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Abstract. Next generation “Smart” systems, including cyber-physical
systems like smart grid and Internet-of-Things, integrate control, com-
munication and computation to achieve stability, efficiency and robust-
ness of physical processes. While a great amount of research has gone
towards building these systems, security in the form of resilient and fault-
tolerant communications for smart grid systems is still immature. In this
paper, we propose a hybrid, distributed and decentralized (HDD) SDN
architecture for resilient Smart Systems. It provides a redundant con-
troller design for fault-tolerance and fail-over operation, as well as parallel
execution of multiple anomaly detection algorithms. Using the k-means
clustering algorithm from the machine learning literature, it is shown
that k-means can be used to produce a high accuracy (96.9 percent)
of identifying anomalies within normal traffic. Furthermore, incremental
k-means produces a slightly lower accuracy (95.6 percent) but demon-
strated an increased speed with respect to k-means and fewer CPU and
memory resources needed, indicating a possibility for scaling the system
to much larger networks.

Keywords: software defined networks, anomaly detection, machine learn-
ing, security, resilience

1 Introduction

The next-generation power grid, named the Smart Grid, has drawn the attention
of academia, industry and government agencies due to the great impact of such
systems on the distribution of power within and between various regions. These
next generation systems integrate control, communication and computation to
achieve stability, efficiency and robustness of the physical processes. While a
great amount of research has addressed these objectives, science and technology
related to secure SG communications is still relatively immature. Additionally,
many critical cyber-physical infrastructures are increasing dependency of con-
trol of physical processes on communication networks, thus becoming exposed
to various cyber-threats or faulty operation. An example is the network of smart



Fig. 1. Distributed PMUs in the Smart Grid. The distributed PMUs form a com-
munication network, where smart grid data is regularly exchanged with other PMUs
to coordinate and analyze energy performance measures. If a PMU subsystem is at-
tacked or fails, the communication of invalid data may introduce substantial errors
when exchanged with the other connected PMU subsystems.

grid subsystems shown in Figure 1. The smart grid subsystems are local agents,
composed of Distributed Energy Storage Systems (DESS), such as flywheels and
grid-connected batteries, a Synchronous Generator, a Phasor Measurement Unit
(PMU) and a Distributed State Estimator (DSE). The PMUs in the smart grid
form a communication network, where smart grid data is regularly exchanged
with other PMUs to coordinate and analyze energy performance measures. In the
attack model considered, a PMU subsystem may be attacked in order to disable
it or to inject faulty data; or a PMU element may fail, generating faulty data as a
result of the failure. If a PMU subsystem is attacked or fails, the communication
of invalid data may introduce substantial errors when exchanged with the other
connected PMU subsystems, creating an avalanche effect. We propose to secure
the PMU subsystem network by introducing a hybrid distributed and decen-
tralized (HDD) software-defined network (SDN). The HDD-SDN architecture
will leverage data and statistics from PMU communications to gain situational
awareness and will provide machine intelligence to detect and protect against ab-
normal network behavior within the distributed PMU communication network.
SDN is a networking paradigm in which the forwarding hardware is decoupled
from the control decisions. The network intelligence is logically centralized in
software-based controllers (the control plane), and the network devices become
simple packet forwarding devices (the data plane) that can be programmed via
an open interface [1]. The controller is the only source responsible for determin-
ing routing paths, developing policies, partitioning the network, as well as other
network administrative functionality. The traditional SDN operation is a cen-
tralized, global controller. While the centralized approach does strengthen the
capability of the controller to manage the entire network, it is well known that
a centralized approach also creates a vulnerability for a single point of failure.
This is a significant barrier to using SDN for large-scale cyber-physical networks.
New approaches must ensure that SDN controllers are fault tolerant on a larger
scale and retain the advantages of the centralized perspective (global view) even
while the implementation takes a distributed approach.



1.1 Related Work and Contributions of This Work

To this point, there has been limited research on SDN for monitoring of smart
grid communications. Previously, SDN for Smart Grid has been proposed us-
ing centralized, non-real-time network monitoring and control. For example, the
work of [2], presents a self-healing PMU smart grid network using SDN. When
a cyber-attack takes place on a PMU then that node is isolated and reconfig-
ured to a previous stable state. These works do not consider cyber-attacks on
the centralized SDN architecture itself nor the restoration and reconfiguration of
the SDN controllers in a distributed SDN design. Very recently, distributed SDN
(D-SDN) solutions have been proposed for specific categories of Smart Grid, in-
cluding (PEVs) [3]. A few works proposed a distributed architecture for cyber-
security [4].The work in [5], provides detailed insights on various approaches for
developing a distributed SDN architecture.

Our proposed HDD-SDN is a real-time, distributed approach that uses cur-
rent information available at the PMUs and can respond in real-time to failures
and attacks. HDD-SDN analyzes traffic flow as well as smart grid measurement
data and use machine learning techniques to identify, fix, and then attempt to
prevent similar cyber-attacks, while continuing to detect anomalous behavior in
the future. Our work will leverage the physically distributed controller approach
described in [5] and employs machine intelligence-based anomalous flow detec-
tion to increase resilience of smart grid systems as well as the underlying SDN
communication network.

The rest of the paper is divided as follows. Section 2 introduces the hybrid
distributed and decentralized controller software-defined network architecture
for smart grid systems. Section 3 describes the execution of multiple anomaly
detection algorithms to be able to maintain reliability while reducing latency and
CPU/memory use. Section 4 provides the experimental setup, a combination of
Smart Grid test bed and SDN network simulation. Section 4 also provides results
on the machine learning clustering algorithms that were evaluated for anomaly
detection in network traffic and generated PMU data. Finally, Section 5 provides
conclusions and future work.

2 Network Architecture

As mentioned previously, Figure 1 shows an example application for the HDD-
SDN architecture, namely the control and monitoring of PMU communications
in a smart grid system. The problem of protecting and controlling the power grid
is reduced into simpler, more tractable engineering problems by subdividing the
power system into small regions or zones. For example, a fault in a transmission
line or a fault in the control of the power output of a generator are problems
solved locally by monitoring the variables measured by local sensors. The pro-
liferation of the fault comes when data exchange begins between the local PMU
and other PMUs.

The proposed HDD-SDN architecture is shown in Figure 2. The network con-
sists of a collection of sub-regions, which can represent the PMU sub-systems



Fig. 2. Distributed SDN Architec-
ture and Store

Fig. 3. Sub-Region Operations - De-
centralized Controller Architecture

within the smart grid architecture. In the hierarchical architecture, multiple
controllers share their sub-region network topology and state information with
their neighbors in the distributed system. This is accomplished using the dis-
tributed store function of the open-source network operating system ONOS [6].
The distributed store provides a global view of the entire networking system, and
ensures sub-systems are performing as efficiently as possible. Each controller is
responsible for managing the nodes under its sub-region/domain, and for updat-
ing important information from their sub-region to the distributed system. In
this sense, the controllers are connected in a mesh using a specific TCP port for
interactions and using keep-alive messages to monitor each controller’s status.
Consistency levels among the users can be ”strongly consistent”, which in ONOS
indicates frequent updates of network topology state to the distributed stores
using the RAFT protocol, or ”eventually consistent”, which implies less frequent
updates using the Anti-Entropy protocol [7]. In the case of this project, we use an
”eventually consistent” model for updating the distributed store of anomalous
behavior taking place in a region. More information about the types of stores
used in ONOS can be found here: [7]. Multiple controller support, introduced in
OpenFlow 1.2 [8], allows a switch to connect to multiple controllers simultane-
ously. Each controller has either a MASTER role, EQUAL role, or a SLAVE role
to each switch in the network. Next, we describe the decentralized approach that
provides the SDN and Smart Grid network with additional benefits compared
to a centralized strategy.

2.1 Decentralized SDN Architecture

The sub-region operation for the proposed HDD-SDN architecture is shown in
Figure 3. Child controllers are placed in each sub-region to monitor data and con-
trol planes. This provides a redundant, decentralized SDN architecture for each
sub-region. The primary tasks of the child controller are to intercept: (1) network
data packets relayed in the data plane between PMU devices, and (2) network
control packets transmitted from the parent controller to the PMU’s switching
devices. The child controller cannot make changes to the network it is monitor-
ing. It is only allowed to communicate with the distributed store (hierarchical



Fig. 4. Decentralized Sub-Regional Architecture Details

distributed controller cluster) if its parent controller demonstrates anomalous
behavior to the network. If this condition is detected, the child controller can
flag the parent’s anomalous behavior and relay the indication to its neighbor-
ing parent controllers. A neighbor parent controller can then take control of the
affected sub-region, and the faulty controller can be reconfigured.

The proposed approach also allows the parent controller to offload security
features, such as firewalls, deep packet inspection (DPI), or anomaly detection
techniques to the child controller, since the logical decentralized child controller
can be aware of all statistics in the network. Delegating jobs to separate con-
trollers releases the burden placed on one controller, and allows room for nu-
merous possibilities for managing or reconfiguring the network. Further details
about the parent and child controller roles and operation are shown in Figure 4
and described below. We depend on network statistics from the entire system to
identify anomalous behavior, including (1) anomalous behavior in the network
traffic and payload content, i.e. control data sent between the SDN controller
and PMU devices, network data with current and voltages reading exchanged
between PMU devices and a state estimator, (2) anomalous behavior in topology
changes, i.e. additional node changes within the network, such as new addition
of external nodes and unwanted changes within network configurations; and (3)
a variety of network performance changes, i.e broken links, lost connections, and
performance decreases.

2.2 Parent Controller

Efficient resource allocation and management takes place on the parent con-
troller to provide congestion control, load balancing, and traffic engineering for
the smart grid and to distribute the computation load among the PMUs. The
parent controller is also responsible for reconfiguring the network when the child
controller demonstrates anomalous behavior in the system. The parent controller
interacts with the devices in the region using the Openflow protocol for updat-



Fig. 5. Example Flow Diagram of Applications in Child Controller

ing flows, while simple network management protocol (SNMP) and NETCONF
are used for gaining statistical information and reconfiguring devices when nec-
essary. Each parent controller of each sub-region allocates enough memory to
store the network states of their neighboring regions, allowing for each controller
to monitor the network performance of the neighboring regions.

2.3 Child Controller

As stated previously, the child controller has no ability to change topological
information of the region. Its sole purpose is monitoring the status and perfor-
mance of the parent controller and the devices that form the sub-regions network
using management protocols like SNMP, and NETCONF for retrieving informa-
tion of the system. As indicated in Figure 2, the child controller contains a few
security applications specifically for determining anomalies of the packets sent
in the control or data plane. The anomaly detection (AD) module uses a combi-
nation of machine learning algorithms for clustering different types of network
traffic and payload data, and an identification dictionary (IDD) module. The
decentralized architecture grants use of multiple anomaly detection algorithms
in parallel, without greatly increasing the CPU and memory usage, as it would
if management and anomaly detection were executed on a centralized controller.

Feature Scaling and Preprocessing The application flow of the child controller
is described in Figure 5. Preprocessing features is a standard step for imple-
menting machine learning algorithms for anomaly detection [9]. However, while
most techniques attempt to normalized a wide range of different features into a
standard range of 0 to 1 [9], in this approach, we increased the scaling factor by
1000 while incrementing through the columns. This granted a substantial change
in the calculation of centers when certain features are present and allowed the
clustering algorithm to better distinguish between different cluster groups.



3 Anomaly Detection in the HDD-SDN Child Controller

Various machine learning techniques can be implemented in parallel to detect
anomalous behavior. A commonly used clustering algorithm, k-means, is imple-
mented, along side a sparse clustering extension called incremental k-means [10].
The k-means algorithm clusters data points by alternatively assigning data
points to clusters and updating cluster representatives. Data points are assigned
to the cluster in which they have the minimum Euclidean distance to cluster
centers computed using Equation 1:

d(pn, ck) =

(
D∑

d=1

(pn − ck)2

)1/2

(1)

where pn = [p1, p2, . . . , pD] ∈ RD is a D dimensional vector containing the fea-
tures associated with the nth data point (in our case, a network packet) and
ck = [c1, c2, . . . , dD] ∈ RD is a D dimensional vector of the kth cluster repre-
sentative. Cluster representatives are using the vector mean of the data points
assigned to that cluster. Since the k-means algorithm requires repeated pair-wise
distance computations between each data point and each cluster representative,
the computational load is significant for large data sets. Incremental k-means is a
k-means approximation that is applicable to large scale sparse dynamic datasets
(such as network traffic). During each iteration, the standard k-means algorithm
uses the entire dataset for recalculating cluster centers. In contrast, Incremental
k-means updates the previous centers with only newly input data [10].

The k-means approach and its extensions have an obvious limitation in that
the number of clusters must be known before executing the algorithm. However,
the number of clusters are rarely known in advance, particularly for dynamic
datasets containing anomalies. Cluster validity metrics are one mechanism to
address this issue. Cluster validity metrics provide a quantitative measure of
clustering effectiveness for a particular data set. Thus, a data set can be repeat-
edly clustered with a different number of clusters and, then, each result evaluated
using a validity metric to determine the appropriate number of clusters. Valid-
ity metrics appropriate for the k-means algorithm include Dunn’s index and the
Davies-Bouldin index [11, 12]. A draw-back of this potential approach is the need
to repeatedly cluster the data using a different number of clusters each time. Al-
ternatively, the number of clusters can be adapted in real time with incoming
data by generating new clusters when data points appear that are far from all
current cluster representatives (similar to approaches used to generate new clus-
ters in Dirichlet Process Mixture Modeling) [13]. These new clusters could then
be evaluated and tagged as corresponding to anomalous behaviors when appro-
priate. When anomalous behavior is identified, short-term mitigation techniques
can take place for a quick response to the problem. For example, a firewall can
be activated on an infected IP address.



Identification and Detection Dictionary in the HDD-SDN Child Con-
troller Figure 4 also shows the Identification and Detection Dictionary (IDD)
process in the Child Controller. The IDD uses a simple logical algorithm for
comparing extracted features from the anomalous traffic to features associated
with different types of cyber-attacks as identified during a training phase. Dif-
ferent types of cyber-attacks affect different features of network traffic. If the
anomalous behavior is completely different from what is stored and cannot be
identified, then the system has learned a new type of cyber-attack or a new
type of fault in the system. This information will be recorded and classified as
a new anomaly. Then it is sent to the distributed store for the other regions to
be able to take action in mitigating that type of attack or fault, or tagging re-
ported data with the current attack or fault. After an anomaly is identified, the
ONOS system can now produce long-term changes in the network configuration
to prevent future attacks of this type,such as changing flows, reconfiguring the
attacked device, rerouting around the offending sub-region, etc.

The extracted features from the anomalous traffic in a sub-region sometimes
cannot be directly used in another sub-region. Different regions may have dif-
ferent network topology and configurations. An abnormal traffic pattern in one
region may be normal in another region. We envision the child controller to be
able to develop mitigation schemes for their respective sub-domains in which
they reside. For instance if anomalous behavior is detected in sub-region 1, the
child controller (monitor controller) in that region will develop a mitigation
scheme for its sub-region only. This information is transmitted to it’s respective
parent controller to take action. The child controller will then relay information
about the type of attac, what network features were affected, feature threshold
values to be used by other child controllers in separate sub-regions. It is up to
the other sub-regions to monitor their network features and determine if they
are being changed in a similar manner. If their thresholds aren’t met then no
change will take place for the other regions. If their thresholds are met then the
child controllers of those regions will develop their own mitigation scheme to
correct the anomalous behavior.

4 Experimental Results

The proposed HDD-SDN environment was simulated in Mininet using the wire-
less devices environment. The SDN controller used was the open-source network
operating system ONOS [6]. ONOS provides a large API for users to develop
their own networking applications to meet requirements of custom networking
scenarios.

4.1 Simulation Setup

Using Mininet, we developed networking scenarios and topologies similar to re-
alistic smart grid environments. In addition, we deployed an instant virtual net-
work on a stand-alone computer and were able to expand this network by allow-
ing the connection of multiple external nodes and other computation resources,



including other PCs, mobile devices, VMs, etc. In this environment the state
estimator was the client node connected to multiple PMUs setup as servers or
client nodes.

We are developing our testbed to integrate a smart grid network emulator
called OPAL-RT to generate the smart grid information. Virtual measurements
of the smart grid emulator are taken from OPAL-RT, streamed from the server
to the clients, and analyzed by the HDD-SDN application in ONOS. Network
state information (i.e. number of devices, number of links, flow information, net-
work traffic, etc.) collected by the external SDN parent and child controllers
were stored in a database (InfluxDB, AWS, etc.) to be analyzed by an instance
AD module operating in the child controller. Any necessary network reconfigura-
tions were sent back to the parent SDN controller for the proper actions to take
place. For experimentation purposes, the cluster algorithms were trained using
the KDD CUP 1999 dataset that contains a standard set of data, which includes
a wide variety of classified intrusions emulated in a military network environ-
ment [14]. With this data we extracted key features of network traffic identical
to features which can be obtained using ONOS controller during network mon-
itoring to compare anomaly detection techniques. We simulated measurements
of the recorded and exchanged measurements by PMUs using MATLAB.

Fig. 6. Kmeans and Incremental Kmeans Confusion Matrix for Network Traffic

4.2 Performance Evaluation

For this experiment, we executed both k-means and incremental k-means for
clustering and, subsequently, anomaly detection on network traffic data and
PMU measurement data. In order to evaluate how well the network traffic was
classified, the data was separated into training and testing sets. The training
set is used to generate cluster centers for the k-means and incremental k-means
algorithms. Once the cluster centers are calculated, a label (normal or anomaly)
is manually assigned to each cluster based on the IDD approach described above.
The testing set is then added to the dataset and assigned the label of the cluster
center closest to that data point. The size of the training set was n = 194,565 (70



percent) and the size of the testing set was n = 83385 (30 percent). The results of
the classification of the network traffic are shown in Figure 6. We recorded true
positive (TP), true negative (TN), false positive (FP), and false negative (FN)
results. Using these values we calculated true positive rate, TPR (sensitivity),
true negative rate, TNR (specificity), positive predictive value PPV (precision),
negative predictive value, NPR, false positive rate FPR (fallout), false negative
rate, FNR, false discovery rate FDR, and overall accuracy, ACC, with the
inclusion of execution time, CPU and memory usage as follows:

TPR = TP/(TN + FP )

TNR = TN/(TN + FP )

PPV = TP/(TP + FP )

NPV = TN/(TN + FN)

FPR = FP/(FP + TN)

FNR = FN/(TP + FN)

FDR = FP/(TP + FP )

ACC = (TP + TN)/(TP + FP + FN + TN)

(2)

As shown in Figure 6, we observed that k-means produces a high accuracy
(96.9 percent) of identifying anomalies within network traffic. Incremental k-
means produces a slightly lower accuracy (95.6 percent), but demonstrated an
increased speed with respect to the k-means by approximately 22 seconds. For
the CPU and memory usage, k-means used more resources than incremental
kmeans. This is likely due to the fact that kmeans is a batch algorithm, using
the entire dataset during every iteration to recalculate cluster centers.

Fig. 7. Table Showing Accuracy of Anomaly Detection Algorithms for Network Traffic
and PMU Data

On the other hand, it was observed that the accuracy of anomaly detection for
the OPAL-RT generated PMU data is lower than the accuracies provided when
clustering network traffic. This is possibly because features of the PMU data are



not as readily distinguishable from each other as expected, causing a higher false
positive rating than expected. The proposed anomaly detection technique using
clustering still preserves approximately 90 percent accuracy, mostly due to the
true negative value exceeding others. It can be seen that CPU and memory usage
are much lower for this data type, due to use of fewer features when clustering.
This is a positive indicator for scaling the system to larger PMU networks.

For performance overhead, we implemented a single ONOS controller with
network management applications running on a device with the following specs:
Ubuntu OS 14.04 (64-bit), AMD A6-6310 APU processor, 3.3 GiB memory,
Java version 1.7.0 to manage a simple network consisting of 5 switches and
10 hosts. CPU usage for this system ranged from 1.3-17.3% of the device. We
predict adding an additional controller on the same device to manage the same
network will double this usage. With the ONOS system we can deploy separate
controllers as VMs operating on different servers if need be. The research in [7]
highlights the amount of increased bandwidth between decentralized controllers
communication as the number of nodes controlled is increased.

5 Conclusion and Future Work

In conclusion, the benefits of implementing an adaptive distributed and decen-
tralized SDN in place of the common networking or in place of traditional SDN
strategy has been discussed. It was shown that implementing the HDD-SDN
architecture can provide safe fail-over using redundant systems and additional
resilience in the presence of faulty or attacked data or communication nodes in
the smart grid system. The paper also evaluated the use of a combination of ma-
chine learning clustering algorithms for parallel processing of anomaly detection
and discussed potential approaches for automated determination of the number
of clusters needed. K-means produced a high accuracy for identifying anomalies
within normal traffic and incremental k-means produced a slightly lower accu-
racy with increased speed and fewer CPU and memory resources, indicating a
possibility for scaling the system to much larger networks. In future work, the
process for preprocessing of the features before executing the machine learn-
ing will be examined. In addition, we continue to develop the SDN architecture
integration with the OPAL-RT Smart Grid test bed.
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