Skip to main content

Hyperspectral Image: Fundamentals and Advances

  • Chapter
  • First Online:
Book cover Recent Advances in Computer Vision

Part of the book series: Studies in Computational Intelligence ((SCI,volume 804))

Abstract

Hyperspectral remote sensing has received considerable interest in recent years for a variety of industrial applications including urban mapping, precision agriculture, environmental monitoring, and military surveillance as well as computer vision applications. It can capture hyperspectral image (HSI) with a lager number of land-cover information. With the increasing industrial demand in using HSI, there is a must for more efficient and effective methods and data analysis techniques that can deal with the vast data volume of hyperspectral imagery. The main goal of this chapter is to provide the overview of fundamentals and advances in hyperspectral images. The hyperspectral image enhancement, denoising and restoration, classical classification techniques and the most recently popular classification algorithm are discussed with more details. Besides, the standard hyperspectral datasets used for the research purposes are covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thenkabail, P.S., Lyon, J.G.: Hyperspectral Remote Sensing of Vegetation. CRC Press (2016)

    Google Scholar 

  2. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19(1), 29–43 (2002)

    Article  Google Scholar 

  3. Pohl, C., van Genderen, J.: Remote Sensing Image Fusion: A Practical Guide. CRC Press (2016)

    Google Scholar 

  4. Deng, Y.J., Li, H.C., Pan, L., Shao, L.Y., Du, Q., Emery, W.J.: Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images. IEEE Geosci. Remote Sens. Lett. (2018)

    Google Scholar 

  5. Du, Q., Fowler, J.E.: Low-complexity principal component analysis for hyperspectral image compression. Int. J. High Perform. Comput. Appl. 22(4), 438–448 (2008)

    Article  Google Scholar 

  6. Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)

    Google Scholar 

  7. Vakalopoulou, M., Platias, C., Papadomanolaki, M., Paragios, N., Karantzalos, K.: Simultaneous registration, segmentation and change detection from multisensor, multitemporal satellite image pairs. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), pp. 1827–1830. IEEE (2016)

    Google Scholar 

  8. Ferraris, V., Dobigeon, N., Wei, Q., Chabert, M.: Detecting changes between optical images of different spatial and spectral resolutions: a fusion-based approach. IEEE Trans. Geosci. Remote Sens. 56(3), 1566–1578 (2018)

    Article  Google Scholar 

  9. ElMasry, G., Kamruzzaman, M., Sun, D.W., Allen, P.: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012)

    Article  Google Scholar 

  10. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J.: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5(4), 1121–1142 (2012)

    Article  Google Scholar 

  11. Xiong, Z., Sun, D.W., Zeng, X.A., Xie, A.: Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review. J. Food Eng. 132, 1–13 (2014)

    Article  Google Scholar 

  12. Kerekes, J.P., Schott, J.R.: Hyperspectral imaging systems. Hyperspectral Data Exploit. Theory Appl. 19–45 (2007)

    Google Scholar 

  13. Liang, H.: Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 106(2), 309–323 (2012)

    Article  Google Scholar 

  14. Fischer, C., Kakoulli, I.: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud. Conserv. 51, 3–16 (2006)

    Article  Google Scholar 

  15. Du, Q., Yang, H.: Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5(4), 564–568 (2008)

    Article  Google Scholar 

  16. Chang, N.B., Vannah, B., Yang, Y.J.: Comparative sensor fusion between hyperspectral and multispectral satellite sensors for monitoring microcystin distribution in lake erie. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2426–2442 (2014)

    Article  Google Scholar 

  17. Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  18. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  19. Bhabatosh, C., et al.: Digital Image Processing and Analysis. PHI Learning Pvt, Ltd (2011)

    Google Scholar 

  20. Bankman, I.: Handbook of Medical Image Processing and Analysis. Elsevier (2008)

    Google Scholar 

  21. Bendoumi, M.A., He, M., Mei, S.: Hyperspectral image resolution enhancement using high-resolution multispectral image based on spectral unmixing. IEEE Trans. Geosci. Remote Sens. 52(10), 6574–6583 (2014)

    Article  Google Scholar 

  22. Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)

    Article  Google Scholar 

  23. Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011(1), 79 (2011)

    Article  Google Scholar 

  24. Eismann, M.T., Hardie, R.C.: Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 43(3), 455–465 (2005)

    Article  Google Scholar 

  25. Yokoya, N., Grohnfeldt, C., Chanussot, J.: Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 5(2), 29–56 (2017)

    Article  Google Scholar 

  26. Ghasrodashti, E.K., Karami, A., Heylen, R., Scheunders, P.: Spatial resolution enhancement of hyperspectral images using spectral unmixing and Bayesian sparse representation. Remote Sens. 9(6), 541 (2017)

    Article  Google Scholar 

  27. Sun, X., Zhang, L., Yang, H., Wu, T., Cen, Y., Guo, Y.: Enhancement of spectral resolution for remotely sensed multispectral image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 2198–2211 (2015)

    Article  Google Scholar 

  28. Zhang, Y.: Spatial resolution enhancement of hyperspectral image based on the combination of spectral mixing model and observation model. In: Image and Signal Processing for Remote Sensing XX, vol. 9244, p. 924405. International Society for Optics and Photonics (2014)

    Google Scholar 

  29. Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A., Restaino, R., Wald, L.: A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 53(5), 2565–2586 (2015)

    Article  Google Scholar 

  30. Loncan, L., de Almeida, L.B., Bioucas-Dias, J.M., Briottet, X., Chanussot, J., Dobigeon, N., Fabre, S., Liao, W., Licciardi, G.A., Simoes, M.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)

    Article  Google Scholar 

  31. Amolins, K., Zhang, Y., Dare, P.: Wavelet based image fusion techniques: an introduction, review and comparison. ISPRS J. Photogramm. Remote Sens. 62(4), 249–263 (2007)

    Article  Google Scholar 

  32. Fechner, T., Godlewski, G.: Optimal fusion of TV and infrared images using artificial neural networks. In: Applications and Science of Artificial Neural Networks, vol. 2492, pp. 919–926. International Society for Optics and Photonics (1995)

    Google Scholar 

  33. Gross, H.N., Schott, J.R.: Application of spectral mixture analysis and image fusion techniques for image sharpening. Remote Sens. Environ. 63(2), 85–94 (1998)

    Article  Google Scholar 

  34. Khan, M.M., Chanussot, J., Alparone, L.: Pansharpening of hyperspectral images using spatial distortion optimization. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2853–2856. IEEE (2009)

    Google Scholar 

  35. Mianji, F.A., Zhang, Y., Gu, Y., Babakhani, A.: Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), vol. 3, pp. III–1011. IEEE (2009)

    Google Scholar 

  36. Peng, H., Rao, R.: Hyperspectral image enhancement with vector bilateral filtering. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 3713–3716. IEEE (2009)

    Google Scholar 

  37. Karoui, M.S., Deville, Y., Benhalouche, F.Z., Boukerch, I.: Hypersharpening by joint-criterion nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 55(3), 1660–1670 (2017)

    Article  Google Scholar 

  38. Qu, J., Li, Y., Dong, W.: Guided filter and principal component analysis hybrid method for hyperspectral pansharpening. J. Appl. Remote Sens. 12(1), 015003 (2018)

    Article  Google Scholar 

  39. Vivone, G., Restaino, R., Chanussot, J.: A regression-based high-pass modulation pansharpening approach. IEEE Trans. Geosci. Remote Sens. 56(2), 984–996 (2018)

    Article  MATH  Google Scholar 

  40. Wang, M., Zhang, K., Pan, X., Yang, S.: Sparse tensor neighbor embedding based pan-sharpening via N-way block pursuit. Knowl.-Based Syst. 149, 18–33 (2018)

    Article  Google Scholar 

  41. Yuan, Q., Wei, Y., Meng, X., Shen, H., Zhang, L.: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 978–989 (2018)

    Article  Google Scholar 

  42. Yang, J., Zhao, Y.Q., Chan, J.C.W.: Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sens. 10(5), 800 (2018)

    Article  Google Scholar 

  43. Xing, Y., Wang, M., Yang, S., Jiao, L.: Pan-sharpening via deep metric learning. ISPRS J. Photogramm. Remote Sens. (2018)

    Google Scholar 

  44. Chen, G., Qian, S.E.: Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 49(3), 973–980 (2011)

    Article  Google Scholar 

  45. Rasti, B., Sveinsson, J.R., Ulfarsson, M.O.: Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 52(10), 6688–6698 (2014)

    Article  Google Scholar 

  46. Zelinski, A., Goyal, V.: Denoising hyperspectral imagery and recovering junk bands using wavelets and sparse approximation. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 387–390. IEEE (2006)

    Google Scholar 

  47. Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral–spatial adaptive total variation model. IEEE Trans. Geosc. Remote Sens. 50(10), 3660–3677 (2012)

    Article  Google Scholar 

  48. Santhosh, S., Abinaya, N., Rashmi, G., Sowmya, V., Soman, K.: A novel approach for denoising coloured remote sensing image using Legendre Fenchel transformation. In: International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–6. IEEE (2014)

    Google Scholar 

  49. Reshma, R., Sowmya, V., Soman, K.: Effect of Legendre-Fenchel denoising and SVD-based dimensionality reduction algorithm on hyperspectral image classification. Neural Comput. Appl. 29(8), 301–310 (2018)

    Article  Google Scholar 

  50. Srivatsa, S., Ajay, A., Chandni, C., Sowmya, V., Soman, K.: Application of least square denoising to improve ADMM based hyperspectral image classification. Procedia Comput. Sci. 93, 416–423 (2016)

    Article  Google Scholar 

  51. Zhong, P., Wang, R.: Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 51(4), 2260–2275 (2013)

    Article  Google Scholar 

  52. Li, Q., Li, H., Lu, Z., Lu, Q., Li, W.: Denoising of hyperspectral images employing two-phase matrix decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(9), 3742–3754 (2014)

    Article  Google Scholar 

  53. He, W., Zhang, H., Zhang, L., Shen, H.: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 54(1), 178–188 (2016)

    Article  Google Scholar 

  54. Ma, J., Li, C., Ma, Y., Wang, Z.: Hyperspectral image denoising based on low-rank representation and superpixel segmentation. In: IEEE International Conference on Image Processing (ICIP), pp. 3086–3090. IEEE (2016)

    Google Scholar 

  55. Bai, X., Xu, F., Zhou, L., Xing, Y., Bai, L., Zhou, J.: Nonlocal similarity based nonnegative tucker decomposition for hyperspectral image denoising. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 701–712 (2018)

    Article  Google Scholar 

  56. Zhuang, L., Bioucas-Dias, J.M.: Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 730–742 (2018)

    Article  Google Scholar 

  57. Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. Wiley Online Library (2009)

    Google Scholar 

  58. Ang, J.C., Mirzal, A., Haron, H., Hamed, H.: Supervised, unsupervised and semi-supervised feature selection: A review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(5), 971–989 (2016)

    Article  Google Scholar 

  59. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2013)

    Article  Google Scholar 

  60. Foody, G.M., Mathur, A.: A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 42(6), 1335–1343 (2004)

    Article  Google Scholar 

  61. Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B., Plaza, A.: Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)

    Article  Google Scholar 

  62. Wang, M., Wan, Y., Ye, Z., Lai, X.: Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm. Inf. Sci. 402, 50–68 (2017)

    Article  Google Scholar 

  63. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(3), 629–640 (2011)

    Article  Google Scholar 

  64. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  65. Li, J., Bioucas-Dias, Jose, M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  66. Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Davenport, M.A., Wakin, M.B.: Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)

    Article  Google Scholar 

  70. Nikhila, H., Sowmya, V., Soman, K.: Gurls vs libsvm: performance comparison of kernel methods for hyperspectral image classification. Indian J. Sci. Technol. 8(24), 1–10 (2015)

    Google Scholar 

  71. Tacchetti, A., Mallapragada, P.S., Santoro, M., Rosasco, L.: GURLS: A Toolbox for Regularized Least Squares Learning (2012)

    Google Scholar 

  72. Soman, K., Loganathan, R., Ajay, V.: Machine Learning with SVM and Other Kernel Methods. PHI Learning Pvt. Ltd. (2009)

    Google Scholar 

  73. Soman, K., Diwakar, S., Ajay, V.: Data Mining: Theory and Practice. PHI Learning Pvt. Ltd. (2006)

    Google Scholar 

  74. Gualtieri, J., Chettri, S.R., Cromp, R., Johnson, L.: Support vector machine classifiers as applied to AVIRIS data. In: Proceedings of Eighth JPL Airborne Geoscience Workshop (1999)

    Google Scholar 

  75. Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media (2008)

    Google Scholar 

  76. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  77. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Article  Google Scholar 

  78. Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., van de Walle, R.: Hyperspectral image classification with convolutional neural networks. The 23rd ACM International Conference on Multimedia, pp. 1159–1162 (2015)

    Google Scholar 

  79. Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)

    Article  Google Scholar 

  80. Rajan, S., Ghosh, J., Crawford, M.M.: Exploiting class hierarchies for knowledge transfer in hyperspectral data. IEEE Trans. Geosci. Remote Sens. 44(11), 3408–3417 (2006)

    Article  Google Scholar 

  81. Jun, G., Ghosh, J.: Spatially adaptive semi-supervised learning with Gaussian processes for hyperspectral data analysis. Stat. Anal. Data Min. 4(4), 358–371 (2011)

    Article  MathSciNet  Google Scholar 

  82. Dópido, I., Li, J., Marpu, P.R., Plaza, A., Bioucas Dias, J.M., Benediktsson, J.A.: Semisupervised self-learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(7), 4032–4044 (2013)

    Article  Google Scholar 

  83. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  84. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sowmya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sowmya, V., Soman, K.P., Hassaballah, M. (2019). Hyperspectral Image: Fundamentals and Advances. In: Hassaballah, M., Hosny, K. (eds) Recent Advances in Computer Vision. Studies in Computational Intelligence, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-030-03000-1_16

Download citation

Publish with us

Policies and ethics