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Abstract. Cloud computing systems are complex distributed systems
whose design is challenging for two main reasons: (1) since they are dis-
tributed systems, a correct design is very hard to achieve by testing
alone; and (2) cloud computing applications have high availability and
performance requirements; but these are hard to measure before imple-
mentation and hard to compare between different implementations. This
paper summarizes our experience in using formal specification in Maude
and model checking analysis to quickly explore the design space of a
cloud computing system to achieve a high quality design that: (1) has
verified correctness guarantees; (2) has better performance properties
than other design alternatives so explored; (3) can be achieved before an
actual implementation; and (4) can be used for both rapid prototyping
and for automatic code generation.
Keywords: specification and verification of distributed systems, cloud
computing, rewriting logic, Maude.

1 The Challenge of Cloud Computing

Cloud computing systems are used massively and need to meet high performance
requirements such as as high availability and throughput, and low latency, even
with network congestion and faults, and during software and hardware upgrades.
Furthermore, for both high availability and fault tolerance, data has to be repli-
cated. However, the CAP theorem [13] shows that it is impossible to simulta-
neously have high availability and strong consistency in replicated data stores.
This means that, depending on the application, different tradeoffs need to be
found in the design of a cloud computing system between consistency and per-
formance. For example, for a social network a weak consistency notion such as
“eventual consistency” may be acceptable in exchange for high performance,
whereas a medical information system will clearly require stronger consistency
notions, even at the cost of some losses in performance. Indeed, as explained
in [14], there is a wide spectrum of consistency models to choose from. One of
the most crucial tasks in the design of a cloud computing system is to achieve
a good balance between good performance and consistency guarantees that are
sufficient for the kinds of applications intended for the given system.

With some notable exceptions (see, e.g., [34]), in practice, cloud computing
systems are often designed and built using only informal designs and only with
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the aid of testing techniques. Also, only after a system has been for the most
part built, do experimental evaluations become possible. Since furthermore, these
distributed systems can be quite large (for example, Cassandra has about 345,000
lines of code) and fairly complex, all this means that: (i) subtle bugs can easily
pass undetected; (ii) it may not be entirely clear what consistency and correctness
guarantees can be given for the system; and (iii) it can be very costly to explore
other design alternatives, since the cost of implementing them is too high.

All this also means that there is a good opportunity for formal methods to
provide much needed analytic and predictive power for exploring cloud com-
puting system designs before they are built. However, this is also a challenge
since:

1. The formal methods employed must naturally support distributed system
design and analysis.

2. The formal notations used should be easy to understand by system designers.
Furthermore, they should be simple and concise enough to precisely capture
design ideas at a high level in specifications orders of magnitude shorter than
code. This then makes it easy to express alternative designs and to explore
the practical impact of various design choices.

3. It should be possible to analyze correctness properties, if possible automat-
ically, and to obtain counterexamples when such properties are violated.

4. Since for these systems high performance is as important as correctness, the
formal analysis methods should also be able to provide not just “yes” or
“no” answers to logical correctness questions, but also quantitative answers
to performance questions.

It is worth stressing that point (2) is of great importance: only after hav-
ing arrived at a good design is it meaningful to spend further efforts verifying
in depth its properties. To put it perhaps more sharply, the exploration of a
system’s design and that of its logical and performance properties should hap-
pen simultaneously and, once a good design has thus been identified, its formal
analysis should increase in depth. Also, all this should be done before actually
building the systems, so that: (a) costly design errors are caught as early as
possible; and (b) as much as possible is known about such a design, including its
logical correctness properties and its estimated performance, before it is built.

2 Rewriting Logic and Maude

A rewrite theory R “ pΣ,E,Rq specifies a concurrent system, whose states are
the elements of the algebraic data type TΣ{E , and whose concurrent transitions
are specified by the rewrite rules R. We have found rewriting logic particularly
well suited for specifying cloud computing systems. Such systems can be natu-
rally specified as configurations of distributed objects, often clients and servers,
which communicate with each other through message passing. The sending and
receiving of messages by such objects has a very natural formalization by means
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of simple rewrite rules. In our experience, the rewrite rule formalism is easy to
understand by network engineers and distributed system designers.

Maude [15] is a language implementing rewriting logic. Since a program in
Maude is just a rewrite theory, Maude is a very simple language. However, Maude
is both highly expressive and versatile and very high level, affording a very direct
and concise representation of the concurrent system being modeled.

Maude is also a high-performance language. For example, in a recent detailed
benchmarking of 15 well-known algebraic, functional and object-oriented lan-
guages by Hubert Garabel and his collaborators at INRIA Rhône-Alpes, Haskell
and Maude were the two languages showing the highest overall performance [19].

For the purposes of this paper, the main points to emphasize are that, once
a distributed system design has been expressed in Maude as a rewrite theory:

– Such a system design can be simulated using Maude’s frewrite command.
– Its reachability properties, including both failures of invariants and moni-

toring of consistency and other properties can be exhaustively analyzed by
breadth first search using Maude’s search command.

– Provided that the set of states reachable from a given initial state is finite,
its LTL temporal logic properties can be analyzed using Maude’s LTL model
checker [15].

– To specify the system’s real-time aspects and model check its real-time tem-
poral logic properties the Real-Time Maude language and system can be
used [35].

– Expressing the system’s probabilisitic aspects as a probabilistic rewrite theory
[1], its quantitative performance aspects can be analyzed by statistical model
checking using the PVeStA tool [2].

In all these ways, Maude supports a style of formal specification and anal-
ysis of cloud computing systems that effectively meets the challenge to formal
methods, explained in Section 1, that such systems pose. In fact, to the best of
my knowledge it seems fair to say that rewriting logic as supported by Maude
is the first formally based approach in which both correctness and performance
aspects of cloud computing systems have been systematically analyzed.

3 Specifying and Analyzing Cloud Computing Systems

The work on specifying and analyzing cloud computing systems in Maude has
focused on two main areas: (i) formal specification and analysis of cloud storage
systems; and (ii) some security aspects of cloud computing.

3.1 Formal Specification and Analysis of Cloud Storage Systems

Only a short summary of work in this area is possible here. I refer to the survey
[12], from which the summary of the work on systems (1)–(3) is drawn, for a
detailed account. My summary of (4) is based on [36], and that of (5)–(6) on
[31,30]. The cloud storage systems that have been specified and analyzed in
Maude include:
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1. Apache Cassandra [23] is an open-source industrial key-value data store
having about 345,000 lines of code that only guarantees eventual consis-
tency. To the best of our knowledge, before our work no formal specification
of Cassandra existed and, although believed to guarantee eventual consis-
tency, no verification of that property had been carried out. After studying
Cassandra’s code, we first developed a 1,000-line Maude specification with
just 20 rewrite rules [32] that captured the system’s main components, such
as data partitioning strategies, consistency levels, and timestamp policies for
ordering multiple versions of data. Standard model checking allowed us to
confirm that Cassandra does support eventual consistency and to analyze
under what conditions Cassandra can guarantee strong consistency. To also
analyze Cassandra’s performance features and those of a design alternative,
we then develop a probabilistic model of Cassandra in [27]. By modifying a
single function in our Maude model we obtained a model of our proposed
design alternative. The statistical model checking analysis of the original
Cassandra model and our alternative Cassandra-like design in PVeStA in-
dicated that the proposed design alternative did not improve Cassandra’s
performance. But this left open the question of how reliable these analyses
were. To answer this question we modified the Cassandra code to obtain
an implementation of the alternative design, and executed both the original
Cassandra code and the new system on representative workloads. These ex-
periments showed that PVeStA statistical model checking provides reliable
performance estimates.

2. Megastore [11] is a key part of Google’s cloud infrastructure. Megastore’s
trade-off between consistency and efficiency is to guarantee consistency only
for transactions that access a single entity group (e.g., “John’s email” or
“books on formal verification”). Megastore’s code is not publicly available,
and only a short high-level description has been given in [11]. To fully under-
stand the Megastore algorithms Jon Grov and Peter Ölveczky first developed
in [20] a sufficiently detailed executable formal specification of Megastore in
Real-Time Maude based on the description in [11]. This is the first publicly
available formalization and reasonably detailed description of Megastore. It
contains 56 rewrite rules, of which 37 deal with fault tolerance features.

To analyze both the correctness and the performance of Megastore’s Maude
model, two additional models were developed: (i) since in the original real-
time model only those behaviors that are possible within the given timing
parameters are analyzed, to exhaustively analyze all possible system behav-
iors irrespective of particular timing parameters, an untimed model was also
developed; and (ii) for performance estimation purposes, a real-time model in
which certain parameters, such as the messaging delays between two nodes,
are selected probabilistically according to a given probability distribution
was also developed.

Furthermore, Jon Grov had an idea on how to extend Megastore so that
it would also guarantee strong consistency for certain transactions accessing
multiple entity groups without sacrificing performance. This led to the design
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of Megastore-CGC. The key observation is that a Megastore site replicating
a set of entity groups participates in all updates of these entity groups and
should therefore be able to maintain an ordering on those updates. The idea
behind the Megastore-CGC extension is that, by making this ordering ex-
plicit, such an “ordering site” can validate transactions [21]. Since Megastore-
CGC exploits the implicit ordering of updates during Megastore commits,
it piggybacks ordering and validation onto Megastore’s commit protocol and
therefore does not require additional messages for validation and commit.
A failover protocol deals with failures of the ordering sites. Both simula-
tions (to discover performance bottlenecks) and Maude model checking were
extensively used during the development of Megastore-CGC, whose formal-
ization contains 72 rewrite rules. The performance estimated for Megastore
and Megastore-CGC using randomized simulations in Real-Time Maude in-
dicated that both system designs had about the same performance. That
is, a design with considerably stronger consistency guarantees was obtained
without sacrificing performance.

3. RAMP. Read-Atomic Multi-Partition (RAMP) transactions were proposed
by Peter Bailis et al. [10] to offer light-weight multi-partition transactions
that guarantee one of the fundamental consistency levels, namely, read atom-
icity : either all updates or no updates of a transaction are visible to other
transactions. The paper [10] gives hand proofs of correctness properties and
proposes a number of variations of RAMP without giving details. We used
Maude to: (i) check whether RAMP indeed satisfies the guaranteed prop-
erties, and (ii) develop detailed specifications of the different variations of
RAMP and check which properties they satisfy. Specifically, in [29,26] we
used reachability analysis to analyze whether the different variants of RAMP
satisfy the following properties (from [10]):

– Read atomic isolation: either all updates or no updates of a transaction
are visible to other transactions.

– Companions present : if a version is committed, then each of the version’s
sibling versions are present on their respective partitions.

– Synchronization independence: each transaction will eventually commit
or abort.

– Read your writes: a client’s writes are visible to her subsequent reads.

We analyzed these properties for our seven versions of RAMP. Our analysis
results agree with the theorems and conjectures in [10]: all versions satisfy
the above properties, except that: (i) RAMP without 2PC only satisfies
synchronization independence; and (ii) RAMP with one-phase writes does
not satisfy read-your-writes.

Furthermore, in [28] we used statistical model checking to analyze whether
the different variants of RAMP offer the expected performance (only two
of the versions were implemented by the RAMP developers for performance
analysis). Our statistical model checking performance results: (a) were con-
sistent with the experimental evaluations of the two implemented designs;
(b) were also consistent with conjectures made by the RAMP developers for
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other unimplemented designs; and (c) have uncovered some promising new
designs that seem attractive for some applications.

4. P-Store [39] P-Store is a data store that combines wide-area replication,
data partition, some fault tolerance, serializability, and limited use of atomic
multicast. It has influenced other recent data store designs that can be seen
as extensions of its design. P-Store uses atomic multicast to order concurrent
transactions and group communication for atomic commit. As pointed out
for example in [5], both atomic multicast and group communication com-
mit seem to be key building blocks in cloud storage systems. However such
features were not formalized in previous work. Indeed, Ölveczky’s paper on
P-Store [36] describes the formalization and formal analysis of P-Store in
Maude and, as part of its main contributions, specifies group communica-
tion commitment, and defines an abstract Maude model of atomic multi-
cast that allows any possible ordering of message reception consistent with
atomic multicast. Besides providing a Maude formal model of two versions of
P-Store, the work in [36] performed model checking analysis. This analysis
uncovered some significant errors in the supposedly-verified P-Store algo-
rithm, like read-only transactions never getting validated in certain cases.
One of the authors of the original P-Store paper [39] did confirm that a
nontrivial mistake had been found in their algorithm and suggested a way of
correcting the mistake. The Maude analysis of the corrected algorithm did
not find any errors. Furthermore, the analysis showed that a crucial assump-
tion was missing from the original P-Store paper, and that a key definition
was very easy to misunderstand because of how it was phrased in English.
All this showed that there is a clear need for formal specification and anal-
ysis beyond the standard prose-cum-pseudo-code descriptions and informal
correctness proofs.

5. Walter [42] is a distributed partially replicated data store providing Parallel
Snapshot Isolation (PSI), an important consistency property that offers at-
tractive performance while ensuring adequate guarantees for certain kinds of
applications. Walter is a very good opportunity for formal methods, because
no formal system specification existed at all before our work in [31], and
there was no formal (or even informal) verification that it guarantees PSI.
Furthermore, Walter is also a good stepping stone towards placing the design
of cloud-based transaction systems in a formally-based modular framework.
In this sense, Walter has been a key missing design in the spectrum, so that
its study complements and enriches the general picture that has been ob-
tained in the formal modeling and analysis studies on Cassandra, Megastore,
RAMP, P-Store, and ROLA discussed above in (1)–(4) and below on (6).
In [31] we have:

– Given in Maude the first formal executable specification of Walter.
– Formalized the SI and PSI properties and formally analyzed for the first

time whether the Walter design satisfies either of these properties. This
analysis has been achieved by: (a) providing a parametric method to
generate all initial states for given parameters; and (b) performing model
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checking analysis to verify the SI and PSI properties for all initial states
for various parameter choices. Our analysis shows that the Walter design
does indeed satisfy the PSI property for all our initial states but fails to
satisfy the SI property;

– Extended the Maude model of Walter from a rewrite theory to a prob-
abilistic rewrite theory by adding time and probability distributions for
message delays to the original specification. We then carried out a sys-
tematic statistical model checking analysis of the key performance met-
ric, transaction throughput, under a wide range of workloads. The results
of this analysis confirms that the performance estimates thus obtained
are consistent with those obtained experimentally for the Walter im-
plementation in [42]; and they furthermore provide new insights about
Walter’s performance beyond the limited ranges for which such informa-
tion was available by experimental evaluation in [42].

6. ROLA [30] is a new distributed transaction protocol that has been designed
and analyzed using Maude from the very beginning. Different applications
require negotiating the consistency vs. performance trade-offs in different
ways. The point of ROLA is to explore a specific such tradeoff not studied
before. The key issue is the required degree of consistency for a given appli-
cation, and how to meet its consistency requirements with high performance.
Cerone et al. [14] survey a hierarchy of consistency models for distributed
transaction protocols including (in increasing order of strength): (i) read
atomicity (RA): either all or none of a distributed transactions updates are
visible to another transaction (that is, there are no fractured reads); (ii)
causal consistency (CC): if transaction T2 is causally dependent on transac-
tion T1, then if another transaction sees the updates by T2, it must also see
the updates of T1 (e.g., if A posts something on a social media, and C sees
Bs comment on As post, then C must also see As original post); (iii) parallel
snapshot isolation (PSI): like CC but without lost updates; and so on, all
the way up to the well-known serializability guarantees. A key property of
transaction protocols is the prevention of lost updates (PLU). The weak-
est consistency model in [14] satisfying both RA and PLU is PSI. However,
PSI, and the already discussed Walter protocol [42] implementing PSI, also
guarantee CC. Cerone et al. conjecture that a system guaranteeing RA and
PLU without guaranteeing CC should be useful, but up to now we are not
aware of any such protocol. The point of ROLA is exactly to fill this gap:
guaranteeing RA and PLU, but not CC. Two key questions are then: (a) are
there applications needing high performance where RA plus PLU provide a
sufficient degree of consistency? and (b) can a new design meeting RA plus
PLU outperform existing designs, like Walter, meeting PSI?

Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the becoming friends transaction on social media. Bailis
et al. [9] point out that RA is crucial for this operation: If Edinson and
Neymar become friends, then Unai should not see a fractured read where
Edinson is a friend of Neymar, but Neymar is not a friend of Edinson. An
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implementation of becoming friends must obviously guarantee PLU: the new
friendship between Edinson and Neymar should not be lost. Finally, CC
could be sacrificed for the sake of performance: Assume that Dani is a friend
of Neymar. When Edinson becomes Neymar’s friend, he sees that Dani is
Neymar’s friend, and therefore also becomes a friend of Dani. The second
friendship therefore causally depends on the first one. However, it does not
seem crucial that others are aware of this causality: If Unai sees that Edin-
son and Dani are friends, then it is not necessary that he knows that (this
happened because) Edinson and Neymar are friends.
Regarding question (b), the work in [30] compared the performance of ROLA
with that of Walter. To model time and performance issues, ROLA has been
specified in Maude as a probabilistic rewrite theory. ROLAs RA and PLU
requirements were then analyzed by standard model checking disregarding
time issues. To estimate ROLAs performance, and to compare it with that
of Walter, the specification of Walter in Maude was used, and the Maude
models of both ROLA and Walter were analyzed by statistical model check-
ing analysis using the PVeStA tool. The results of this analysis showed that
ROLA outperforms Walter in all performance requirements for all read/write
transaction rates. To the best of our knowledge this is the first demonstra-
tion that, by a suitable use of formal methods, a completely new distributed
transaction protocol can be designed and thoroughly analyzed, as well as be
compared with other designs, very early on, before its implementation.

3.2 Some Security Aspects of Cloud Computing Systems

The work on using formal specification and analysis in Maude for cloud comput-
ing security is less developed than that on storage systems, but it can give a taste
for what is possible. A common theme running through both of the studies that
I summarize below is that cloud computing, while giving rise to new security
vulnerabilities, does also offer the possibility of arriving at system designs that
take advantage of cloud computing to increase system security. My summary of
(1) is based on material in [16], and that of (2) on [40,12]

1. Achieving Stable Availability in the Face of DDoS Attacks. Avail-
ability is a crucial security property for cloud-based systems. It can be
compromised by distributed Denial of Service (DDoS) attacks. In [16] two
Maude-based formal patterns (in the sense of [33]), and their combination
into the ASV+SR pattern were presented. Used in their ASV+SR combina-
tion, they can effectively defend cloud-based systems against DDoS attacks.
The key notion proposed is that of stable availability, meaning that, with
very high probability, service quality remains very close to a chosen thresh-
old, regardless of how bad the DDoS attack can get. This notion is a good
example of how cloud computing can be used to enhance security, in this
case defenses against DDoS attacks. The two most basic formal patterns
used as defenses against DDoS attacks were: (i) the Adaptive Selective Ver-
ification (ASV) pattern, which enhances a communication protocol with a
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defense mechanism, and (ii) the Server Replicator (SR) pattern, which ex-
ploits cloud computing’s flexibility to provision additional resources based
on perceived congestion. However, ASV achieves availability without sta-
bility, and SR cannot achieve stable availability at a reasonable cost. As a
main result the work in [16] shows, by statistical model checking with the
PVeStA tool, that (iii) the ASV+SR composition of both patterns yields a
new pattern which guarantees stable availability at a reasonable cost.

The key problem addressed is that DDoS defense mechanisms that help
maintaining availability can nevertheless show performance degradation as
a DDoS attack worsens. Thus, a key goal in [16] is to design DDoS security
adaptive measures that can achieve stable availability, which means that
with very high probability service quality remains very close to a chosen
constant quantity, which does not change over time, regardless of how bad
the DDoS attack can get. Cloud Computing, by offering the possibility of
dynamic resource allocation, can be used to leverage stable availability when
combined with DoS defense mechanisms.

The ASV protocol [25,3] is a well-known defense against DDoS attacks in the
typical situation that clients and attackers use a shared channel where neither
the attacker nor the client have full control over the communication channel
[25]. The ASV protocol adapts to increasingly severe DDoS attacks and
provides improved availability. However, it cannot provide stable availability.
By replicating servers one can dynamically provision more resources to adapt
to high demand situations and achieve stable availability; but the cost of
provisioned servers drastically increases in a DDoS attack situation. These
two patterns are modeled in Maude and then formally composed to obtain
the new ASV+SR pattern. As a main result the work in [16] shows, by
analyzing the quantitative properties of ASV+SR with the statistical model
checker PVeStA, that ASV+SR guarantees stable availability at a reasonable
cost. The key idea of ASV+SR is relatively easy to explain. As a DDoS attack
gets worse, ASV servers randomly drop an increasing number of messages
from clients, and honest clients increase their resending of messages based on
their perceived latency to get a server’s response. ASV ensures that messages
from honest clients will eventually get through with very high probability;
but performance is degraded. The ASV+SR protocol avoids this performance
degradation. However, much fewer additional servers need to be provisioned
than if a naive approach based only on SR were used. Actually, in ASV+SR
the threshold for provisioning new servers is itself a chosen parameter: one
can settle for a small, constant factor in performance degradation at the
expense of substantial savings in the provisioning of new servers.

2. Building a Group Key Management Service on top of ZooKeeper.
Zookeper [24] is a fault-tolerant distributed key/value data store that pro-
vides reliable distributed coordination. The work in [40] investigated whether
a useful group key management service can be built using ZooKeeper using
Maude and statistical model checking in PVeStA.
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Group key management is the management of cryptographic keys for secure
communication between multiple authorized entities. A central group key
controller can fulfill this need by: (a) authenticating/admitting authorized
users into the group, and (b) generating a group key and distributing it to au-
thorized group members [43]. In settings with a centralized group controller,
its failure can impact both group dynamics and periodic key updates, leav-
ing the group key vulnerable. This is especially significant when designing a
cloud-based group key management service, since such a service will likely
manage many groups.
The work in [40] investigated whether a fault-tolerant cloud-based group key
management service could be built by leveraging existing coordination ser-
vices commonly available in cloud infrastructures and if so, how to design
such a system. In particular, we: (a) designed a group key management ser-
vice built using Zookeeper [24], a reliable distributed coordination service
supporting Internet-scale distributed applications, (b) developed a rewriting
logic model of our design in Maude [15], based on [22], where key generation
is handled by a centralized key management server and key distribution is
offloaded to a ZooKeeper cluster and where the group controller stores its
state in ZooKeeper to enable quick recovery from failure, and (c) analyzed
our model using the PVeStA [4] statistical model checking tool. The analysis
centered on two key questions: (1) can a ZooKeeper-based group key man-
agement service handle faults more reliably than a traditional centralized
group key manager, and (2) can it scale to a large number of concurrent
clients with a low enough latency to be useful?
Our analysis consisted of two experiments. Both were run hundreds of times
via PVeStA and average results were collected. The first experiment was
designed to test whether saving snapshots of the group key manager’s state
in the ZooKeeper store could increase the overall reliability of the system.
In the first experiment we compared the average key manager availability
(i.e., the time it is available to distribute keys to clients) between a sin-
gle key manager and two key managers where they share a common state
saved in the ZooKeeper store. We observed an availability improvement from
65% to 85%. Our second experiment was designed to examine whether using
ZooKeeper to distribute shared keys is efficient and scalable enough for real-
world use. The experiment measured the variations in: (a) the percentage
of keys successfully received by group members, and (b) the key distribu-
tion latency, as increasing numbers of clients joined a group per second. We
analyzed our original model and a slightly modified model where we added
a 2 second wait time between key updates from the key manager. While
our initial experiments show that naively using ZooKeeper as a key distri-
bution agent works well, at high client join rates, the key reception rate
leveled out around 96%. This occurs because ZooKeeper can apply key up-
dates internally more quickly then clients can download them. By adding
extra latency between key updates, the ZooKeeper servers are forced to wait
enough time for the correct keys to propagate to clients, the slightly modi-
fied design achieved a 99% key reception in all cases. On the other hand, key
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distribution latency remained relatively constant, at around half a second,
regardless of the join rate because ZooKeeper can distribute keys at a much
higher rate than a key manager can update them [24].
In essence, our analysis confirmed that a scalable and fault-tolerant key-
management service can indeed be built using ZooKeeper, settling various
doubts raised about the effectiveness of ZooKeeper for key management by
an earlier, but considerably less-detailed, model and analysis [17]. This result
is not particularly surprising, especially considering that many man-hours
would be needed to optimize an actual system. More interestingly, the analy-
sis also showed that system designs may suffer from performance bottlenecks
not readily apparent in the original description—highlighting the power of
formal modeling and analysis as a method to explore the design space.

4 Limitations and Some Future Directions

One important limitation of this extended abstract is that there is no room for
a careful comparison with related work. Fortunately, a quite up to date such
comparison has been given in the survey [12], to which I refer for a discussion of
other work in this area. Two other current limitations pointing to future research
directions are: (1) the absence at the moment of full verification by theorem
proving for the systems that I have discussed; and (2) the current status of
Maude executable specifications as prototypes useful for simulation and analysis,
but not used for the moment for distributed implementations.

Regarding limitation (1), the obvious thing to say is that theorem proving
is a natural next step. I have emphasized earlier —and the various systems I
have discussed have further stressed— that perhaps the first and most valuable
service that Maude executable specifications can render to cloud computing is
not verification per se, but rather fast design exploration guided by formal anal-
ysis. It makes no sense to model check the wrong design. And, due to the labor
intensive nature of theorem proving, it makes even less sense to perform theorem
proving verification on such a wrong design, particularly since theorem provers
are not that good at finding counterexamples and, furthermore, in this area log-
ical correctness is only part of the story: performance matters quite as much.
Theorem proving is, as I said, a complementary next step: after having arrived
at a good system design and having thoroughly analyzed its logical correctness
properties —resp. its performance— by standard model checking —resp. by sta-
tistical model checking— for representative initial states, the next step is to fully
verify the systems key logical properties for all initial states by theorem prov-
ing. For Maude specifications of distributed systems, three related approaches,
one based on symbolic model checking and two based on theorem proving, seem
particularly well suited:

– The Logical Model Checking approach in [18,6,7,8] is in some sense halfway
between model checking and theorem proving: it allows full verification of
temporal logic properties for infinite-state systems and for infinite sets of
initial states.
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– The deductive verification of invariants and other safety properties by the
unification methods supported by Maude’s Invariant Analyzer tool [37,38]
is also directly relevant and can be a useful tool for verifying invariants.

– The Constructor-Based Reachability Logic for rewrite theories presented in
[41] is a third attractive alternative. Reachability logic generalizes Hoare logic
and can express many Hoare-like partial correctness properties, including
invariants. Although its tool is still under development, it has already been
applied to the deductive verification of some distributed systems.

Regarding limitation (2) there are two main things to say. First, thanks to
Maude’s support for TCP/IP sockets as built-in objects [15], Maude programs
can be easily distributed. The basic idea is that objects in a distributed sys-
tem written in Maude can be executed in different machines, with sockets used
to perform message passing communication across machines. What is needed,
however, is to make the passage from a Maude model to its distributed imple-
mentation as simple and as efficient as possible. Current, as yet unpublished,
research is advancing this direction. In particular, distributed storage systems
are among the examples we are experimenting with. Second, this direction is
particularly important to arrive at system implementations that are correct by
construction. In fact, this dovetails very nicely with the effort in overcoming
limitation (1), since all this should make it possible to generate correct by con-
struction distributed implementations from Maude-based formal specifications
of system designs that have already been submitted to both model checking and
theorem proving verification.
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29. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: Proceedings of
the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8,
2016. pp. 1700–1707. ACM (2016)
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