Skip to main content

Optimization of Depth from Defocus Based on Iterative Shrinkage Thresholding Algorithm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11242))

Abstract

In solving the dynamic optimization of depth from defocus with the iterative shrinkage threshold algorithm (ISTA), the fixed iteration step decelerated the convergence efficiency of the algorithm, which led to inaccuracy of reconstructed microscopic 3D shape. Aiming at the above problems, an optimization of ISTA algorithm based on gradient estimation of acceleration operator and secant linear search (FL-ISTA) was proposed. Firstly, the acceleration operator, which consists of the linear combination of the current and previous points, was introduced to estimate the gradient and update the iteration point. Secondly, the secant linear search was used to dynamically determine the optimal iteration step, which accelerated the convergence rate of solving the dynamic optimization of depth from defocus. Experimental results of standard 500 nm grid show that compared with ISTA, FISTA and MFISTA algorithms, the efficiency of FL-ISTA algorithm was great improved and the depth from defocus decreased by 10 percentage points, which close to the scale of 500 nm grid. The experimental results indicate that FL-ISTA algorithm can effectively improve the convergence rate of solving dynamic optimization of depth from defocus and the accuracy of the reconstructed microscopic 3D shape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, C., Su, S., Matsushita, Y., et al.: Bayesian depth-from-defocus with shading constraints. IEEE Trans. Image Process. 25(2), 589–600 (2016)

    Article  MathSciNet  Google Scholar 

  2. Tao, M.W., Srinivasan, P.P., Hadap, S., et al.: Shape estimation from shaping, defocus, and correspondence using light-field angular coherence. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 546–560 (2017)

    Article  Google Scholar 

  3. Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

    Article  Google Scholar 

  4. Nayar, S.K., Watanabe, M., Noguchi, M.: Real time focus range sensor. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1186–1198 (1996)

    Article  Google Scholar 

  5. Subbarao, M., Surya, G.: Depth from defocus: a spatial domain approach. Int. J. Comput. Vis. 13(3), 271–294 (1994)

    Article  Google Scholar 

  6. Yang, J., Tian, C.P., Zhong, G.S.: Stochastic optical reconstruction microscopy and its application. J. Opt. 37(3), 44–56 (2017)

    Google Scholar 

  7. Wei, Y.J., Dong, Z.L., Wu, C.D.: Global shape reconstruction with fixed camera parameters. J. Image Graph. 15(12), 1811–1817 (2010)

    Google Scholar 

  8. Favaro, P., Soatto, S., Burger, M., et al.: Shape from defocus via diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 518–531 (2008)

    Article  Google Scholar 

  9. Favaro, P., Mennucci, A., Soatto, S.: Observing shape from defocused images. Int. J. Comput. Vis. 52(1), 25–43 (2003)

    Article  Google Scholar 

  10. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  11. Zibetti, M.V.W., Helou, E.S., Pipa, D.R.: Accelerating overrelaxed and monotone fast iterative shrinkage-thresholding algorithms with line search for sparse reconstructions. IEEE Trans. Image Process. 26(7), 3569–3578 (2017)

    MathSciNet  Google Scholar 

  12. Zibetti, M.V.W., Pipa, D.R., De Pierro, A.R.: Fast and exact unidimensional L2–L1 optimization as an accelerator for iterative reconstruction algorithms. Digit. Signal Process. 48(5), 178–187 (2016)

    Article  MathSciNet  Google Scholar 

  13. Zibulevsky, M., Elad, M.: L1-L2 optimization in signal and image processing. IEEE Signal Process. Mag. 27(3), 76–88 (2010)

    Article  Google Scholar 

  14. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Wu, Q., Liu, Y., Zheng, J. (2018). Optimization of Depth from Defocus Based on Iterative Shrinkage Thresholding Algorithm. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds) Web Information Systems and Applications. WISA 2018. Lecture Notes in Computer Science(), vol 11242. Springer, Cham. https://doi.org/10.1007/978-3-030-02934-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02934-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02933-3

  • Online ISBN: 978-3-030-02934-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics