inhibiting connections in biological network dynamics. Biol. Direct 3(1), 49 (2008)

    Article  Google Scholar 

  24. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)

    Google Scholar 

  25. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. PNAS 99(Suppl 1), 2566–2572 (2002)

    Article  Google Scholar 

  26. Nobari, S., Karras, P., Pang, H., Bressan, S.: L-opacity: linkage-aware graph anonymization. In: EDBT, pp. 583–594 (2014)

    Google Scholar 

  27. Nobari, S., Lu, X., Karras, P., Bressan, S.: Fast random graph generation. In: EDBT, pp. 331–342 (2011)

    Google Scholar 

  28. Oh, S.W., et al.: A mesoscale connectome of the mouse brain. Nature 508(7495), 207–214 (2014)

    Article  Google Scholar 

  29. Pettie, S., Ramachandran, V.: Randomized minimum spanning tree algorithms using exponentially fewer random bits. ACM Trans. Algorithms 4(1), 5:1–5:27 (2008)

    Article  MathSciNet  Google Scholar 

  30. Qu, Q., Chen, C., Jensen, C.S., Skovsgaard, A.: Space-time aware behavioral topic modeling for microblog posts. IEEE Data Eng. Bull. 38(2), 58–67 (2015)

    Google Scholar 

  31. Qu, Q., Liu, S., Yang, B., Jensen, C.S.: Integrating non-spatial preferences into spatial location queries. In: SSDBM, pp. 8:1–8:12 (2014)

    Google Scholar 

  32. Qu, Q., Liu, S., Zhu, F., Jensen, C.S.: Efficient online summarization of large-scale dynamic networks. IEEE Trans. Knowl. Data Eng. 28(12), 3231–3245 (2016)

    Article  Google Scholar 

  33. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, New York (2005). https://doi.org/10.1007/978-1-4757-4145-2

    Book  Google Scholar 

  34. Rudolph-Lilith, M., Muller, L.E.: Neural graphs: small-worlds, after all? BMC Neuroscience 15(Suppl 1), O13 (2014)

    Article  Google Scholar 

  35. Song, H.F., Wang, X.J.: Simple, distance-dependent formulation of the watts-strogatz model for directed and undirected small-world networks. Phys. Rev. E 90(6), 062801 (2014)

    Article  Google Scholar 

  36. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: DOULION: counting triangles in massive graphs with a coin. In: KDD, pp. 837–846 (2009)

    Google Scholar 

  37. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Xu, X.: Quantum transport with long-range steps on Watts-strogatz networks. Int. J. Mod. Phys. C 27(2), 1650015 (2015)

    Article  MathSciNet  Google Scholar 

  39. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  40. Xu, Y., Liu, P., Li, X.: Discovering the influences of complex network effects on recovering large scale multiagent systems. Sci. World J. (2014)

    Google Scholar 

  41. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  42. Zhou, F., Qu, Q., Toivonen, H.: Summarisation of weighted networks. J. Exp. Theor. Artif. Intell. 29(5), 1023–1052 (2017)

    Article  Google Scholar 

  43. Zhu, F., Zhang, Z., Qu, Q.: A direct mining approach to efficient constrained graph pattern discovery. In: SIGMOD, pp. 821–832 (2013)

    Google Scholar 

  44. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.S.: Mining top-k large structural patterns in a massive network. PVLDB 4(11), 807–818 (2011)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the CAS Pioneer Hundred Talents Program under grant number Y84402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nobari, S., Qu, Q., Muzammal, M., Jiang, Q. (2018). Renovating Watts and Strogatz Random Graph Generation by a Sequential Approach. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11233. Springer, Cham. https://doi.org/10.1007/978-3-030-02922-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02922-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02921-0

  • Online ISBN: 978-3-030-02922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics