
Runtime Norm Revision
Using Bayesian Networks

Davide Dell’Anna(B), Mehdi Dastani, and Fabiano Dalpiaz

Utrecht University, Utrecht, The Netherlands
{d.dellanna,m.m.dastani,f.dalpiaz}@uu.nl

Abstract. To guarantee the overall intended objectives of a multiagent
systems, the behavior of individual agents should be controlled and coor-
dinated. Such coordination can be achieved, without limiting the agents’
autonomy, via runtime norm enforcement. However, due to the dynam-
icity and uncertainty of the environment, the enforced norms can be
ineffective. In this paper, we propose a runtime supervision mechanism
that automatically revises norms when their enforcement appears to be
ineffective. The decision to revise norms is taken based on a Bayesian
Network that gives information about the likelihood of achieving the
overall intended system objectives by enforcing the norms. Norms can
be revised in three ways: relaxation, strengthening, and alteration. We
evaluate the supervision mechanism on an urban smart traffic simulation.

Keywords: Norm revision · Multiagent systems · Bayesian networks

1 Introduction

A multiagent system consists of (heterogeneous) autonomous agents that coexist
and interact in a shared open environment [1]. In order to guarantee the over-
all intended objectives of a multiagent system, the behavior of the autonomous
agents should be coordinated [2]. In the multiagent systems literature, runtime
norm enforcement is a widely studied mechanism for controlling and coordinat-
ing the runtime behavior of the agents without limiting their autonomy [3,4].
For example, a smart road populated by autonomous cars can control the cars’
behavior by enforcing traffic rules, such as speed limitations, in order to improve
throughput and safety of the road. In this paper, we do not focus on norm
enforcement and assume that norms can be enforced on autonomous agents by
means of, e.g., regimentation and sanctioning mechanisms.

However, due to the dynamicity and uncertainty involved in the agents’ oper-
ating environments, such as sudden changes of weather conditions or accidents
due to heavy traffic, enforcing the existing norms may not be sufficient to ensure
the overall intended objectives [5]. For example, the enforcement of some speed
norms may not improve traffic throughput or safety when the weather condi-
tions change from extreme to normal (or vice versa). Given a set of norms and

c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 279–295, 2018.
https://doi.org/10.1007/978-3-030-03098-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03098-8_17&domain=pdf


280 D. Dell’Anna et al.

a set of environmental conditions, it is often hard—or practically impossible—
to predict the effectiveness of enforcing specific norms in various environmental
conditions [6]. This suggests that continuous evaluation of norm enforcement and
dynamic revision of the norms at runtime are key factors to build an effective
normative multiagent system capable of ensuring the overall system objectives
within a dynamic and uncertain environment [7].

We introduce a runtime norm supervision mechanism that monitors the
behavior of a multiagent system, evaluates the enforcement of the norms in
terms of the overall system objectives, and, when needed, intervenes by revising
the norms. For example, if the enforcement of adaptive traffic lights on a smart
road significantly decreases the safety of cars in extreme weather conditions,
our runtime norm supervision mechanism will suggest a revision of such norm
proposing the enforcement of static traffic lights.

This paper focuses on the evaluation and revision of the norms enforced in
the system. We describe three main types of norm revision (relaxation, strength-
ening and alteration) and provide two heuristic algorithms for suggesting norm
revisions based on data that is collected and encoded into a Bayesian Network
(called Norm Bayesian Network) at runtime. Such network is used to learn and
reason about the correlation between norm satisfaction/violation and the over-
all system objectives achievement. The runtime norm supervision mechanism is
implemented as an optimization process that uses a variation of the hill climb-
ing optimization technique. Our revision algorithms are used in the optimization
process to determine the next sets of norms to enforce in the system.

We report on an experimental evaluation of the supervision mechanism by
applying it to an urban traffic simulation. Our implementation guarantees the
identification of norm sets that ensure the overall system objectives. We com-
pare the results obtained using hill climbing combined with and without our
revision engine (i.e., Bayesian Network and revision strategies) and show that
the proposed mechanism, using runtime information about norms effectiveness,
allows to find optimal solutions with less revisions.

The paper is structured as follows. Section 2 describes a case study con-
cerning urban traffic management. Section 3 presents the runtime supervision
mechanism and the Norm Bayesian Network. Section 4 describes two algorithms
for the suggestion of norms revision. Section 5 evaluates the effectiveness of the
approach. Finally, Sects. 6 and 7 review related studies and conclude the paper.

2 Case Study: Norms for Urban Traffic Management

Consider a city where 10% of the cars are autonomous self-driving cars operating
in a road network that is enriched with autonomous traffic controllers such as
smart traffic lights and panels. The city council aims at improving the urban
traffic by achieving two overall objectives: minimize the average travel time and
minimize the number of accidents. To achieve such objectives, the city council
plans to control and coordinate the traffic by enforcing traffic norms. To this
end, the council is able to prescribe the self-driving cars to use a centralized



Runtime Norm Revision Using Bayesian Networks 281

navigation service (CNS) instead of their personal navigation system. The CNS
can be either adaptive (able to autonomously change its own parameters at
runtime) or static. The council may also prescribe the use of specific traffic
controllers at road junctions. In particular, the council can enforce five possible
obligation norms in the city:

– every self-driving car is obliged to employ the routes suggested by an adaptive
or static CNS (denoted by O(ans) and O(sns)).

– every road junction is obliged to employ adaptive traffic lights (O(atl)), static
traffic lights (O(stl)), or priority lines panels (O(pl)).

Due to the highly dynamic nature of the city, drivers and cars can behave
differently in different contexts (in this paper, we consider four contexts: day or
night, normal or extreme weather). This makes it hard to determine in advance
which set of norms will be the most effective in every context. For this reason,
the city council aims at developing a traffic management system that starts
with a set of norms, enforces the norms at run-time and monitors whether the
enforcement of the norms is effective in the sense that they will guarantee the
achievement of the overall objectives of minimizing travel time and accidents.
In case norms are learned not to be effective, the traffic management system is
expected to revise the norms accordingly.

Consider the norms O(ans) and O(sns) to be mutually exclusive, as well
as the norms O(atl), O(stl) and O(pl). Based on these relationships, the city
council disposes of a set N of 12 possible norm sets that could be enforced in the
city: N = {{O(ans)}, {O(sns)}, {O(atl)}, {O(stl)}, {O(pl)}, {O(ans), O(atl)},
{O(ans), O(stl)}, {O(ans), O(pl)}, {O(sns), O(atl)}, {O(sns), O(stl)}, {O(sns),
O(pl)}, ∅}. When a navigation service is prescribed (e.g., in case of {O(ans)})
the routes suggested are followed by the self-driving cars in the 80% of the cases;
when no navigation service is prescribed (e.g., in case of {O(pl)}) the self-driving
cars use their own navigation system; finally when no junction management is
prescribed (e.g., in case of {O(ans)}) the cars approaching the smart junctions
follow the default priority-to-the-right rule.

In this paper norms are obligations expressed as propositional state formulae
in conjunctive normal form and O denotes the obligation operator. Norms are
considered here to be regimented, rather than enforced by means of sanctions.
We leave sanction-based enforcement mechanism for future work; here, we study
in detail the effect of imposing different norms on a multiagent system, their
relationship with overall system objectives in different contexts and the possible
strategies to revise norms when they are not effective.

3 Runtime Norm Supervision

We present the control loop performed by the runtime supervision mechanism
(sketched in Fig. 1) to automatically evaluate and revise norms in order to achieve
the overall objectives of a multiagent system.



282 D. Dell’Anna et al.

Given a set O of boolean overall system objectives, a set N of all possible
norm sets enforceable in the system and a set C of all possible contexts of the
multiagent system, we call system configuration an assignment of a norm set
N ∈ N to each possible context in C. For example, given the four possible
contexts (day, normal), (day, extreme), (night, normal), (night, extreme), and
given the set N of possible norm sets defined in Sect. 2, an example of system
configuration is {〈(day, normal), {O(p)}〉, 〈(day, extreme), {O(ans), O(p)}〉,
〈(night, normal), {O(sns)}〉, 〈(night, extreme), {O(atl), O(ans)}〉}. A norm
n is said to be active in a context c if 〈c,N〉 is in the system configuration and
n ∈ N . Otherwise n is said disabled.

The control loop of the supervision mechanism starts with a Norm Base
containing an initial system configuration. We assume a runtime Monitoring
component that perfectly collects information about the satisfaction or viola-
tion of the norms in the contexts in which they are evaluated. Such component
provides a boolean evaluation of the overall system objectives. This knowledge is
used to learn, by means of a Norm Bayesian Network (described in Sect. 3.1), the
dependencies between the satisfaction of the norms and the achievement of the
objectives in the different contexts. A Revision Trigger component (described in
Sect. 3.2) uses the learned knowledge to determine whether some norms should
be revised. The norm revision process is executed by the Revision Engine com-
ponent (described in Sect. 3.3) and generates as output a (possibly) new system
configuration, replacing the current one in the Norm base.

Fig. 1. The control loop of the runtime supervision mechanism.

We propose an implementation of the control loop above described as a vari-
ation of the hill climbing optimization technique. In particular, we consider the
system configurations as possible solutions to explore in order to find an optimal
one. The quality of a solution is determined, by means of runtime data, as the
average probability of achievement of the overall objectives in all the contexts.
Instead of terminating the exploration of the space when a local optimum is
found, as in traditional hill climbing, we use as stopping criterion a constraint



Runtime Norm Revision Using Bayesian Networks 283

defined by the system designer that determines whether or not the current solu-
tion is acceptable (see Sect. 3.2). We use the Revision Engine to determine the
next solution to try, when the current one is not acceptable.

Sections 3.1 and 4 describe the main components involved in the control
loop. Section 5 provides an experimental evaluation of our implementation of
the control loop. We compare the results that hill climbing can obtain by using
our Revision Engine for the neighborhood definition with results that can be
obtained by using heuristics that do not evaluate the effectiveness of the norms.

3.1 Norm Bayesian Network

Bayesian Networks have been widely used in many fields as knowledge rep-
resentation structures for learning and reasoning about the inter-dependencies
between their nodes [8]. We define a type of Bayesian Network called Norm
Bayesian Network to represent and reason about norms and their relationship
with overall objectives in different contexts. We call contextual variables mon-
itorable environmental properties such as Time and Weather. Each of these
variables is associated to a domain of values (e.g., Time can be either day or
night, Weather can be either normal or extreme). Given a set of contextual vari-
ables we call context an assignment of a value to each contextual variable (e.g.,
given Time and Weather as above described, we have four possible contexts:
(day, normal), (day, extreme), (night, normal), (night, extreme)).

A Norm Bayesian Network NBN = (X ,A,P) is a Bayesian Network where:

– X = N∪O∪C is a set of nodes, representing random variables in probability
theory. The sets N, O and C are disjoint. The set N consists of norm nodes;
each node N ∈ N corresponds to one norm and has a discrete domain of 3
possible values: obeyed, violated and disabled. The set O consists of objective
nodes; each node O ∈ O corresponds to a boolean objective and has a discrete
domain of 2 values: true and false. Finally, the set C consists of context nodes ;
each node C ∈ C corresponds to a contextual variable and can have a discrete
or continuous domain of values.

– A ⊆ (C×N) ∪ (C×O) ∪ (N×O) is the set of arrows connecting pairs of
nodes. If there is an arrow from node X to node Y , X is called parent of Y .

– P is a set of conditional probability distributions, each one associated with a
node in X and quantifying the effect of the parents on the node.

In the context of Bayesian Networks we use the following notation.
X, Y , ... (italic uppercase) denotes random variables; X, Y, ... (bold uppercase)
denotes sets of random variables; v1, v2, ... (italic lowercase) denotes values in
the domain of a random variable; Xv denotes an assignment (X = v) of value v
to a random variable X; x (bold lowercase) denotes an assignment of values to
a set of nodes X; Xv denotes an assignment of value v to all nodes in X; Xact



284 D. Dell’Anna et al.

denotes the fact ¬Xdis = ¬(X = disabled)); ¬xX
v is equivalent to

∧
X∈X(¬Xv);

P denotes a probability distribution; P denotes a single probability1.
Figure 2 reports the structure (X ,A) of an NBN for our case study. Notice

the three types of nodes representing contextual variables, norms and overall
objectives. Arrows connect each contextual variable to all norms and all objec-
tives, and each norm to all the objectives. Nodes Travel Time and Accidents
correspond to the two overall objectives of minimizing travel time and accidents.

Fig. 2. The structure of the NBN for the case study of Sect. 2.

In Bayesian Networks, an evidence e is an observed assignment of values for
some or all of the random variables in the network. An evidence c for all the
context nodes C is an observation for a certain context (e.g., Time has value day
and Weather has value extreme). For simplicity we use the term context also to
refer to the associated evidence in the Bayesian Network. An evidence of value
obeyed or violated for a norm node can be obtained when the corresponding norm
is enforced in the multiagent system. When the norm is not enforced the only
possible evidence for its corresponding node is disabled. Note that the evidence
values are determined by the Monitoring component. Norms nodes, therefore,
only collect statistical information about norm obedience in different contexts.

Note also that, for the sake of brevity, we omit a discussion about the learning
technique (e.g., classical Bayesian learning) to train the network and we refer the
reader to the existing literature (e.g., [8,9]). In the following, we assume that we
dispose of a network trained with data produced by the Monitoring component.

3.2 Revision Trigger

Let e be an event denoting that changes in the probability distributions in the
Norm Bayesian Network are not significant anymore (i.e., the variations in the
distribution when a new sample is given are below a specified δ). Assuming

1 When we refer to nodes of a specific type we use the corresponding notation con-
vention, e.g., N refers to a node in N, c refers to an assignment of values to nodes
in C, Nviol refers to an assignment of value violated to a set of norm nodes N, etc.



Runtime Norm Revision Using Bayesian Networks 285

a population of agents that behaves consistently, such event will occur after
some time. Let toa be a threshold defining the minimum average probability
of achievement of the objectives desired by the system designer, and let c be
the related constraint (e.g., c = P (Travel Timetrue ∧ Accidentstrue) ≥ 0.95, with
toa = 0.95). A revision (i.e., a new iteration of the hill climbing procedure) is
triggered every time e occurs and c is not satisfied.

3.3 Revision Engine

Assume that the Norm Bayesian Network NBN of Fig. 2 is trained with data
and that a norm revision is triggered by the Revision Trigger. We describe the
three components of the Revision Engine shown in Fig. 1. Such components are
used to determine the new norm set to enforce in the multiagent system.

Diagnoser. This component uses the NBN to generate an explanation for
the objectives not being achieved. To do so, it first determines a context mpc
that corresponds to the most problematic context in which the objectives are
not achieved. mpc = argmaxc∈all(c)P (Ofalse | c), where all(c) is the set of all
possible contexts (assignments of a value to each of the context nodes in NBN ).

Let Nmpc be the set of norms currently active in the context corresponding to
mpc, and Na and Nd be the two disjoint sets of nodes in NBN that corresponds
to the norms that are respectively active and disabled in the most problematic
context. The Diagnoser determines the most likely explanation [10] ne for Ofalse

given mpc, in terms of satisfaction of the active norms in Nmpc.

ne = argmaxn∈nNa
{ob,viol}

P (n |Ofalse ∧ mpc ∧ nNd

dis ∧ ¬nNa

dis)

where nNa

{ob,viol} = {Nv|N ∈ Na, v ∈ {ob, viol}} is the set of all the possible
assignments of values (either obeyed or violated) to nodes Na.

Revision Selector. Given the most likely explanation ne, we aim to revise
Nmpc so to increase P (Otrue | mpc) above the threshold toa. The Revision
Selector determines the most adequate type of revision to perform.

We define three types of norm revision: relaxation, strengthening, alteration.
Relaxing (strengthening) a propositional obligation norm O(n) means replacing
it with a new norm O(n′) such that n′ is a less strict (stricter) formula than n
(e.g., O(ans ∨ ⊥) is a less strict obligation than O(ans)). A less strict (stricter)
obligation makes the norm violated in fewer (more) situations, which means
that more (less) behaviors are allowed. Any other revision of a norm O(n) is
an alteration. Relaxing (strengthening) a set of norms N means replacing it
with a new norm set N ′ such that one or more norms in N ′ are a relaxation
(strengthening) of norms in N and all the other norms are unchanged (e.g.,
{O(ans), O(atl)} is a strenghtening of {O(atl)}). Any other revision of a set of
norms N is an alteration of N (e.g., {O(ans)} is an alteration of {O(sns)}).



286 D. Dell’Anna et al.

The Revision Selector applies the following idea. To achieve the overall objec-
tives in a certain context, some of the active norms are more useful if obeyed,
others are more useful if violated, and the rest are always harmful (regardless
of the fact that they are obeyed or violated). This information can be derived
from the conditional probability distributions of nodes N as follows.

Consider the case of a single active norm N in Nmpc (Na = {N}), a single
boolean objective O, and a single context2. Figure 3a illustrates revision strate-
gies based on the three types of relationships between N and O above described.

(a) (b)

Fig. 3. (a) Decision tree for determining a suitable type of revision. (b) system con-
figurations (points) in four states (A–D) w.r.t. the average satisfaction of the enforced
norms and the average probability of achievement of the objectives.

The decision tree first determines whether the norm N is more useful for
O when disabled or active. In the former case the norm is considered harmful,
i.e., Nharm ≡ (P (Otrue | Ndis) > P (Otrue | ¬Ndis)). The most suitable strategy
in this case is either to disable N or to relax N (relaxation is a “soft” kind of
disabling, for it allow more behaviors). If N is not harmful, the decision tree
compares the probabilities of N supporting O when obeyed and when violated.

If N is more useful for O when violated (P (Otrue | Nviol) > P (Otrue | Nob) ∧
¬Nharm), the suggested revision is to relax it, thereby turning some non-
compliant (but useful to achieve O) behaviors into compliant ones. If N is more
useful when obeyed (i.e., P (Otrue | Nob) > P (Otrue | Nviol) ∧ ¬Nharm), the tree
computes the most likely explanation for O not being achieved, between N being
violated or obeyed. In the former case, the suggested revision is to strengthen
N (restricting the allowed behaviors) or alter it (N is not effective). In the lat-
ter case, the suggestion is either to not revise (N may not be the cause of the
problem) or to strengthen (N may not be strong enough to achieve O).

Section 4 presents two revision selection algorithms that apply the principle
here described to the entire set of norms enforced in the system. The output of
the Revision Selector is a set of norms annotated with suggested revisions (if
any).

2 In the following we omit the context from the conditional probabilities since implicit.



Runtime Norm Revision Using Bayesian Networks 287

Revision Actuator. The task of this component is to determine the new norm
set to enforce in the system. Given the set of norms annotated with suggested
revisions (from the Revision Selector), and given a set of possible norm sets N ,
the Revision Actuator selects a norm set N ′ ∈ N that is as aligned as possible
with the direction provided by the suggestions. For example, given the norm set
{O(ans)} and a suggestion of disabling norm O(ans), the norm set in N that is
the most aligned with the suggestion is the empty set {}. If multiple norm sets are
available, different distance metrics can be defined, e.g., the similarity with the
current norm set, or the sensitivity of the objectives to the change of the selected
norms. In this paper, we use as distance metric the number of revision of norms
needed to obtain N ′ from N . For instance, two revisions are necessary to to
obtain {O(ans), O(p)} from {O(sns), O(atl)}: O(sns) must be altered to O(ans)
and O(atl) must be altered to O(p). If there is no new norm set that is aligned
with the provided suggestion (i.e., either the defined neighborhood of the current
solution is empty or it contains only configurations that have already been tried)
the Revision Actuator randomly selects a configuration never tried before, if
any. Notice that this makes our implementation of hill climbing different from a
traditional one and it guarantees to always converge to an optimal solution.

4 Revision Selection Algorithms

We present two algorithms for the Revision Selector component. The pureBN

algorithm enacts the decision tree of Fig. 3a for all the enforced norms. The
stateBased algorithm takes also into account the overall status of the system in
the current configuration. Both algorithms are invoked on the most problematic
context defined in Sect. 3.3 and they both return a set of norms annotated with
suggested revisions. Such set of norms is used as heuristic to determine the
neighborhood of the current norm set in the hill climbing process.

4.1 PureBN

Algorithm 1 reports the pureBN heuristic for the selection of norms revision.
Line 2 determines, based on the top decision node of Fig. 3a, the norm set N ′

that has the highest probability to satisfy the objectives. If the current norm
set has active norms, and there is some norm set that has not been attempted
in the most problematic context yet (line 3), the most likely explanation ne for
not fulfilling the objectives is determined (line 4). Then, for each active norm in
the new norm set N ′ (line 5), the algorithm determines the “desired” state, i.e.,
whether that norm helps better the satisfaction of the objectives when obeyed
or violated (line 6). Finally, in line 7, the suggestion for the examined norm
is determined based on the decision tree of Fig. 3a. If no norms are active or
all possible norm sets have already been tried, pureBN returns N ′: the best
possible norm set for the most problematic context (skipping lines 4–7).



288 D. Dell’Anna et al.

Algorithm 1. The pureBN algorithm for revision selection
1: function pureBN(c)
2: N ′ ← getBestNormSet(c) � obtain N′

a and N′
d

3: if (|Na| > 0) && ¬allNormSetTried(c) then
4: ne ← getMLE(Ofalse, c)
5: for all norms N ∈ N′

a do
6: ndes ← getDesiredVal(N , c)
7: setSugg({N}, getSugg(N , ne, ndes))

return N ′

4.2 StateBased

While pureBN provides a suggestion for each active norm, stateBased con-
siders the average satisfaction of active norms and the average achievement of
the overall objectives to suggest a specific type of revision per time.

Figure 3b plots system configurations in four states with respect to norms
satisfaction and objectives achievement. The configurations in state A sufficiently
satisfy the norms, but the objectives are not achieved to a sufficient extent. State
B denotes insufficient norms satisfaction and objectives achievement. State C
indicates that the objectives are achieved even though the norms are not satisfied.
State D is the ideal area: the norms are satisfied and the objectives are achieved.

Assume we have, together with the threshold toa, an additional threshold tns
that defines the desired probability of satisfaction of norms. stateBased first
determines the average norms satisfaction and objectives achievement based on
the evidence from the active norms in the most problematic context (lines 2).
Like in pureBN, the best possible norm set in the most problematic context is
generated (line 3). If there are currently no active norms or N ′ contains at least
one suggestion of type disable, the function returns immediately (line 4).

Three empty sets of norms are defined in line 5: obeyed norms that are
better when violated obbv, violated norms that are better when violated vabv,
and violated norms that are better when obeyed vbbo. After determining the
most likely explanation ne (line 6), the algorithm determines (line 7) the desired
state (obeyed, violated) of all active norms of the new norm set. Using ne

(obeyed/violated) and the desired state (obeyed/violated), the norms are added
to the corresponding sets obbv, vavb, and vbbo (line 8).

Lines 9–16 implement the idea visualized in Fig. 3b by comparing the state
of the current norm set (ns and oa) against the thresholds tns and toa. If the
configuration is in state A (lines 9–11), if obbv contains norms, the suggestion is
to relax them; if obbv is empty, a suggestion to alter or strengthen is given for
the active norms (the active norms behave as expected but the objectives are
not achieved). In state B (lines 12–13), a relaxation of the norms that are better
if violated is suggested, and an alteration or strengthening is suggested for the
norms that are better if obeyed. In state C (lines 14–16), if there are violated
norms that are better if violated, they are relaxed; if, instead, there are violated
norms that are better if obeyed, the suggestion is to either alter or strengthen.



Runtime Norm Revision Using Bayesian Networks 289

Algorithm 2. The stateBased algorithm for revision selection
1: function stateBased(c)
2: ns ← avgNormSat(Na, c); oa ← avgObjAch(Na, c)
3: N ′ ← getBestNormSet(c) � obtain N′

a and N′
d

4: if (|Na| = 0) || hasDis(N ′)) then return N ′

5: obbv ← vabv ← vbbo ← {}
6: ne ← getMLE(Ofalse, c)
7: ndes ← getDesiredVal(N′

a, c)
8: determineTYPE(N′

a, ne, ndes, obbv, vabv, vbbo)
9: if ns ≥ tns && oa < toa then

10: if |obbv| > 0 then setSugg(obbv, relax)
11: else setSugg(Na, alter ∨ strengthen)

12: else if rs < tns && ga < toa then
13: setSugg(oobv ∪ vabv, relax); setSugg(vbbo, alter ∨ strengthen)
14: else if rs < tns && ga ≥ toa then
15: if |vabv| > 0 then setSugg(vabv, relax)
16: else if |vbbo| > 0 then setSugg(vbbo, alter ∨ strengthen)

return N ′

5 Evaluation

We conducted an experimental evaluation of our implementation of the runtime
norm supervision mechanism in terms of convergence speed and quality of the
final solution. We compare the results that can be obtained by using our Revision
Engine with results that can be obtained with heuristics that do not evaluate
the effectiveness of the norms.

We make use of a simulation of the scenario described in Sect. 2. We adopt the
CrowdNav simulator from the self-adaptive systems literature [11]. CrowdNav
consists of a number of cars traveling in a medium-size city (Eichstädt, Germany)
with 450 streets and 1,200 intersections. Each car relies on a navigation service
to receive a route. 90% of the cars use a default routing algorithm implemented
in SUMO (the underlying traffic simulation engine), while the remaining 10% are
smart cars that use a centralized navigation service. In CrowdNav such service
is adaptive, i.e., it is able to autonomously adapt its parameters at runtime.

We extended CrowdNav to support, besides the adaptive service, also a static
service, as well as different ways of managing junctions, in line with the norms
described in Sect. 2. We use the two contextual properties Time, which can
assume the values day (600 cars in the simulation) or night (300 cars), and
Weather, which can be either normal or extreme (the maximum allowed speed
is reduced by 25% in all the streets). We instrumented the extended CrowdNav
to collect data about norm satisfaction and objectives achievement. The boolean
value of the objective Travel Time is obtained, every simulation-day, by deter-
mining whether, on average, the cars in the city took less than 2.5 times the
optimal trip time3 to reach their destination. The boolean value of the objective

3 Actual trip time over the theoretical time w.r.t. to length and speed limits.



290 D. Dell’Anna et al.

Accidents is obtained by determining whether there are less than 4 accidents per
day.

5.1 Experiments

We implemented the runtime norm supervision mechanism as a modified version
of hill climbing that accounts for toa as a stopping criterion: it stops only when
either all the configurations have been tried or it finds a local optimum with an
average objectives achievement probability higher than toa.

We used the algorithms pureBN and stateBased of Sect. 4 as two possible
heuristics for defining the neighborhood of a configuration: the neighborhood
defined by pureBN and stateBased is the set of all the configurations that
satisfy their suggestions. We defined three additional configuration neighbor-
hood metrics that do not take into account the acquired knowledge about the
effectiveness of the enforced norms. (1) maximum distance 4 (MD4) includes in
the neighbourhood all the configurations that are obtained by revising at most
4 norms4; (2) Maximum size 10 (NMS10) and (3) maximum size 20 (NMS20)
define a neighborhood that includes the 10 and 20 closest configurations to the
current one, respectively. We tested the hill climbing implementation with the 3
uninformed neighborhoods and we compared them with our proposals employing
the pureBN (HCPB) and the stateBased (HCSB) suggestion algorithms.

In order to determine the average quality in terms of objectives achievement,
each algorithm has been executed starting from all of the possible configura-
tions. The system has 124 = 20, 736 possible configurations (12 possible norm
sets enforceable in any of the 4 contexts). Since in the worst case every algorithm
may need to try all the configurations before stopping, to limit the experimenta-
tion time, we reduced the data set to 81 configurations via test case generation
techniques5. We introduced then three additional configurations more distant
from the others. Two of them are the best-scoring configurations. We defined
experiments for three different thresholds toa, based on the distribution of values
in the 84 tested configurations (see Fig. 4). T1 = 0.5, accepts as final configura-
tions only the two best-scoring configurations in group A (2.4% of the total),
which are significantly different (and therefore more distant) from the others;
T2 = 0.4 accepts the configurations in groups A and B (9.5% of the total); and
T3 = 0.37 accepts configurations in groups A, B and C (17.8% of the total).

We compare the results in terms of (i) convergence speed : the number of
steps attempted before stopping; and (ii) solution quality : the average objectives
achievement probability of the final solution.

4 Revising one norm leads to a distance of 2–3 from the original configuration, and
each configuration has 10%–20% of all configurations in its neighborhood.

5 We obtained 12 variants from pairwise testing with variables: time (day, night),
weather (normal, extreme), CNS (none, adaptive, static), and junctions (none, adap-
tive lights, static lights, priority lanes). We grouped those variants in 4 groups (one
per context) and we generated all their combinations to obtain 81 configurations.



Runtime Norm Revision Using Bayesian Networks 291

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

A B C Rest

Fig. 4. Avg. probability of objectives achievement for the 84 tried configurations.

5.2 Analysis of the Results

Table 1 compares the 5 different tested algorithms. With threshold T1 (toa =
0.5), we tested a scenario where the (few) optimal configurations are slightly more
distant from the others (while the median distance between the 82 suboptimal
configurations is 6.3, the median distance with the remaining two is 7).

Table 1. Comparison of the algorithms with thresholds T1, T2 and T3. Values of Steps
and Final columns are average values over the 84 different simulations.

Algo T1 (tga = 0.5, 2 optimal conf.) T2 (tga = 0.4, 8 optimal conf.) T3 (tga = 0.37, 15 optimal conf.)

Steps (σ) Final (σ) Opt. Steps (σ) Final (σ) Opt. Steps (σ) Final (σ) Opt.

MD4 68.94 (21.47) 0.54 (0.00) 100% 24.48 (12.56) 0.45 (0.04) 100% 17.54 (9.56) 0.43 (0.05) 100%

ML10 88.54 (15.15) 0.54 (0.00) 100% 18.80 (10.62) 0.43 (0.02) 100% 11.15 (6.15) 0.40 (0.03) 100%

ML20 73.81 (17.93) 0.54 (0.00) 100% 23.80 (11.44) 0.44 (0.03) 100% 17.94 (9.08) 0.42 (0.04) 100%

HCPB64.86 (27.48)0.54 (0.00)100%11.90 (8.04)0.43 (0.02)100%2.99 (3.03)0.40 (0.03)100%

HCSB 79.70 (22.05)0.54 (0.00)100%5.10 (3.50) 0.43 (0.02)100%0.82 (0.39)0.40 (0.03)100%

In terms of convergence speed, with T1 our heuristics behave similarly to the
others. On average, uninformed heuristics take around 77.08 steps, while HCPB
and HCSB require 72.28 steps. Since all the algorithms give priority to the closest
configurations in the neighborhood, they need to explore big part of the solution
space before finding the 2 optimal configurations, which are more distant. HCPB
slightly outperforms all the other heuristics. The reason is that its strategy is
to suggest a revision for all the active norms in the current configuration. This
strategy, compared to the others, accomodates the exploration of more diverse
configurations (i.e., HCPB defines a more heterogeneous neighborhood), thereby
favouring the discovery of the optimal ones.

With less demanding thresholds (T2 and T3), our algorithms significantly
outperform the others. For T2, our heuristics HCPB and HCSB offer, on average,
an improvement of 61.9% = 1−(8.5/22.36) over the tested uninformed heuristics
in terms of convergence speed, while for T3 the efficiency gain is 87.7% = 1 −
(1.9/15.54). In particular, with T3, HCSB requires on average only 0.82 steps,
i.e., it finds an optimal configuration after only one revision. Concerning solution
quality, the results are comparable for all the algorithms in all the experiments.

These preliminary results, which shall be confirmed on other cases, support
our hypothesis that heuristics that leverage knowledge about norm satisfaction



292 D. Dell’Anna et al.

T1 T2 T3

0%
20%
40%
60%
80% MD4 NMS10 NMS20

HCPB HCSB

Fig. 5. Average percentage of explored configurations before finding an optimal one.
100% means trying, on average, all the 84 configurations.

allow efficient runtime norm revision, by altering a suboptimal norm set into an
optimal one with only few revisions. Results concerning T1 suggest improvements
of our algorithms in order to consider more exploration when a configuration is
not found quickly. Figure 5 summarizes the convergence speed results.

It is finally worth to note that, in this paper, the selection of a norm set
that satisfies the given suggestions depends on the number of available norm
sets (only 12 in our experiments). However, thanks to the use of a Bayesian
Network and to the concept of norm revision, the Revision Engine also provides
information about the effectiveness of the norms w.r.t. the achievement of the
overall objectives. Differently from classical search algorithms, therefore, our
suggestion algorithms also provide direct information about how to revise the
norms, supporting targeted human or automated intervention on the norms.

6 Related Work

Several papers have focused on deciding and proving the correctness of normative
systems by model checking formulas describing desired properties such as liveness
or safety properties [12–14]. Despite their elegance, these approaches do not fully
cope with the dynamicity of today’s complex systems. Recently, frameworks
emerged to cope with norms dynamics and their impact on system specification.

Knobbout et al. [7] propose a dynamic logic to formally characterize the
dynamics of state-based and action-based norms. Both in Knobbout’s works
[7,15] and in Alechina et al.’s [14], norm change is intended as norm addition.
In this paper we investigated further types of norms revision that could be used
to extend such framework for dynamic normative systems.

Aucher et al. [16] introduce a dynamic context logic to describe the operations
of contraction and expansion of theories by introducing or removing new rules.
Governatori et al. [17] investigate from a legal point of view the application of
theory revision to reason about legal abrogations and annulments. The types of
revision presented in this paper can be related to theory revision. However we
have taken a multiagent systems standpoint, in which norm revision should be
studied in terms of its impact on the overall system behavior. We leave for future
work the study of the impact of a revision on the existing normative system.



Runtime Norm Revision Using Bayesian Networks 293

Norms update has also been studied from the perspective of approximation
[18], where an approximated version of a norm is obtained to cope with imper-
fect monitors for the original norm. The concept of approximation is similar to
our notion of relaxation, however it is defined with respect to a specific mon-
itor: an approximated norm is synthesized from the original one to maximize
the violations detectable by the available imperfect monitor. In this paper we
assumed perfect monitors and we focused instead on the effectiveness of norm
enforcement to develop algorithms that suggest a norm revision when needed.

Cranefield et al. [19] present a Bayesian approach to norm identification.
They show that agents can internalize norms that are already present in an envi-
ronment, by learning from both norm compliant and norm violating behaviours.
In this paper, instead of focusing on the agents, we used a Bayesian Network to
collect information about norms effectiveness, regardless of their internalization
in the agents. We used then the acquired knowledge to develop strategies for the
suggestion of revisions of the norms that are enforced in the system.

7 Conclusion and Future Work

The complexity and unpredictability of modern multiagent systems allows only
partial and incomplete domain knowledge at design-time. We proposed a runtime
supervision mechanism to automatically revise the norms enforced in a multia-
gent system. The mechanism employs a Bayesian Network to collect data about
norms satisfaction, and to learn their relationship with objectives achievement in
different contexts. Informed by such data, the supervisor performs norm revision
based on the revision suggested by the pureBN and stateBased algorithms.

We implemented the supervision mechanism as a variant of the hill climbing
optimization technique. Such variant always guarantees to find, if it exists, a
norm set that ensures the overall system objectives. We evaluated our imple-
mentation in terms of convergence speed and quality of the final enforced norm
set. We used an urban traffic simulation to compare the results that can be
obtained by taking into account the knowledge learned at runtime about norms
effectiveness, with results that can be obtained without such knowledge. The
results show that the our heuristics outperform the tested uninformed ones by
identifying the optimal solutions in significantly less number of revisions.

Future work will focus on four main directions. Evaluation: the scalabil-
ity and computational complexity of the approach must be properly evaluated:
the conditional probability tables of the objective nodes in the Bayesian Net-
work grow exponentially with the number of norms. The structure of the Norm
Bayesian Network does not leverage the conditional independence properties
that may exist between different norms. In case of large sets of norms, the use
of such network may become intractable. A solution is to use, when building the
network, a model representing the hierarchy between norms (e.g., [20]). Refined
revision algorithms shall be developed with a memory that provides informa-
tion about the effectiveness of previous revisions; possible techniques include
Q-Learning [21] and Dynamic Decision Networks [8]. Additional types of analy-
sis of the Bayesian Network, such as sensitivity analysis [22], should be studied



294 D. Dell’Anna et al.

to help select a new norm set. It is possible to extend the current structure of
the Norm Bayesian Network to support imperfect monitoring and uncertainty,
through the introduction of an additional layer of nodes and a sensor model
[8]. Norm synthesis, i.e., the automated generation of norms that can regulate
the multiagent system by preventing harmful behaviors and by promoting use-
ful behaviors, based on the revisions suggested and on agents preferences and
their relationship with the system objectives. Sanctions and their revision can
be studied as a way to influence the behavior of agents that goes beyond norm
relaxation or strengthening.

References

1. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

2. Bulling, N., Dastani, M.: Norm-based mechanism design. Artif. Intell. 239, 97–142
(2016)

3. Testerink, B., Dastani, M., Bulling, N.: Distributed controllers for norm enforce-
ment. In: Proceedings of ECAI, pp. 751–759 (2016)

4. Alechina, N., Bulling, N., Dastani, M., Logan, B.: Practical run-time norm enforce-
ment with bounded lookahead. In: Proceedings of AAMAS, pp. 443–451 (2015)

5. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. In: ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 53–62. ACM (2004)

6. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements evolution: from
assumptions to reality. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD. LNBIP,
vol. 81, pp. 372–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21759-3 27

7. Knobbout, M., Dastani, M., Meyer, J.C.: A dynamic logic of norm change. In:
Proceedings of ECAI, pp. 886–894 (2016)

8. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd internat.
edn. Pearson Education (2010)

9. Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L., Cowell, R.G.: Bayesian analysis
in expert systems. Stat. Sci. 8(3), 219–247 (1993)

10. Kwisthout, J.: Most probable explanations in bayesian networks: complexity and
tractability. Int. J. Approx. Reason. 52(9), 1452–1469 (2011)

11. Schmid, S., Gerostathopoulos, I., Prehofer, C., Bures, T.: Self-adaptation based
on big data analytics: a model problem and tool. In: Proceedings of SEAMS, pp.
102–108 (2017)

12. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative multi-agent
programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008.
LNCS (LNAI), vol. 5605, pp. 16–31. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-05301-6 2

13. Knobbout, M., Dastani, M.: Reasoning under compliance assumptions in normative
multiagent systems. In: Proceedings of AAMAS, pp. 331–340 (2012)

14. Alechina, N., Dastani, M., Logan, B.: Reasoning about normative update. In: Pro-
ceedings of IJCAI, pp. 20–26 (2013)

15. Knobbout, M., Dastani, M., Meyer, J.-J.C.: Reasoning about dynamic normative
systems. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
628–636. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 46

https://doi.org/10.1007/978-3-642-21759-3_27
https://doi.org/10.1007/978-3-642-21759-3_27
https://doi.org/10.1007/978-3-642-05301-6_2
https://doi.org/10.1007/978-3-642-05301-6_2
https://doi.org/10.1007/978-3-319-11558-0_46


Runtime Norm Revision Using Bayesian Networks 295

16. Aucher, G., Grossi, D., Herzig, A., Lorini, E.: Dynamic context logic. In: He,
X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 15–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04893-7 2

17. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annul-
ments in defeasible logic. Log. J. IGPL 18(1), 157–194 (2010)

18. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: Proceedings of AAMAS, pp. 117–124 (2014)

19. Cranefield, S., Meneguzzi, F., Oren, N., Savarimuthu, B.T.R.: A Bayesian approach
to norm identification. In: Proceedings of ECAI, pp. 622–629 (2016)

20. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Validating goal models via Bayesian net-
works. In: Proceedings of AIRE@RE (2018)

21. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Technical report CUED/F-INFENG/TR-166, vol. 37. University of Cambridge,
Cambridge (1994)

22. van der Gaag, L.C., Renooij, S., Coupé, V.M.: Sensitivity analysis of probabilistic
networks. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic
Graphical Models. STUDFUZZ, pp. 103–124. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-68996-6 5

https://doi.org/10.1007/978-3-642-04893-7_2
https://doi.org/10.1007/978-3-540-68996-6_5
https://doi.org/10.1007/978-3-540-68996-6_5

	Runtime Norm Revision Using Bayesian Networks
	1 Introduction
	2 Case Study: Norms for Urban Traffic Management
	3 Runtime Norm Supervision
	3.1 Norm Bayesian Network
	3.2 Revision Trigger
	3.3 Revision Engine

	4 Revision Selection Algorithms
	4.1 PureBN
	4.2 StateBased

	5 Evaluation
	5.1 Experiments
	5.2 Analysis of the Results

	6 Related Work
	7 Conclusion and Future Work
	References




