Skip to main content

Practical Metrics for Evaluating Anonymous Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11287))

Abstract

As an application of privacy-enhancing technology, anonymous networks play an important role in protecting the privacy of Internet users. Different user groups have different perspectives on the need for privacy protection, but now there is a lack of a clear evaluation of each anonymous network. Some works evaluated anonymous networks, but only focused on a part of the anonymous networks metrics rather than a comprehensive evaluation that can be of great help in designing and improving anonymous networks and can also be a reference for users’ choices. Therefore, this paper proposes a set of anonymous network evaluation metrics from the perspective of developers and users, including anonymity, anti-traceability, anti-blockade, anti-eavesdropping, robustness and usability, which can complete the comprehensive evaluation of anonymous networks. For each metric, we consider different factors and give a quantitative or qualitative method to evaluate it with a score or a level. Then we apply our metrics and methods to the most popular anonymous network Tor for evaluation. Experiments show that the metrics are effective and practical.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  2. Jens, S.: Anonymity techniques–usability tests of major anonymity networks. Fakultät Informatik, p. 49 (2009)

    Google Scholar 

  3. Fatemeh, S. et al.: Towards measuring resilience in anonymous communication networks. In: Proceedings of ACM Workshop on Privacy in the Electronic Society, pp. 95–99 (2015)

    Google Scholar 

  4. Gilles, B. et al.: Robustness guarantees for anonymity. In: Computer Security Foundations Symposium, pp. 91–106 (2010)

    Google Scholar 

  5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. J. Frankl. Inst. 239(2), 135–139 (2004)

    Google Scholar 

  6. I2P Anonymous Network. http://www.i2pproject.net. Accessed 15 May 2018

  7. Freenet. https://freenetproject.org/. Accessed 15 May 2018

  8. JAP. https://anon.inf.tu-dresden.de/index_en.html. Accessed 15 May 2018

  9. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

    Article  Google Scholar 

  10. Tor Project|Privacy. https://www.torproject.org/. Accessed 23 Nov 2017

  11. Welcome to Tor Metrics, https://metrics.torproject.org/. Last accessed 2018/5/13

  12. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_5

    Chapter  Google Scholar 

  13. Schiffner, S.: Structuring anonymity metrics. In: ACM Workshop on Digital Identity Management, pp. 55–62. ACM (2006)

    Google Scholar 

  14. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_16

    Chapter  Google Scholar 

  15. Halpern, J.Y., et al.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)

    Article  MathSciNet  Google Scholar 

  16. Edman, M., Sivrikaya, F., Yener, B.: A combinatorial approach to measuring anonymity. In: Intelligence and Security Informatics, pp. 356–363. IEEE (2007)

    Google Scholar 

  17. Backes, M., Kate, A., Meiser S, et al.: (Nothing else) MATor(s): monitoring the anonymity of Tor’s path selection. In: ACM CCS, pp. 513–524. ACM (2014)

    Google Scholar 

  18. Pries, R., Yu, W., et al.: A new replay attack against anonymous communication networks. In: IEEE International Conference on Communications, pp. 1578–1582. IEEE (2008)

    Google Scholar 

  19. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In: Third International Workshop on Privacy Enhancing Technologies, PET 2003, pp. 32–47. DBLP, Dresden (2003)

    Chapter  Google Scholar 

  20. Lars, F., Stefan, K., et al.: Measuring unlinkability revisited. In: ACM Workshop on Privacy in the Electronic Society, WPES 2008, pp. 105–110. DBLP, Alexandria (2008)

    Google Scholar 

  21. Tan, Q., Shi, J., et al.: Towards measuring unobservability in anonymous communication systems. J. Comput. Res. Dev. 52(10), 2373–2381 (2015)

    Google Scholar 

  22. Amir, H., Chad, B., Shmatikov, V.: The Parrot is dead: observing unobservable network communications. In: 2013 IEEE Symposium on Security and Privacy, pp. 65–79 (2013)

    Google Scholar 

  23. Cangialosi, F., et al.: Ting: measuring and exploiting latencies between all tor nodes. In: ACM Conference on Internet Measurement Conference, pp. 289–302. ACM (2015)

    Google Scholar 

  24. Dingledine, R., Mathewson, N.: Anonymity loves company: usability and the network effect. In: The Workshop on the Economics of Information Security, pp. 610–613 (2006)

    Google Scholar 

  25. Lee, L., Fifield, D., Malkin, N., et al.: A usability evaluation of tor launcher. Proc. Priv. Enhancing Technol. 2017(3), 90–109 (2017)

    Article  Google Scholar 

  26. Fabian, B., Goertz, F., Kunz, S., Müller, S., Nitzsche, M.: Privately Waiting – A Usability Analysis of the Tor Anonymity Network. In: Nelson, Matthew L., Shaw, Michael J., Strader, Troy J. (eds.) AMCIS 2010. LNBIP, vol. 58, pp. 63–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15141-5_6

    Chapter  Google Scholar 

  27. Chen, Z., Pu, S., Zhu, S.: Traceback technology for anonymous network. J. Comput. Res. Dev. 49, 111–117 (2012)

    Google Scholar 

  28. Tao, W., Rishab, N., et al.: Effective attacks and provable defenses for website fingerprinting. In: USENIX Security Symposium, pp. 143–157 (2014)

    Google Scholar 

  29. Kwon, A., Alsabah, M., et al.: Circuit fingerprinting attacks: passive deanonymization of tor hidden services. In: Usenix Conference on Security Symposium. USENIX, pp. 287–302 (2015)

    Google Scholar 

  30. Fifield, D., Lan, C., et al.: Blocking-resistant communication through domain fronting. Proc. Priv. Enhanc. Technol. 2015(2), 46–64 (2015)

    Article  Google Scholar 

  31. Qiyan, W., et al.: CensorSpoofer: asymmetric communication using IP spoofing for censorship-resistant web browsing. Comput. Sci. 121–132 (2012)

    Google Scholar 

  32. Amir, H., et al.: I want my voice to be heard: IP over voice-over-IP for unobservable censorship circumvention. In: NDSS (2013)

    Google Scholar 

  33. Berthold, et al.: The disadvantages of free MIX routes and how to overcome them. In: International Workshop on Designing Privacy Enhancing Technologies Design Issues in Anonymity & Unobservability, vol. 63 (s164), pp. 30–45 (2001)

    Chapter  Google Scholar 

  34. Pfitzmann, A., Hansen. M.: A terminology for talking about privacy by data minimization: anonymity. Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Management, 34 (2010)

    Google Scholar 

  35. Wang, X., Chen, S., et al.: Network flow watermarking attack on low-latency anonymous communication systems. In: IEEE Symposium on Security and Privacy, pp. 116–130 (2007)

    Google Scholar 

  36. Fu, X., Zhu, Y., Graham, B., et al.: On flow marking attacks in wireless anonymous communication networks. In: IEEE DCS, pp. 493–503. IEEE Computer Society (2005)

    Google Scholar 

  37. Houmansadr, A., Kiyavash, N., Borisov, N.: RAINBOW: a robust and invisible non-blind watermark for network flows. In: Network and Distributed System Security Symposium, NDSS 2009. DBLP, San Diego (2009)

    Google Scholar 

  38. Christensen, A.: Practical onion hacking: finding the real address of tor clients. http://packetstormsecurity.org/0610-advisories/Practical_Onion_Hacking.pdf

  39. Panchenko, A., Lanze, F., Zinnen, A., et al.: Website fingerprinting at internet scale. In: Network and Distributed System Security Symposium (2016)

    Google Scholar 

  40. Hayes, J., Danezis, G.: k-fingerprinting: a robust scalable website fingerprinting technique. In: Computer Science (2016)

    Google Scholar 

  41. Rimmer, V., Preuveneers, D., Juarez, M., et al.: Automated website fingerprinting through deep learning. In: Network and Distributed System Security Symposium (2018)

    Google Scholar 

  42. Crenshaw, A.: Darknets and hidden servers: identifying the true IP/network identity of I2P service hosts. Black Hat DC, 201(1) (2011)

    Google Scholar 

  43. Tian, G., Duan, Z., Baumeister, T., Dong, Y., et al.: A traceback attack on freenet. In: IEEE Transactions on Dependable and Secure Computing, p. 1 (2015)

    Google Scholar 

  44. Fingerprint collection system. http://fp.bestfp.top/wmg/fw/fp.html. Accessed 14 May 2018

  45. Robustness, https://en.wikipedia.org/wiki/Robustness. Last accessed 24 Nov 2017

  46. Anupam, D., et al.: Securing anonymous communication channels under the selective DoS attack. In: Conference on Financial Cryptography and Data Security, pp. 362–370 (2013)

    Google Scholar 

  47. Mittal, P., Khurshid, A., Juen, J., et al.: Stealthy traffic analysis of low-latency anonymous communication using throughput fingerprinting. In: ACM CCS, pp. 215–226 (2011)

    Google Scholar 

  48. He, G., Yang, M., Luo, J., Zhang, L.: Online identification of Tor anonymous communication traffic. J. Softw. 24(3), 540–546 (2013)

    Article  Google Scholar 

  49. Philipp, W., Pulls, T., et al: A polymorphic network protocol to circumvent censorship. In: ACM Workshop on Privacy in the Electronic Society, pp. 213–224 (2013)

    Google Scholar 

  50. Fatemeh, S., Goehring, M., Diaz, C.: Tor experimentation tools. In: 2015 IEEE Security and Privacy Workshops (SPW), pp. 206–213 (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Key Laboratory of Network Assessment Technology at Chinese Academy of Sciences and Beijing Key Laboratory of Network Security and Protection Technology, National Key Research and Development Program of China (Nos. 2016YFB0801004, 2016QY08D1602) and Foundation of Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences (CXJJ-17S049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Zhang, J., Liu, Q., Cui, X., Su, J. (2018). Practical Metrics for Evaluating Anonymous Networks. In: Liu, F., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2018. Lecture Notes in Computer Science(), vol 11287. Springer, Cham. https://doi.org/10.1007/978-3-030-03026-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03026-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03025-4

  • Online ISBN: 978-3-030-03026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics