
ar
X

iv
:2

00
6.

14
17

7v
1

 [
cs

.G
T

]
 2

5
Ju

n
20

20

Cost Sharing Security Information with Minimal

Release Delay

Mingyu Guo, Yong Yang, and Muhammad Ali Babar

The University of Adelaide, Adelaide, Australia
{mingyu.guo,ali.babar}@adelaide.edu.au

yong.yang@student.adelaide.edu.au

Abstract. We study a cost sharing problem derived from bug bounty
programs, where agents gain utility by the amount of time they get
to enjoy the cost shared information. Once the information is provided
to an agent, it cannot be retracted. The goal, instead of maximizing
revenue, is to pick a time as early as possible, so that enough agents are
willing to cost share the information and enjoy it for a premium time
period, while other agents wait and enjoy the information for free after
a certain amount of release delay. We design a series of mechanisms with
the goal of minimizing the maximum delay and the total delay. Under
prior-free settings, our final mechanism achieves a competitive ratio of 4
in terms of maximum delay, against an undominated mechanism. Finally,
we assume some distributions of the agents’ valuations, and investigate
our mechanism’s performance in terms of expected delays.

Keywords: Mechanism design · Cost sharing · Bug bounty.

1 Introduction

The market for software vulnerabilities—also known as bugs—is a crowded one.
For those holding a serious bug to sell, there are many kinds of interested cus-
tomers: the software vendors themselves that can produce official patches, the
anonymous buyers in the black markets that boast greater reward [1], and many
others in between—such as the vulnerability brokers.

As defined by Böhme [3], by vulnerability brokers, we refer to organizations
other than software vendors that purchase vulnerabilities and produce corre-
sponding defense services (such as intrusion detection systems [8]) for their sub-
scribers. Bug bounty programs offered by vulnerability brokers provide greater
financial incentives for vulnerability sellers, as their customers could include large
corporations and government agencies that have huge budgets for security [8].
One common problem these programs have is that their subscribers are usually
charged an annual subscription fee [3], while they certainly don’t produce a con-
stant number of security updates every year, and each customer may not benefit
equally with each update—for example, an update that helps prevent a bug in
Windows operating system would be of little interest to customers that don’t

http://arxiv.org/abs/2006.14177v1

use Windows at all, though they still have to pay for the update with the fixed
subscription fee.

While this inequality can be trivially solved by designing as many subscrip-
tion levels as necessary, we are introducing a game-theoretical model for non-
profit bug bounty programs that both solves this efficiency problem and promotes
general software security.

Specifically, we study the mechanism design problem of selling one bug (in-
formation regarding it) to multiple agents. The goal is not to make a profit, but
we need the mechanism to cover the cost of the bug. All agents receive the bug
if enough payments can be collected to cover the cost. To incentivize payments,
agents who do not pay receive the bug slightly delayed. Our goal is to maxi-
mize the social welfare by minimizing the maximum and the total delay. We end
up with a mechanism that is 4-competitive against an undominated mechanism
in terms of maximum delay, and for expected delay, we conclude by discussing
the expected delay under some assumptions on the distributions of the agents’
valuations.

Although this problem we are studying is derived from bug bounty programs,
it certainly could relate to other systems. So here we define the traits that char-
acterize the problem. The service or good that is sold has unlimited supply once
funded (zero marginal cost), and cannot be retracted once given to a user. The
most common examples are information and digital goods. The agents have a
valuation function that is non-decreasing in terms of time: the earlier the agent
gets the information, the more utility she receives. And as we are designing non-
profit systems, the mechanism should be budget balanced: we charge the agents
exactly the amount needed to purchase the bug which the defense information
is derived from. Finally, we want to incentivize enough payments with long pre-
mium time periods (periods exclusively enjoyed by the paying agents). But we
also want the premium time periods to be as short as possible so that non-paying
agents can receive the information sooner, as it leads to higher social welfare.

2 Related Research

With more and more critical software vulnerabilities catching the public’s atten-
tion, there’s an increasing amount of literature on the market for vulnerabilities.
However, we failed to identify any research that shares the same problem struc-
ture or the same goal as ours, so the following work is mostly on understanding
the vulnerability market, and inspirations for future work, rather than what our
study is based on.

Regarding the vendor’s possible reluctance to accept and fix reported vul-
nerabilities responsibly, Canfield et al. [4] made quite a few recommendations on
ways to incentivize vendors to fix the software’s vulnerabilities responsibly, and
general improvement suggestions including allowing negotiations of the severity
level of discovered vulnerabilities; on the subject of how and when should bugs
be disclosed to the general public. Arora et al. [2] produced numerical simu-
lations which suggested instant disclosure of vulnerabilities to be sub-optimal.

Nizovtsev and Thursby [13], unlike others, used a game-theoretic approach to
show that full disclosure can be an equilibrium strategy, and commented on the
pressure of instant disclosure may put on vendors may have a long-term effect
that improves software quality. Also, there had been discussions on the feasibil-
ity of introducing markets for trading bugs openly [11], with some going as far
as designing revenue-maximizing mechanisms for them [6,5].

Then, when introducing new bug bounty programs, it’s quite necessary to
consider its effect outside the expected producer and consumer population. Mail-
lart et al. [10] proved that each newly launched program has a negative effect
on submissions to existing bug bounty programs, and they also analyzed the
researchers (bounty hunters) expected gains and strategies in participating in
bug bounty programs. Specifically for vulnerability brokers, Kannan et al. [9]
emphasized a caveat that a vulnerability broker (which is called a market-based
infomediary in their paper) always has incentive to leak the actual vulnerability,
as “. . . This leakage exposes nonsubscribers to attacks from the hacker. The leak-
age also serves to increase the users incentives to subscribe to the infomediary’s
service.”

Finally, we found a sorely lacking amount of literature on existing vulner-
ability brokers and the actual sellers of vulnerabilities. Although a few papers
on these topics were located [8,6,5], we did not find any detailed models or
discussions, perhaps due to the secretive nature of the cybersecurity business.

3 Model Description

We study the problem of selling one bug (with a fixed cost) to n agents. Our
goal is not to make a profit, but we need the mechanism to cover the cost of the
bug. Without loss of generality, we assume the cost of the bug is 1.

Our mechanism would generally charge a total payment of 1 from the agents
(or charge 0, in which case the bug is not sold). If the bug is sold, then we provide
the bug to all agents, including those who pay very little or do not pay at all.
There are a few reasons for this design decision:

– The main goal of this non-profit system is to promote general software secu-
rity, so we would like to have as many people protected from the vulnerability
as possible.

– Since no cost is incurred in distributing the bug once funded, the system and
the agents don’t lose anything by allowing the presence of free riders.

– In practise, providing free security information encourages more agents to
join the system. Under our cost sharing mechanism, including more agents
actually generally leads to less individual payment and increased utilities for
everyone.

To incentivize payments, if an agent has a higher valuation (is willing to pay
more), then our mechanism provides the bug information to this agent slightly
earlier. For the free riders, they receive the bug for free, except that there is a

bit of delay. Our aim is to minimize the delay (we cannot completely get rid of
the delay as it is needed for collecting payments).

We assume the bug has a life cycle of [0, 1]. Time 0 is when the sale starts.
Time 1 is when the bug reaches its end of life cycle (or when the bug becomes
public knowledge).

We use vi to denote agent i’s type. If agent i receives the bug at time t, then
her valuation equals (1− t)vi. That is, if she receives the bug at time 0, then her
valuation is simply vi. If she receives the bug at time 1, then her valuation is 0.

We use tMi (vi, v−i) and pMi (vi, v−i) to denote agent i’s allocation time and
payment, under mechanism M , when agent i reports vi and the other agents
report v−i.

1 Agent i’s utility uM
i (vi, v−i) is (1− tMi (vi, v−i))vi − pMi (vi, v−i).

We enforce three mechanism constraints in this paper: strategy-proofness,
individual rationality, and ex post budget balance. They are formally defined as
follows:

– Strategy-proofness: for any vi, v
′
i, v−i,

(1− tMi (vi, v−i))vi − pMi (vi, v−i) ≥ (1− tMi (v′i, v−i))vi − pMi (v′i, v−i)
– Individual Rationality: for any vi, v−i,

(1 − tMi (vi, v−i))vi − pMi (vi, v−i) ≥ 0
– Ex post budget balance2:

If the bug is sold, then we must have
∑

i

pMi (vi, v−i) = 1

If the bug is not sold, then we must have that for all i
pMi (vi, v−i) = 0 and tMi (vi, v−i) = 1

We study the minimization of two different mechanism design objectives. The
Max-Delay and Sum-Delay are defined as follows:

Max-Delay: max
i

tMi (vi, v−i)

Sum-Delay:

∑

i

tMi (vi, v−i)

Our setting is a single-parameter setting where Myerson’s characterization
applies.

Claim (Myerson’s Characterization [12]). Let M be a strategy-proof and indi-
vidually rational mechanism, we must have that

– For any i and v−i, t
M
i (vi, v−i) is non-increasing in vi. That is, by reporting

higher, an agent’s allocation time never becomes later.
– The agents’ payments are completely characterized by the allocation times.

That is, pMi is determined by tMi .

pMi (vi, v−i) = vi(1− tMi (vi, v−i))−

∫ vi

z=0

(1− tMi (z, v−i)) dz

1 For randomized mechanisms, the allocation times and payments are the expected
values over the random bits.

2 For randomized mechanisms, we require that for all realizations of the random bits,
the constraint holds.

The above payment characterization also implies that both the payment
pMi (vi, v−i) and the utility uM

i (vi, v−i) are non-decreasing in vi.

4 Prior-Free Settings

In this section, we focus on problem settings where we do not have the prior
distributions over the agents’ types. For both Max-Delay and Sum-Delay,
the notion of optimal mechanism is not well-defined. Given two mechanisms A
and B, mechanism A may outperform mechanism B under some type profiles,
and vice versa for some other type profiles.

We adopt the following dominance relationships for comparing mechanisms.

Definition 1. Mechanism A Max-Delay-Dominates mechanism B, if

– for every type profile, the Max-Delay under mechanism A is at most3 that
under mechanism B.

– for some type profiles, the Max-Delay under mechanism A is less than
that under mechanism B.

A mechanism is Max-Delay-Undominated, if it is not dominated by any
strategy-proof and individually rational mechanisms.

Definition 2. Mechanism A Sum-Delay-Dominates mechanism B, if

– for every type profile, the Sum-Delay under mechanism A is at most that
under mechanism B.

– for some type profiles, the Sum-Delay under mechanism A is less than that
under mechanism B.

A mechanism is Sum-Delay-Undominated, if it is not dominated by any
strategy-proof and individually rational mechanisms.

For our model, one trivial mechanism works as follows:

3 Tie-breaking detail: given a type profile, if under A, the bug is not sold (max delay
is 1), and under B, the bug is sold (the max delay happens to be also 1), then we
interpret that the max delay under A is not at most that under B.

Cost Sharing (CS)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: Yes

– Consider the following set:
K = {k | k values among the vi are at least 1/k, 1 ≤ k ≤ n}

– If K is empty, then the bug is not sold. Every agent’s allocation time is 1
and pays 0.

– If K is not empty, then the highest k∗ = maxK agents each pays 1/k∗ and
receives the bug at time 0. The other agents receive the bug at time 1 and
each pays 0.

The above mechanism is strategy-proof, individually rational, and ex post
budget balanced. Under the mechanism, k∗ agents join in the cost sharing and
their delays are 0s, but the remaining agents all have the maximum delay 1. Both
the Max-Delay and the Sum-Delay are bad when k∗ is small. One natural
improvement is as follows:

Cost Sharing with Deadline (CSD)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: No

– Set a constant deadline of 0 ≤ tC ≤ 1. Under the mechanism, an agent’s
allocation time is at most tC .

– Consider the following set:

K = {k | k values among the vi are at least
1

ktC
, 1 ≤ k ≤ n}

– If K is empty, then the bug is not sold. Every agent’s allocation time is tC
and pays 0.

– If K is not empty, then the highest k∗ = maxK agents each pays 1/k∗ and
receives the bug at time 0. The other agents receive the bug at time tC and
each pays 0.

The idea essentially is that we run the trivial cost sharing (CS) mechanism on
the time interval [0, tC], and every agent receives the time interval [tC , 1] for free.
The mechanism remains strategy-proof and individually rational. Unfortunately,
the mechanism is not ex post budget balanced—even if the cost sharing failed
(e.g., K is empty), we still need to reveal the bug to the agents at time tC for
free. If tC < 1, we have to pay the seller without collecting back any payments.

The reason we describe the CSD mechanism is because our final mechanism
uses it as a sub-component, and the way it is used fixes the budget balance issue.

Example 1. Let us consider the type profile (0.9, 0.8, 0.26, 0.26). We run the cost
sharing with deadline (CSD) mechanism using different tC values:

– If we set tC = 0.9, then agent 1 and 2 would receive the bug at time 0 and
each pays 0.5. Agent 3 and 4 pay nothing but they have to wait until time
0.9.

– If we set tC = 0.7, then agent 1 and 2 would still receive the bug at time 0
and each pays 0.5. Agent 3 and 4 pay nothing but they only need to wait
until 0.7. This is obviously better.

– If we set tC = 0.5, then all agents pay 0 and only wait until 0.5. However,
we run into budget issue in this scenario.

We need tC to be small, in order to have shorter delays. However, if tC is too
small, we have budget issues. The optimal tC value depends on the type profile.
For the above type profile, the optimal tC = 0.5

0.8 = 0.625.When tC = 0.625, agent
2 is still willing to pay 0.5 for the time interval [0, 0.625] as 0.8× 0.625 = 0.5.

Definition 3. Given a type profile (v1, v2, . . . , vn), consider the following set:

K(tC) = {k | k values among the vi are at least
1

ktC
, 1 ≤ k ≤ n}

tC is between 0 and 1. As tC becomes smaller, the set K(tC) also becomes
smaller. Let t∗C be the minimum value so that K(t∗C) is not empty. If such t∗C
does not exist (e.g., K(1) is empty), then we set t∗C = 1.

t∗C is called the optimal deadline for this type profile.

Instead of using a constant deadline, we may pick the optimal deadline for
every type profile.

Cost Sharing with Optimal Deadline (CSOD)

Strategy-proofness: No
Individual rationality: Yes

Ex post budget balance: Yes

– For every type profile, we calculate its optimal deadline.
– We run CSD using the optimal deadline.

CSOD is ex post budget balanced. If we cannot find k agents to pay 1/k
each for any k, then the optimal deadline is 1 and the cost sharing failed. That
is, we simply do not reveal the bug (choose not to buy the bug from the seller).

Unfortunately, we gained some and lost some. Due to changing deadlines,
the mechanism is not strategy-proof.

Example 2. Let us re-consider the type profile (0.9, 0.8, 0.26, 0.26). The optimal
deadline for this type profile is 0.625. By reporting truthfully, agent 2 receives
the bug at time 0 and pays 0.5. However, she can lower her type to 0.26 (the
optimal deadline is now slightly below 1). Agent 2 still receives the bug at time
0 but only pays 0.25.

Other than not being strategy-proof, under our prior-free settings, CSOD is
optimal in the following senses:

Theorem 1. Cost sharing with optimal deadline (CSOD) is both Max-Delay-

Undominated and Sum-Delay-Undominated.

Proof. We first focus on Max-Delay-Undominance. Let M be a strategy-
proof and individually rational mechanism thatMax-Delay-Dominates CSOD.
We will prove by contradiction that such a mechanism does not exist.

Let (v1, v2, . . . , vn) be an arbitrary type profile. Without loss of generality,
we assume v1 ≥ v2 ≥ . . . vn. We will show that M ’s allocations and payments
must be identical to that of CSOD for this type profile. That is, M must be
identical to CSOD, which results in a contradiction.

We first consider type profiles under which the bug is sold under CSOD. We
still denote the type profile under discussion by (v1, v2, . . . , vn). Let k∗ be the
number of agents who participate in the cost sharing under CSOD.

We construct the following type profile:

(1/k∗, . . . , 1/k∗
︸ ︷︷ ︸

k∗

, 0, . . . , 0) (1)

For the above type profile, under CSOD, the first k∗ agents receive the bug
at time 0 and each pays 1/k∗. By dominance assumption (both Max-Delay-

Dominance and Sum-Delay-Dominance), under M , the bug must also be
sold. To collect 1, the first k∗ agents must each pays 1/k∗ and must receive the
bug at time 0 due to individual rationality.

Let us then construct a slightly modified type profile:

(v1, 1/k
∗, . . . , 1/k∗

︸ ︷︷ ︸

k∗−1

, 0, . . . , 0) (2)

Since v1 ≥ 1/k∗, under M , agent 1 must still receive the bug at time 0 due
to the monotonicity constraint. Agent 1’s payment must still be 1/k∗. If the
new payment is lower, then had agent 1’s true type been 1/k∗, it is beneficial
to report v1 instead. If the new payment is higher, then agent 1 benefits by
reporting 1/k∗ instead. Agent 2 to k∗ still pay 1/k∗ and receive the bug at time
0 due to individual rationality.

We repeat the above reasoning by constructing another slightly modified type
profile:

(v1, v2, 1/k
∗, . . . , 1/k∗

︸ ︷︷ ︸

k∗−2

, 0, . . . , 0) (3)

Due to the monotonicity constraint, agent 2 still pays 1/k∗ and receives the
bug at time 0. Had agent 1 reported 1/k∗, he would receive the bug at time 0
and pay 1/k∗, so due to the monotonicity constraint, agent 1 still pays 1/k∗ and
receives the bug at time 0 under type profile (3). The rest of the agents must
be responsible for the remaining (k∗ − 2)/k∗, so they still each pays 1/k∗ and
receives the bug at time 0.

At the end, we can show that under M , for the following type profile, the
first k∗ agents each pays 1/k∗ and must receive the bug at 0.

(v1, v2, . . . , vk∗ , 0, . . . , 0) (4)

For the above type profile (4), there are n− k∗ agents reporting 0s. For such
agents, their payments must be 0 due to individual rationality. Since M Max-

Delay-Dominates
4
CSOD, these agents’ allocation time must be at most

1

k∗vk∗

, which is their allocation time under CSOD (this value is the optimal

deadline). We show that they cannot receive the bug strictly earlier than 1

k∗vk∗

under M .
Let us consider the following type profile:

(v1, v2, . . . , vk∗ ,
k∗vk∗

k∗ + 1
, . . . , 0) (5)

For type profile (5), agent k∗ + 1 must receive the bug at time 0 and pay
1/(k∗ + 1). She can actually benefit by reporting 0 instead, if under type pro-
file (4), agents reporting 0 receive the bug at 1

k∗vk∗

∗
< 1

k∗vk∗

for free.

utility for reporting truthfully =
k∗vk∗

k∗ + 1
−

1

k∗ + 1
, utility for reporting 0 =

k∗vk∗

k∗ + 1
(1−

1

k∗vk∗

∗

) >
k∗vk∗

k∗ + 1
(1−

1

k∗vk∗

) =
k∗vk∗

k∗ + 1
−

1

k∗ + 1
Therefore, for type profile (4), all agents who report 0 must receive the bug

at exactly 1

k∗vk∗

. That is, for type profile (4), M and CSOD are equivalent.
Now let us construct yet another modified type profile:

(v1, v2, . . . , vk∗ , vk∗+1, 0, . . . , 0) (6)

Here, we must have vk∗+1 < k∗vk∗

k∗+1
. Otherwise, under the original type profile,

we would have more than k∗ agents who join the cost sharing. We assume under
M , agent k∗ +1 receives the bug at time t and pays p. t is at most 1

k∗vk∗

due to
the monotonicity constraint. We have

utility when the true type is vk∗+1 and reporting truthfully = vk∗+1(1 − t)− p

utility when the true type is vk∗+1 and reporting 0 = vk∗+1(1 −
1

k∗vk∗

)

Therefore,

vk∗+1(1− t)− p ≥ vk∗+1(1−
1

k∗vk∗

) (7)

4 The claim remains true if we switch to Sum-Delay-Dominance.

Had agent k∗ + 1’s type been k∗vk∗

k∗+1
, her utility for reporting her true type

must be at least her utility when reporting vk∗+1. That is,

utility when the true type is
k∗vk∗

k∗ + 1
and reporting truthfully =

k∗vk∗

k∗ + 1
−

1

k∗ + 1

utility when the true type is
k∗vk∗

k∗ + 1
and reporting vk∗+1 =

k∗vk∗

k∗ + 1
(1− t)− p

That is,

k∗vk∗

k∗ + 1
−

1

k∗ + 1
≥

k∗vk∗

k∗ + 1
(1− t)− p (8)

Combine Equation (7), Equation (8), vk∗+1 < k∗vk∗

k∗+1
, and t ≤ 1

k∗vk∗

, we have

p = 0 and t = 1

k∗vk∗

. That is, under type profile (6), agent k∗ + 1’s allocation
and payment remain the same whether she reports 0 or vk∗+1.

Repeat the above steps, we can show that under the following arbitrary
profile, agent k∗+2 to n’s allocation and payment also remain the same as when
they report 0.

(v1, v2, . . . , vk∗ , vk∗+1, vk∗+2, . . . , vn) (9)

That is, for type profiles where the bug is sold under CSOD, M and CSOD

are equivalent.

We then consider an arbitrary type profile for which the bug is not sold under
CSOD. Due to the monotonicity constraint, an agent’s utility never decreases
when her type increases. If any agent i receives the bug at time t that is strictly
before 1 and pays p, then due to the individual rationality constraint, we have
that vi(1−t)−p ≥ 0. vi must be strictly below 1, otherwise the bug is sold under
CSOD. Had agent i’s true type been higher but still below 1 (say, to vi+ ǫ), her
utility must be positive, because she can always report vi even when her true
type is vi + ǫ. But earlier we proved that had vi’s true type been 1, she would
receive the bug at time 0 and pay 1. Her utility is 0 when her type is 1. This
means her utility decreased if we change her true type from vi + ǫ to 1, which is
a contradiction. That is, all agents must receive the bug at time 1 (and must pay
0). Therefore, for an arbitrary type profile for which the bug is not sold under
CSOD, M still behaves the same.

In the above proof, all places where we reference Max-Delay-Dominance

can be changed to Sum-Delay-Dominance. ⊓⊔

CSOD is bothMax-Delay-Undominated and Sum-Delay-Undominated,
but it is not strategy-proof. We now propose our final mechanism in this section,
which builds on CSOD. The new mechanism is strategy-proof and its delay is
within a constant factor of CSOD.5

5 That is, we fixed the strategy-proofness issue at the cost of longer delays, but it is
within a constant factor.

Group-Based Cost Sharing with Optimal Deadline (GCSOD)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: Yes

– For agent i, we flip a fair coin to randomly assign her to either the left group
or the right group.

– We calculate the optimal deadlines of both groups.
– We run CSD on both groups.
– The left group uses the optimal deadline from the right group and vice versa.

Claim. Group-based cost sharing with optimal deadline (GCSOD) is strategy-
proof, individually rational, and ex post budget balanced.

Proof. Every agent participates in a CSD so strategy-proofness and individual
rationality hold. Let DL and DR be the optimal deadlines of the left and right
groups, respectively. If DL < DR, then the left group will definitely succeed
in the cost sharing, because its optimal deadline is DL and now they face an
extended deadline. The right group will definitely fail in the cost sharing, as
they face a deadline that is earlier than the optimal one. At the end, some
agents in the left group pay and receive the bug at 0, and the remaining agents
in the left group receive the bug at time DR for free. All agents in the right
group receive the bug at time DL for free. If DL > DR, the reasoning is the
same. If DL = DR < 1, then we simply tie-break in favour of the left group. If
DL = DR = 1, then potentially both groups fail in the cost sharing, in which
case, we simply do not reveal the bug (do not buy it from the seller). ⊓⊔

Definition 4. Mechanism A is α-Max-Delay-Competitive against mecha-
nism B if for every agent i, every type profile, we have that the max delay under
A is at most α times the max delay under B.

α-Sum-Delay-Competitive is defined similarly.

Theorem 2. GCSOD is 4-Max-Delay-Competitive against CSOD under
two technical assumptions:

– No agent’s valuation for the bug exceeds the whole cost. That is, vi ≤ 1 for
all i.

– At least one agent does not participate in the cost sharing under CSOD.

There’s no way to ensure that the first assumption always holds, but it can
be argued that it at least holds in the scenarios of cost sharing serious bugs
beyond any individual’s purchasing power. The second assumption is needed only
because in the single case of everyone joining the cost sharing under CSOD, the
max delay is 0. While under GCSOD, the max delay is always greater than 0 so

it would not be competitive in this case only. And for the other assumption, as
our system would welcome as many agents as possible, it is expected that there
are always agents who don’t value a new bug very much so that they would
prefer to be free riders instead of participating in the cost sharing under CSOD.

Proof. Let us consider an arbitrary type profile that satisfies both technical
assumptions. We denote it by (v1, v2, . . . , vn). Without loss of generality, we
assume v1 ≥ v2 ≥ · · · ≥ vn. Let k∗ be the number of agents who join the cost
sharing under CSOD. The optimal deadline under CSOD is then D∗ = 1

k∗vk∗

,
which is exactly the max delay for this type profile.

Under a specific random grouping, for the set of agents from 1 to k∗, we
assume kL agents are assigned to the left group and kR = k∗ − kL agents are
assigned to the right group.

For the left group, the optimal deadline is at most 1

kLvk∗

if kL ≥ 1, which is

at most k∗

kL
D∗. When kL = 0, the optimal deadline is at most 1. Under CSOD,

since all types are at most 1, the optimal deadline D∗ is at least 1/k∗. That is,
if kL = 0, the optimal deadline of the left group is at most k∗D∗.

In summary, the optimal deadline of the left group is at most k∗

kL
D∗ if kL ≥ 1

and k∗D∗ if kL = 0. That is, the optimal deadline of the left group is at most
k∗

max{1,kL}D
∗

Similarly, the optimal deadline of the right group is at most k∗

max{1,kR}D
∗

The max delay under GCSOD is at most the worse of these two deadlines.
The ratio between the max delay under GCSOD and the max delay under
CSOD is then at most k∗

max{1,min{kL,k∗−kL}} .

We use α(k) to denote the expected ratio (expectation with regard to the
random groupings):

α(k) =
k∑

kL=0

1

2k

(
k

kL

)
k

max{1,min{kL, k − kL}}
(10)

We define β(k) = α(k)2k.

β(k) =

k∑

kL=0

(
k

kL

)
k

max{1,min{kL, k − kL}}
=

k−1∑

kL=1

(
k

kL

)
k

min{kL, k − kL}
+2k

If k is even and at least 50, then

β(k) =

k/2−1
∑

kL=1

(
k

kL

)
k

min{kL, k − kL}
+

k−1∑

kL=k/2+1

(
k

kL

)
k

min{kL, k − kL}
+ 2

(
k

k/2

)

+ 2k

= 2

k/2−1
∑

kL=1

(
k

kL

)
k

kL
+ 2

(
k

k/2

)

+ 2k

β(k) = 2

k/2−1
∑

kL=1

(
k + 1

kL + 1

)
(kL + 1)k

(k + 1)kL
+ 2

(
k

k/2

)

+ 2k

≤ 4

k/2−3
∑

kL=1

(
k + 1

kL + 1

)

+ 2

(
k + 1

k/2− 1

)
(k/2− 1)k

(k + 1)(k/2− 2)

+ 2

(
k + 1

k/2

)
(k/2)k

(k + 1)(k/2− 1)
+ 2

(
k + 1

k/2

)

+ 2k

≤ 4

k/2−3
∑

kL=1

(
k + 1

kL + 1

)

+ 2.1

(
k + 1

k/2− 1

)

+ 4.1

(
k + 1

k/2

)

+ 2k

The ratio between
(
k+1

k/2

)
and

(
k+1

k/2−1

)
is at most 1.08 when k is at least 50.

β(k) ≤ 4

k/2−3
∑

kL=1

(
k + 1

kL + 1

)

+4

(
k + 1

k/2− 1

)

+4

(
k + 1

k/2

)

+2k ≤ 4

k/2−1
∑

kL=0

(
k + 1

kL + 1

)

≤ 4×2k

We omit the similar proof when k is odd. In summary, we have α(k) ≤ 4 when
k ≥ 50. For smaller k, we numerically calculated α(k). All values are below 4. ⊓⊔

Corollary 1. GCSOD is 8-Sum-Delay-Competitive against CSOD under
two technical assumptions:

– No agent’s valuation for the bug exceeds the whole cost. That is, vi ≤ 1 for
all i.

– At least half of the agents do not participate in the cost sharing under CSOD.

Proof. Let D∗ and k∗ be the optimal deadline and the number of agents who
join the cost sharing under CSOD. The Sum-Delay of the agents under CSOD

is (n − k∗)D∗. Under GCSOD, the deadlines are at most 4D∗ according to
Theorem 2. The Sum-Delay is then at most 4D∗n. Therefore, the competitive
ratio is 4n

n−k∗
, which is at least 8 if k∗ ≤ n/2. ⊓⊔

5 Settings with Prior Distributions

In this section, we assume that there is a publicly known prior distribution
over the agents’ types. Specifically, we assume that every agent’s type is drawn
from an identical and independent distribution, whose support is [0, U]. We
still enforce the same set of mechanism constraints as before, namely, strategy-
proofness, individually rationality, and ex post budget balance. Our aim is to
minimize the expected Max-Delay or the expected Sum-Delay. Our main re-
sults are two linear programs for computing the lower bounds of expected Max-

Delay and expected Sum-Delay. We then compare the performance of CS and
GCSOD against these lower bounds.

The key idea to obtain the lower bounds is to relax the ex post budget balance
constraint to the following:

– With probability C, the bug is not sold under the optimal mechanism. C
depends on both the mechanism and the distribution.

– Every agent’s expected payment is then (1−C)/n, as the agents’ distributions
are symmetric.6

– Every agent’s expected allocation time is at least C, as the allocation time
is 1 with probability C.

We divide the support of the type distribution [0, D] into H equal segments.
We use δ to denote D/H . The i-th segment is then [(i− 1)δ, iδ]. Noting that the
agents’ distributions are symmetric, we do not need to differentiate the agents
when we define the following notation. We use ti to denote an agent’s expected
allocation time when her type is iδ. That is, t0 is an agent’s expected allocation
time when her type is 0, and tH is her expected allocation time when her type
is D. Similarly, we use pi to denote an agent’s expected payment when her type
is iδ. The ti and the pi are the variables in our linear programming models.

Due to Myerson’s characterization, the tH must be non-increasing. That is,

1 ≥ t0 ≥ t1 ≥ · · · ≥ tH ≥ 0

We recall that strategy-proofness and individual rationality together imply
that the agents’ payments are completely characterized by the allocation times.
Using notation from Section 3, we have

pMi (vi, v−i) = vi(1− tMi (vi, v−i))−

∫ vi

z=0

(1− tMi (z, v−i)) dz

Using notation from this section, that is

iδ(1− ti)−

i∑

z=1

(1− tz)δ ≤ pi ≤ iδ(1− ti)−

i−1∑

z=0

(1− tz)δ

C is another variable in our linear programming model. We use IP(i) to denote
the probability that an agent’s type falls inside the i-th interval [(i−1)δ, iδ]. Since
every agent’s expected payment is (1 − C)/n, we have

H∑

z=1

IP(z)pz−1 ≤ (1− C)/n ≤
H∑

z=1

IP(z)pz

Since an agent’s expected allocation time is at least C, we have

H∑

z=1

IP(z)tz−1 ≥ C

The expected Sum-Delay is at least
∑H

z=1
IP(z)tz. We minimize it to com-

pute a lower bound for the expected Sum-Delay.

6 It is without loss of generality to assume that the optimal mechanism does not treat
the agents differently based on their identities. Given a non-anonymous mechanism,
we can trivially create an “average” version of it over all permutations of the identi-
ties [7]. The resulting mechanism is anonymous and has the same Max-Delay and
Sum-Delay.

To compute a lower bound on the expected Max-Delay, we introduce a few
more notations:

– Let A(i) be the expected Max-Delay when all agents report higher than
iδ.

– Let PA(i) be the probability that all agents report higher than iδ.

– Let B(i) be the expected Max-Delay when at least one agent reports at
most iδ.

– Let PB(i) be the probability that at least one agent reports at most iδ.

– Let C(i) be an agent’s expected delay when she reports at most iδ.

The expected Max-Delay is at least the following for any i:

A(i)× PA(i) +B(i)× PB(i) ≥ B(i)× PB(i) ≥ C(i)× PB(i)

We minimize (11) to compute a lower bound on the expected Max-Delay.

C(i)× PB(i) ≥

∑i
z=1

tzIP(z)
∑i

z=1
IP(z)

×

{

1−

(
H∑

z=i+1

IP(z)

)n}

(11)

We present the expected delays of CS and GCSOD under different distri-
butions. U(0, 1) refers to the case where every agent’s valuation is drawn from
the uniform distribution from 0 to 1. N(0.5, 0.2) refers to the case where ev-
ery agent’s valuation is drawn from the normal distribution with mean 0.5 and
standard devastation 0.2, conditional on that the value is between 0 and 1.

Max-Delay Sum-Delay

GCSOD CS Lower Bound GCSOD CS Lower Bound
U(0, 1), n = 1 1.00 1.00 0.89 1.00 1.00 0.89
U(0, 1), n = 2 0.87 0.75 0.67 1.75 1.50 0.96
U(0, 1), n = 5 0.85 0.67 0.46 2.67 1.41 0.94
U(0, 1), n = 10 0.68 0.65 0.29 3.01 1.13 0.89

N(0.5, 0.2), n = 1 1.00 1.00 0.97 1.00 1.00 0.97
N(0.5, 0.2), n = 2 0.87 0.75 0.63 1.75 1.50 0.89
N(0.5, 0.2), n = 5 0.79 0.27 0.20 2.13 0.40 0.27
N(0.5, 0.2), n = 10 0.54 0.15 0.11 2.20 0.17 0.14
N(0.5, 0.4), n = 1 0.95 0.95 0.92 0.95 0.95 0.92
N(0.5, 0.4), n = 2 0.88 0.76 0.66 1.73 1.48 0.94
N(0.5, 0.4), n = 5 0.84 0.57 0.40 2.54 1.09 0.71
N(0.5, 0.4), n = 10 0.65 0.50 0.26 2.76 0.74 0.59

CS outperforms GCSOD in terms of both Max-Delay and Sum-Delay.
This is not too surprising because GCSOD is designed for its competitive ratio
in the worst case. Our derived lower bounds show that CS is fairly close to
optimality in a lot of cases.

6 Conclusions and Future Work

We have come up with a mechanism with competitive ratios of 4 for max delay
and 8 for sum delay under certain assumptions. As the problem setting is rather
new, there are plenty of options to be explored when designing mechanisms with
better performance. Possible solutions showing promise include, for exmaple, an-
other method we considered but did not dedicate as much time into—scheduling
fixed prices for different sections of time periods, regardless of the agents’ sub-
mitted valuations. But such a mechanism will require extensive simulations and
analyses to evaluate its performance. It should also be noted that the lack of
data for such simulations is to be addressed.

While most of our result is presented under prior-free settings, we made
a certain number of assumptions, some of which easily hold true for realistic
applications—and therefore rather trivial—some of which less so. For example,
there is an assumption that there is at least one agent not participating in the
cost sharing in the benchmark function CSOD. This is necessary because we
cannot evaluate any mechanism’s resulting time against 0 and produce a valid
competitive ratio, while this can also be easily satisfied by including free-riders
who are determined not to contribute at all. But for the assumption that no
agent’s valuation exceeds the total required amount, although it is introduced
because of similar reasons, we cannot expect it to hold true for every case. So
either removing existing constraints to generalize the solution or adding more
assumptions to yield better results would be reasonable as immediate future
work.

References

1. Algarni, A., Malaiya, Y.: Software vulnerability markets: Discoverers and buyers.
International Journal of Computer, Information Science and Engineering 8(3),
482–484 (2014)

2. Arora, A., Telang, R., Xu, H.: Optimal policy for software vulnerability disclosure.
Management Science 54(4), 642–656 (2008)

3. Böhme, R.: A comparison of market approaches to software vulnerability disclo-
sure. In: Proceedings of the 2006 International Conference on Emerging Trends in
Information and Communication Security. pp. 298–311. ETRICS’06 (2006)

4. Canfield, C., Catota, F., Rajkarnikar, N.: A national cyber bug broker: Retrofitting
transparency. (2015),
https://www.andrew.cmu.edu/user/ccanfiel/National-Cyber-Bug-Broker_final.pdf

5. Guo, M., Hata, H., Babar, M.A.: Revenue maximizing markets for zero-day ex-
ploits. In: PRIMA 2016: Princiles and Practice of Multi-Agent Systems - 19th
International Conference, Phuket, Thailand, August 22-26, 2016, Proceedings. pp.
247–260 (2016)

6. Guo, M., Hata, H., Babar, M.A.: Optimizing affine maximizer auctions via linear
programming: An application to revenue maximizing mechanism design for zero-
day exploits markets. In: PRIMA 2017: Principles and Practice of Multi-Agent
Systems - 20th International Conference, Nice, France, October 30 - November 3,
2017, Proceedings. pp. 280–292 (2017)

https://www.andrew.cmu.edu/user/ccanfiel/National-Cyber-Bug-Broker_final.pdf

7. Guo, M., Markakis, E., Apt, K.R., Conitzer, V.: Undominated groves mechanisms.
J. Artif. Intell. Res. 46, 129–163 (2013)

8. Howard, R.: Cyber Fraud: Tactics, Techniques and Procedures. CRC Press (2009)
9. Kannan, K., Telang, R.: Market for software vulnerabilities? think again. Manage-

ment Science 51(5), 726–740 (2005)
10. Maillart, T., Zhao, M., Grossklags, J., Chuang, J.: Given enough eyeballs, all bugs

are shallow? revisiting eric raymond with bug bounty programs. Journal of Cyber-
security 3(2), 81–90 (2017)

11. Miller, C.: The legitimate vulnerability market: Inside the secretive world of 0-day
exploit sales. In: In Sixth Workshop on the Economics of Information Security
(2007)

12. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (Feb 1981)
13. Nizovtsev, D., Thursby, M.: To disclose or not? an analysis of software user behav-

ior. Information Economics and Policy 19(1), 43 – 64 (2007)

	Cost Sharing Security Information with Minimal Release Delay

