
ar
X

iv
:1

80
9.

03
65

6v
1

 [
cs

.A
I]

 1
1

Se
p

20
18

Resource-driven Substructural Defeasible Logic

Francesco Olivieri1, Guido Governatori1, Matteo Cristani2, Nick van Beest1 and

Silvano Colombo-Tosatto1

1Data61, CSIRO, Australia
2University of Verona, Italy

Abstract. Linear Logic and Defeasible Logic have been adopted to formalise dif-

ferent features relevant to agents: consumption of resources, and reasoning with

exceptions. We propose a framework to combine sub-structural features, corre-

sponding to the consumption of resources, with defeasibility aspects, and we dis-

cuss the design choices for the framework.

1 Introduction

Many different models of agency have been proposed over the years. In some of those

understandings, agents are assumed to be rational entities capable to reason about the

environment in which they are situated, and to deliberate about what actions to take to

achieve some particular goals.

Many logic-based approaches have been proposed to account for the rational be-

haviour of an agent. For example, in the well known BDI architecture (and architec-

tures inspired by it), agents first deliberate about the goals to achieve and, based on

such goals, they select the plans to implement from their plan libraries. Finally, during

or after the execution of the plans, the agents receive feedback from the environment,

which can trigger the so-called reconsideration: the activity to determine whether the

intended goals are still achievable with the selected plan and the current state of execu-

tion.

Most of the logic-based approaches take an idealised representation: the agents have

unlimited reasoning power, complete knowledge of the environment and their capabili-

ties, and unlimited resources. Over the years, a few approaches (using different logics)

have been advanced to overcome some of these ideal (unrealistic) assumptions.

In [10,14,15], the authors propose the use of Linear Logic to model the notion of

resource utilisation, and to generate which plans the agent adopts to achieve its goals.

In the same spirit, [8,7] address the problem of agents being able to take decisions

from partial, incomplete, and possibly inconsistent knowledge bases, using (extensions

of) Defeasible Logic (a computational and proof theoretic approach) to non-monotonic

reasoning and reasoning with exceptions. While these last two approaches seem very

far apart, they are both based on proof theory (where the key notion is on the idea

of (logical) derivation), and both logics (for different reasons and different techniques)

have been used for modelling business processes [9,17,2,16,13,12,4].

Formally, a business process can be understood as a compact representation of a set

of traces, where a trace is a sequence of tasks. A business process is hence equivalent

to a set of plans with possible choices. The idea behind the work mentioned above is to

allow agents to use their deliberation phase to determine the business processes (instead

of the plans) to execute.

http://arxiv.org/abs/1809.03656v1

2 Authors Suppressed Due to Excessive Length

In this paper, we discuss some design choices (and offer some results) about the

combination of linear logic (or more in general, sub-structural logic) and a computa-

tionally oriented non-monotonic formalism. To the best of our knowledge, this is the

first investigation in this area, but it combines two approaches that have proved useful

for modelling some aspects of agency.

We expect this work to be foundational for further research in modelling agents and

the way agents create their plans during the deliberation phase, taking into account the

utilisation of resources and possible exceptions (or partial knowledge of the environ-

ment). Hereafter, we focus on introducing the key logical aspect to be examined in the

paper.

Logic is often described as the “art” of reasoning, or in other terms, its subject mat-

ter is how to derive conclusions from given premises. Under this prospective we can

distinguish rules (or sequents, or instances of a consequence relation) and inference (or

derivation) rules. A rule specifies that some consequences follow from some premises,

while a derivation rule provides a recipe to determine the valid steps in a proof or deriva-

tion. A classical example of a derivation rule is Modus Ponens (i.e., from ‘α → β ’ and

α to derive β). A rule can be understood as a pair

Γ ⊢Θ ,

where Γ and Θ are collections of formulas in an underling language. In Classical Logic,

Γ and Θ are sets of formulas and in Intuitionistic Logic Θ is a singleton. Thus the rules

α,β ⊢ γ,δ and β ,α ⊢ δ ,γ

are the same rule. Where “,” in the antecedent Γ is understood as conjunction and

disjunction in the consequent Θ . In substructural logics (e.g., Lambek Calculus, and

the family of Linear Logics), Γ and Θ are assumed to have an internal structure, and

they are considered as multi-sets or sequences. An interpretation of a rule is how to

transform the premises in the conclusion. Thus the rule

α,β ,α ⊢ γ

can be taken to mean that we need two instances of α with an instance of β in between

to produce an instance of γ . Derivation rules, on the other hand, tell us how to combine

rules, to obtain new rules. For example, the derivation rule

Γ ⊢ α Θ ⊢ α → β

Γ ,Θ ⊢ α,α → β ,β

establishes whether we have a derivation of α from Γ and a derivation of α → β from

Θ , then we can combine the Γ and Θ , to obtain a derivation, where we have α followed

by α → β and then β . If the formulas denote activities (or tasks) and resources, then

the consequent is a sequence of tasks describing the activities to be done (and the order

in which they have to be executed) to produce an outcome (and also, what resources are

needed). Thus, we can use the rules to model transformation in a business processes,

and derivations as the traces of the process (or the ways in which the process can be

executed or the runs of system).

A formalism that properly models processes should feature some key characteristics,

and one of the most important ones is to identify which resources are consumed after a

task has finished its execution. Consider the notorious vending machine scenario, where

the dollar resource is spent to produce the can of cola. Trivially, once we get the cola,

the dollar resource is no longer spendable (unless it can be, somehow, replenished).

However, the specifications of a process may include thousands of rules to represent at

Resource-driven Substructural Defeasible Logic 3

their best all the various situations that may occur during the execution of the process

itself: situations where the information at hand may be incomplete and, sometimes,

even contradictory, and rules encoding possible exceptions. This means that we have

to adopt a formalism that is able to represent and reason with exceptions, and partial

information.

Defeasible Logic (DL) [11] is a non-monotonic rule based formalism, that has been

used to model exceptions and processes. The starting point being that, while rules define

a relation between premises and conclusion, DL takes the stance that multiple relations

are possible, and it focuses on the “strength” of the relationships. Three relationships

are identified: strict rules specifying that every time the antecedent holds the consequent

hold; defeasible rules, when the antecedent holds then, normally, the consequent holds;

and defeaters when the antecedent holds the opposite of the consequent might not hold.

An example of rules with a baseline condition and exception is the scenario the outcome

of inserting a dollar coin in a vending machine is that we get a can of cola, unless the

machine is out of order, or the machine is switched off. Thus, we can represent this

scenario with the rules1:

r1 : 1$ ⇒ cola

r2 : OutOfOrder ⇒¬cola

r3 : Off ⇒¬cola.

Based on the discussion so far, the motivation of the paper is twofold. From a technical

point of view we want to combine, from a logic perspective, the mechanisms of defea-

sibility with mechanisms from substructural logic (to capture the order of resources,

and the consumption of resources). It is clear that the resulting combination of logical

machinery could provide a much better formalism for the representation of processes.

Accordingly, we will use the point of view of business process modelling to illustrate

the technical features we are going to define in the logic (or, to be more specific, for

possible variants of substructural defeasible logics).

The remainder of this paper is structured as follows. Section 2 introduces the reader

to the features we want our logics to be equipped with. Subsequently, we provide the

formalisation of the logics in Section 3, and finally, Section 4 concludes our work.

2 Desired properties

We dedicate this section to detailing which new features our logics need to implement

and, for each of them, to justify their importance with respect to real life problems.

Ordered list of antecedents

Given the rule ‘r : A,B⇒C’, the order in which we derive A and B is typically irrelevant

for the derivation of C. As such, r may indistinctively assume the form ‘B,A ⇒ C’.

Consider a login procedure which requires a username and password. Whether we insert

one credential before the other does not affect a successful login.

1 ri is the name of rule i, symbol ⇒ denotes rules meant to derive defeasible conclusions, i.e.

conclusions which may be defeated by contrary evidence. As it will be clear in Section 3,

defeasible rules, defeaters, and the superiority relation represent the non-monotonic aspects of

our framework.

4 Authors Suppressed Due to Excessive Length

Nonetheless, sometimes it is meaningful to consider an ordered sequence of atoms

in the head of a rule, instead of an unordered set of antecedents. Suppose we have the

two activities ‘Check Creditworthiness’ and ‘Approve Loan’. Neither of them depends

on the other. However, performing one activity before the other may affect the final

result: if we approve the loan before creditworthiness has been checked and approved,

then a loan may potentially be provided to someone who is not able to repay.

This allows us to capture the fact that some resources may be independent of each

other from the derivational viewpoint (one does not derive the other), but are depen-

dent from a temporal perspective (one must be obtained before the other). Naturally, in

the same set/list of antecedents, combinations of unordered and ordered sequences of

literals is possible. For instance,

r : A;B;(C,D);E ⇒ F

represents a situation where, in order to obtain F , we need to first obtain A, then B,

then either C or D in any order, and lastly, only after both C and D are obtained, we

need to obtain E . The notation ‘;’ is used as a separator between elements in an ordered

sequence, while ‘,’ separates unordered sequences.

Multi-occurrence/repetitions of literals

From these ideas, it follows that some literals may appear in multiple instances, and

that two rules such as

r : A;A;B ⇒C and s : A;B;A ⇒C

are semantically different. For instance, rule r may describe a scenario where the order

of a product may require two deposit payments followed by a full payment prior to

delivery. Regarding s, consider that A is now ‘Add a tablespoon of ice sugar’ and B is

‘Stir for 1 minute‘. A perfect frosting requires many repetitions of A after B after A, for

a specific number of repetitions.

Resources consumption

Assume we have two rules,

r : A,B ⇒ D and s : A,C ⇒ E.

If we are able to derive A, B and C, then D and E are subsequently obtained. Deducing

both D and E is a typical problem of resource consumption.

Given the financial state of a customer (i.e., their pay cheque and their monthly

spending), a finance approval is sent to the customer for the requested loan. However,

that finance approval can only be used once, given the financial situation of that cus-

tomer. That is, they cannot obtain another loan with the same finance approval. If the

customer wants to apply for another loan, they are required to obtain a new finance

approval first.

This example indicates that some literals represent resources that are consumed dur-

ing the derivation process: if they appear in the antecedent of a rule, and such a rule

produces its conclusion, then the other rules with the same literals in their antecedent

can no longer fire (unless there are multiple occurrences).

Conversely, some resources are not consumed once used. For instance, a policy at

a bank may dictate that a customer has to be below 65 years old to be eligible for a

mortgage. A similar requirement may hold for a car loan. However, a customer may

apply for both a mortgage and a car loan, as neither of these applications invalidate the

Resource-driven Substructural Defeasible Logic 5

fact that the customer is younger than 65 years old. That is, the information regarding

the customers’ age is not consumed when used.

The discussion of when a resource has to be considered consumable/non-consumable

is outside the scope of this paper. It is a duty of the knowledge engineer to decide

whether to tag a resource as consumable, or non-consumable. For the remainder of

this paper, we assume all literals to be consumable. The treatment/derivation of non-

consumable literals is the same as in Standard Defeasible Logic (SDL), and thus some-

thing well known in the literature of SDL.

Concurrent production

Symmetrically, we consider two distinct rules having the same conclusion:

r : A ⇒C and s : B ⇒C.

It now seems reasonable that, if both A and B are derived, then we conclude two in-

stances of C (whereas in classical logics we only know that C holds true). For example,

consider a family where it is tradition to have pizza on Friday evening. Last Friday, the

parents were unable to communicate with each other during the day, and one baked the

pizza while the other bought take-away on the way home.

However, there exists consistent cases where multiple rules for the same literal pro-

duce only one instance of the literal (even if they all fire). For example, both a digital or

handwritten signature would provide permission to proceed with a request. The same

request does not require permission twice: either it is permitted, or it is not.

Resource consumption: A team defeater perspective

Sceptical logics provide a means to decide which conclusion to draw in case of contra-

dicting information. Typically, a superiority relation is given among rules for contrary

conclusions: it is possible to derive a conclusion only if there exists a single rule stronger

than all the rules for the opposite literal.

Defeasible Logic handles conflicts differently, and the idea here is that of team

defeater. We do not look at whether there is a single rule prevailing over all the other

rules, but rather whether there exists a team of rules which can jointly defeat the rules

for the contrary conclusion. That is, suppose rules r′, r′′ and r′′′ all conclude P, whilst

s′ and s′′ are for ¬P. If r′ > s′ and r′′ > s′′, then the team defeater made of {r′,r′′} is

sufficient to prove P.

The focus remains on resource consumption and production. As such, the questions

we need to answer are, again, which resources are consumed, and how many instances

of the conclusion are derived. We start by distinguishing the two scenarios where: (a)

neither of the teams prevail, (b) one team wins. Consider

r′ : A ⇒ P, r′′ : B ⇒ P, r′′′ : C ⇒ P, s′ : D ⇒¬P, s′′ : E ⇒¬P.

In case (a), e.g., when no superiority is given, we cannot conclude for either conclusion.

Hence, the question is “Will any of the resources be consumed?”. In case (b), we assume

r′ > s′ and r′′ > s′′, and we conclude that P. How many instances of P are produced?

One solution is to produce three instances of P and, accordingly, A, B and C are all

consumed. We can instead consistently assume that we produce P twice, through the

two winning rules r′′ and r′′′ only, but not via r′; we thus consume B and C, but not A.

Lastly, on the perspective of the defeated rules another relevant question is: Are

D and E ever consumed? As clear, there is no unique answer. There are consistent

6 Authors Suppressed Due to Excessive Length

scenarios where the literals in the defeated rules are consumed, and other cases where

they are not. In Section 3, we provide different solutions to cover the various cases.

Consider the process of writing a scientific publication for a conference. If the paper

is accepted, the manuscript resource is consumed, since it cannot be submitted again.

On the contrary, if the paper is rejected, the manuscript resource is not consumed since

it can be submitted again to other venues.

Multiple conclusions and resource preservation

Consider internet shopping. As soon as we pay for our online order, the bank account

balance decreases, the seller’s account increases. Both the seller and the web site have

the shipping address and, possibly, the credit card number.

The conclusion of a rule is usually a single literal. The above example suggests that

a single rule may produce more than one conclusion, which cannot be represented by

multiple rules with the same set of antecedents. For example, consider the rules

r : A,B ⇒C and s : A,B ⇒ D.

In a propositional calculus, once the system derives A and B, by Modus Ponens, we

obtain both C and D. However, when we consider resource consumption, then it is clear

that only one rule can produce its conclusion, whilst the other cannot. We tackle this

problem by allowing rules to have multiple conclusions. Thus, r and s can be merged

into the single rule

r′ : A,B ⇒C,D.

Similar to our discussion on the ordering of antecedents, we may have any combi-

nation of ordered/unordered sequences of conclusions. In the previous example, only

after we have provided the credit card credentials, our bank account decreases, whilst

we can provide the shipping address before the credit card credentials, or the other way

around.

The notion of multiple conclusions, along with the discussion on team defeaters,

leads to another problem. Consider the two rules

r : A ⇒ B;C;D and s : E ⇒¬C,

where no superiority is given. Do we conclude that B or D? Moreover, what happens if

now we have ‘r : A⇒B,C,D’ and we establish that s is stronger then r? Do we conclude

that B and D (meaning that only the derivation of C has been blocked by s), or will the

production of B and D be affected also?

Loops

The importance of being able to properly handle loops is evident: loops play a funda-

mental role in many real life applications, from business processes to manufacturing.

Back to the login procedure, if one of the credentials is wrong, the process loops back

to a previous state, for instance, by asking the user to re-enter both credentials.

Naturally, a system is able to properly handle loops when it can handle/recognise

the so-called exit conditions, to prevent infinite repetition of the same set of events. For

example, after three wrong login attempts, the login procedure may prevent the user

from further attempts and require them to undergo a retrieve credential procedure.

Resource-driven Substructural Defeasible Logic 7

3 Language and logical formalisation of RSDL

Before introducing the notation used throughout the remainder of this paper, we will

first justify a number of implementation choices. In Section 2, we stated that there are

two types of literals: consumable against non-consumable. In addition, we introduced

the notion of ordered sequences of literals in the antecedents and conclusions, we stated

that any combination of ordered or unordered sequences of literals is (theoretically)

possible.

The logics presented here shall only consider: (i) consumable literals, and (ii) either

multi-sets or ordered sequences of literals (but not their combination). Our motivation

is that adding conditions to the proof tags (labels that describe how a literal can be de-

rived) in order to deal with non-consumable literals and alternating ordered/unordered

sequences is a trivial and pedant task. Their formalisation is exactly the same of that in

Standard DL (SDL), and thus the process would not add any value (it will be done for

the sake of completeness in future work).

Our logics deal with two types of derivations: strict and defeasible. Their underly-

ing meaning is the same as those in SDL. Strict rules derive indisputable conclusions,

i.e., conclusions that which are always true. Thus, if two strict rules have opposite con-

clusions, then the resulting logic is inconsistent. On the contrary, defeasible rules are

to derive pieces of information that can be defeated by contrary evidence, like ‘Birds

typically fly’ since we know that ‘Penguins are birds that do not fly’. Finally, defeaters

are special type of rules whose only purpose is to block contrary evidence. They cannot

be used to directly derive conclusions, but only to prevent other rules to conclude.

We have now passed through the conceptual basis of our logics and can move

forward to introduce the language of Resource-driven Substructural Defeasible Logic

(RSDL). We will use greek letters to denote propositional atoms, while roman letters r,

s, t are reserved to denote rule labels. In addition, l and c are reserved to denote lines

and columns in a proof, while other roman letters are typically used as subscripts to

denote the cardinality of sets/sequences; capital F denotes the set of facts, capital R the

set of rules, A(r) the list of antecedents, and C(r) the set/list of conclusions of rule r.

PROP is the set of propositional atoms, the set Lit = PROP ∪ {¬ϕ |ϕ ∈ PROP}
denotes the set of literals. The complement of a literal ϕ is denoted by ∼ψ ; if ψ is a

positive literal ϕ , then ¬ψ is ¬ϕ , and if ψ is a negative literal ¬ϕ , then ∼ψ is ϕ .

We adopt the standard DL definitions of strict rules, defeasible rules, and defeaters.

Definition 1. Let Lab be a set of arbitrary labels. Every rule is of the type r : A(r) →֒
C(r), where

1. r ∈ Lab is a unique name.

2. A(r) = α1, . . . ,αn, the antecedent, or body, of the rule is a list of literals.

3. An arrow →֒∈ {→,⇒, } denoting a strict rule, a defeasible rule, and a defeater,

respectively;

4. C(r) is the consequent, or head, of the rule. For the head, we consider three options:

(a) The head is a single literal ϕ;

(b) The head is a list ϕ1, . . . ,ϕm (to be understood as a multi-set);

(c) The head is a list ϕ1; . . . ;ϕm (to be understood as a ordered list).

With abuse of notation, we will often refer to ϕ1, . . . ,ϕm as a set, and overload

standard set theoretic notation. Given a set of rules R, and a rule r : A(r) →֒ C(r) we

8 Authors Suppressed Due to Excessive Length

use the following abbreviations for specific subsets of rules: (i) Rs is the subset of strict

rules, (ii) Rsd is the set of strict and defeasible rules, (iii) R[ϕ ; i] is the set of rules where

ϕ appears at index i in the consequent where the consequent is a list, (iv) R[ϕ , i] when

the consequent is a set containing ϕ .

Definition 2. A resource-driven substructural defeasible (rsd) theory is a tuple (F,R,≻
) where: (i) F ⊆ Lit are pieces of information denoting the (consumable) resources

available at the beginning of the computation. This differs strikingly from SDL, where

i) they denote always-true statements; (ii) R is the set of rules; (iii) ≻, the superiority

relation, is a binary relation over R.

A theory is finite if the set of facts and rules are finite. In SDL, a proof P of length

n is a finite sequence P(1), . . . ,P(n) of tagged literals of the type ±∆ϕ and ±∂ϕ . The

idea is that, at every step of the derivation, a literal is either proven or disproven.

In our logic, we must be able to derive multiple conclusions in a single derivation

step, and hence we require a mechanism to determine when premises have been used to

derive conclusion. Accordingly, we modify the definition of proof to be a matrix.

Definition 3. A proof P in RSDL is P(l,c) a finite matrix P(1,1), . . . ,P(l,c) of tagged

literals of the type ±∆ϕ , ±∂ϕ , +σϕ , +∆ϕX and +∂ϕX.

We assume that facts are simultaneously true at the beginning of the computation.

Notation +#ϕX, # ∈ {∆ ,∂}, denotes the fact that ϕ has been consumed. The distinctive

notation for when a literal is proven and when it is consumed will play a key role to

determine which rules are applicable.

The tagged literal ±∆ϕ means that ϕ is strictly proved/refuted in D, and, symmetri-

cally, ±∂ϕ means that ϕ is defeasibly proven/refuted. The set of positive and negative

conclusions is called extension.

In SDL, given a set of facts, a set of rules and a superiority relation, the extension

is unique. It is clear that this is not the case when resource consumption and ordered

sequences are to be taken into account: depending on the order in which the rules are

applied, (rather) different extensions can be obtained. In sub-structural defeasible logic

every distinct derivation corresponds to an extension.

In SDL, derivations are based on the notions of a rule being applicable or discarded.

Briefly, a rule is applicable when every literal in the antecedent has been proven at a

previous step. We report hereafter a standard defeasible proof tag.

If P(n+ 1) = +∂ϕ then

(1) ∃r ∈ Rsd [ϕ]: r is applicable and

(2) ∀s ∈ R[∼ϕ] either

(2.1) s is discarded or

(2.2) ∃t ∈ R[ϕ]: t is applicable and t ≻ s.

A literal is defeasibly proven when there exists an applicable rule for such a conclu-

sion and all the rules of the opposite are either discarded, or defeated by stronger rules.

(Strict derivations only differ in that, when a rule is applicable, we do not care about

contrary evidence, and the rule will always produce its conclusion nonetheless. As such,

the consistency of the logics depends only on the strict part of the logics.)

As for SDL, we obtain variants of the logic by providing different definitions of be-

ing applicable and discarded. More specifically, for RSDL, definitions of applicability

Resource-driven Substructural Defeasible Logic 9

and discardability need to take into account (i) the number of times a literals appear in

the body of a rule, (ii) how many times they have been derived2, (iii) the order in which

the literals occur in the body of a rule and in a derivation. In addition, we have to extend

the structure of the proof conditions to include mechanisms or conditions to determine

when literals/resources have been used to derive new literals/resources.

We shall proceed incrementally. First, we provide definitions for multi-sets. We

then provide definitions for sequences. In both cases, we consider rules with a single

literal for conclusion. Consequently, we end with the definitions to describe multiple

conclusions.

Definition 4. A rule r is #-applicable, # ∈ {∆ ,∂ ,σ}, at P(l + 1,c+ 1) iff ∀ αi ∈ A(r)
then+#αi ∈P[(1,1)..(l,c)]. Moreover, we say that r is #-consumable iff r is #-applicable

and ∃ l′ ≤ l such that P(l′,c) = +#αi.

A rule is consumable if it is applicable and, for every literal in its antecedent, there

is an unused occurrence. (This can be done by checking the previous derivation step

c.) Discardability is obtained by applying the principle of the strong negation to the

definition of applicability.

Definition 5. A rule r is #-discarded, # ∈ {∆ ,∂}, at P(l + 1,c+ 1) iff ∃ αi ∈ A(r) such

that −#αi ∈ P[(1,1)..(l,c)]. Moreover, we say that r is #-non–consumable iff either r is

discarded, or ∀ l′ ≤ l, P(l′,c) 6=+∂αi.

Lastly, we define the conditions describing when a literal is consumed.

Definition 6. Given rule r, a literal α ∈ A(r) is #-consumed, # ∈ {∆ ,∂}, at P(l+1,c+
1), iff

1. ∃ l′ ≤ l such that P(l′,c) = +#α , and

2. P(l′,c+ 1) = +#αX.

The following example illustrates how we use +∂ϕX within the resource consump-

tion mechanism.

Example 1. Consider D = ({α},R, /0), where

R = {r0 : α ⇒ β , r1 : β ⇒ ϕ , r2 : β → ψ}

and (one of) the corresponding proof table(s):

P 1 2 3

1 +∆α +∆αX +∆αX

2 +∂β +∂βX

3 +∂ϕ

Naturally, two mutually exclusive extensions are possible, based on whether +∂β
is used by r1 to derive +∂ϕ , or by r2 to derive +∂ψ . Table 1 shows the former case. At

P(1,1) we obtain +∆α , instance that is consumed in deriving +∂β at P(2,2). Thus,

P(1,2) = +∆αX. Symmetric situation for activating r1 at the third derivation step,

which results in P(2,3) = +∂βX and P(3,3) = +∂ϕ . Now, at the fourth derivation

step, r2 is applicable but non-consumable, and hence we cannot derive +∂ψ .

2 Trivially, e.g., if literal α has been derived twice, but it appears in the antecedent of three rules,

only two of such rules can produce their conclusions.

10 Authors Suppressed Due to Excessive Length

Proof tags for multi-sets in the antecedent and single conclusion

We now present the proof tags, and we begin with: (1) the antecedent is a multi-set, (2)

single literal in the conclusion. +∆ describes positive definitive (strict) derivations.

+∆ : If P(l+ 1,c+ 1) = +∆ϕ then

(1) ϕ ∈ F , or

(2) (1) ∃r ∈ Rs[ϕ] such that

(2) r is ∆ -consumable and

(3) ∀α j ∈ A(r), α j is ∆ -consumed.

Literal q is definitely provable if it either is a fact, or there is a strict, applicable rule

for ϕ , whose antecedent literals can be consumed. Condition (2) actually consumes the

literals by replacing +∆α j with +∆αXj . Proof tag −∆ is as follows:

−∆ : If P(l+ 1,c+ 1) =−∆ϕ then

(1) ϕ /∈ F and

(2) ∀r ∈ Rs[ϕ], r is ∆ -non-consumable.

Literal q is definitely refuted if ϕ is not a fact, and every rule for ϕ is non-consumable.

We can now turn our attention to the definition of the proof tags for defeasible conclu-

sions. In particular, we provide proof conditions (corresponding to inference rules) for

three types of conclusions: +∂ϕ meaning that the current derivation P proves ϕ ; −∂ϕ
meaning that the current derivation P prevents the proof of ϕ , or in other terms that

ϕ is refuted; and +σϕ whose intuitive reading is that the ϕ would be derivable in the

current proof if more (appropriate) resources are would be available. Alternatively, for

+σϕ indicates that there are applicable rules for ϕ , but the resources for such rules have

been used to derive other conclusions.

+∂ : If P(l + 1,c+ 1) = +∂ϕ , then

(1) +∆ϕ ∈ P(l,c) or

(2) (1) −∆∼ϕ ∈ P(l,c) and

(2) ∃r ∈ Rsd [ϕ] ∂ -consumable and

(3) ∀s ∈ R[∼ϕ] either

(1) s is ∂ -discarded, or

(2) ∃t ∈ R[ϕ] ∂ -consumable, t ≻ s, and

(3) if ∃w ∈ R[∼ϕ] ∂ -applicable, t ≻ w, then

(1) ∀α j ∈ A(t), α j is ∂ -consumed, otherwise

(2) ∀αk ∈ A(r), αk is ∂ -consumed.

Condition (1) allows us to inherit a defeasible derivation from a definite derivation.

Condition (2.1) ensures that the logic is sound (i.e., that it is not possible to derive ϕ and

its negation as provable defeasible conclusions unless they are derivable from the strict

part only. Condition (2.2) requires that there is rules that is triggered by previously

proved literals that have not been used to trigger other conclusions. Clause (2.3.1) is

the standard one of defeasible logic, meaning that to rebut an attacking argument, we

can show that some of the premises of the argument/rule have been refuted. The second

method to rebut the attacking arguments (rules for ∼ϕ) is to show that they are defeated,

i.e., weaker than applicable rules for the conclusion we want to prove, similarly the

Resource-driven Substructural Defeasible Logic 11

antecedents of such rules must not have been used for other conclusions, clause (2.3.2).

The final part is the mechanism to determine which resources are consumed by the

derivation of ϕ . If there are no applicable rules for ∼ϕ the resources are taken for the

rule proposed as an argument, that is rule r (2.3.3.2); if there are counter-argument,

the resources are taken from each rule rebutting a counter-argument, for each possible

applicable counterargument (2.3.3.1). Note, that in this way we capture the idea of team

defeat (see Section 2.

For −∂ we use the strategy similar to that used in [1] to provide proof condition

for the ambiguity propagating variant of SDL, that is, we make it easier to attack a

rule (2.2.2). Also, for the derivation of literals tagged with −∂ does not require the

consumption of resources. Resources are consumed only when we positively derive

literals.

−∂ : If P(l + 1,c+ 1) =−∂ϕ , then

(1) −∆ϕ ∈ P[l,c] and

(2)(1) +∆∼ϕ ∈ P[l,c] or

(2) ∀r ∈ Rsd[ϕ] either

(1) r is ∂ -discarded or

(2) ∃s ∈ R[∼ϕ] such that

(1) s is σ -applicable and

(2) ∀t ∈ R[ϕ] either

(1) t is ∂ -discarded or (2) not t ≻ s.

The idea behind+σ is that there are rules applicable for the consequent, irrespective

whether the premises have been used or not. However, we have to check that the rule is

not defeated by an applicable rule for the opposite (2.2).

+σ : If P(l + 1,c+ 1) = +σϕ then

(1) ∆ϕ ∈ P[l,c] or

(2) ∃r ∈ Rsd [ϕ] such that

(1) r is σ -applicable and

(2) ∀s ∈ R[∼ϕ] either

(1) s is ∂ -discarded or (2) not s ≻ r.

Example 2. Consider D = ({α,β ,γ},R, ≻= {(r2,r3)}), where

R = {r0 : α ⇒ ϕ , r1 : α ⇒ ψ , r2 : β ⇒ ϕ , r3 : γ ⇒∼ϕ},

and the corresponding proof table:

P 1 2 3 4 5

1 +∆α +∆α +∆α +∆α +∆αX

2 +∆β +∆β +∆βX +∆βX

3 +∆γ +∆γ +∆γ
4 +∂ϕ +∂ϕ
5 +∂ψ

Assume that, at the fourth derivation step, r0 is taken into consideration; r0 is ac-

tually consumable, but so is r3, and no superiority is given between r0 and r3. There

actually exists a consumable rule stronger than r3, r2. Accordingly, the team defeater

allows us to prove +∂ϕ , and only β is consumed in this process. This implies that α is

still available, and can be used at the fifth derivation step to produce +∂ψ , via r1.

12 Authors Suppressed Due to Excessive Length

Proof tags for sequences in the antecedent and single conclusion

We can now move forward and consider sequences in the antecedent. Naturally, defini-

tions of being applicable, discarded, and consumable must be revised.

A rule is sequence applicable when the derivation order reflects the order in which

the literals appear in the antecedent, i.e., for every two literals in the antecedent, say

α and β , such that α appears before β , there exists a derivation of α before every

derivation (for that occurrence3) of β .

Definition 7. A rule r ∈ R[ϕ] is #-sequence applicable, # ∈ {∆ ,∂}, at P(l+1,c+1) iff

for all αi ∈ A(r):
1. there exists ci ≤ c such that P(li,ci) = +#αi, li ≤ l, and

2. for all α j ∈ A(r) such that i < j, then

3. for all c j ≤ c such that P(l j,c j) = +#α j, l j ≤ l then li < l j and ci < c j.

We say that r is #-sequence consumable iff is #-applicable and 4. P(li,c) = +#αi.

A rule is sequence discarded when there exists a literal in the antecedent, which has

been previously disproven, or there are two proven literals in the antecedent, say α and

β , such that α appears before β , and one proof for β is before every proof for α .

Definition 8. A rule r ∈ R[ϕ] is #-sequence discarded, # ∈ {∆ ,∂}, at P(l + 1,c+ 1) iff

for there exists αi ∈ A(r) such that either

1. −#αi ∈ P(l − 1,c− 1), or

2. for all ci ≤ c such that P(l j,ci) = +#αi, li ≤ l, then

– there exists α j ∈ A(r), with i < j, such that

– there exists c j ≤ c such that P(l j,c j) = +#α j, l j ≤ l, and ci > c j, li > l j.

The definition of a literal being #-consumed remains the same as before. The proof

tags for strict and defeasible conclusions with (i) sequences in the antecedent, and (ii) a

single conclusion can be obtained by simply replacing

– #-applicable with #-sequence applicable;

– #-consumable with #-sequence consumable;

– #-discarded with #-sequence discarded.

Example 3. Consider D=({γ,ε,ζ},R,≻= /0), where R= {r0 : α,β ,α ⇒ϕ , r1 : γ ⇒
α, r2 : ε ⇒ α, r3 : ε ⇒ β}.

Assume the rules are activated in this order: first r1, then r2, last r3. Thus, P(4,4) =
+∂α , P(5,5) = +∂α , and P(6,6) = +∂β . The derivation order between β and the sec-

ond occurrence of α has not been complied with, and r0 is sequence discarded. Same if

the order is ‘r3, r1, r2’, whilst ‘r2, r3, r1’ is a legit order to let r0 be sequence applicable.

Proof tags for sequences in both the antecedent and conclusion

Even when we consider sequences in the consequent, a literal’s strict provability or

refutability depends only upon whether the strict rule (where the literal occurs) is se-

quence consumable or not. As such, given a strict rule r ∈ Rs[ϕ ; j], still ϕ’s strict prov-

ability/refutability depends only upon whether r is strictly sequence consumable or not.

However, now we also have to verify that, if r ∈ Rs[ψ ; j− 1], we prove ϕ immediately

after ψ . The resulting new formalisation of +∆ is as follows:

3 In order to handle situations like A(r) = {α;β ;α;β} (as illustrated in Example 3).

Resource-driven Substructural Defeasible Logic 13

+∆ : If P(l+ 1,c+ 1) = +∆ϕ then

(1) ϕ ∈ F , or

(2) (1) ∃r ∈ Rs[ϕ ; j] such that

(2) r is ∆ -sequence-consumable,

(3) r ∈ Rs[ψ ; j− 1] and P(l + i− 1,c+ 1)= +∆ψ ,

(4) ∀α j ∈ A(r), α j is ∆ -consumed.

The positive, defeasible proof tag is as follows.

+∂ : If P(l + i,c+ 1) = +∂ϕ , then

(1) +∆ϕ ∈ P(l,c) or

(2) (1) −∆∼ϕ ∈ P(l,c) and

(2) (1) ∃r ∈ Rsd [ϕ ; j] ∂ -sequence-consumable and

(2) ∃r ∈ R[ψ ; j− 1] and

(3) P(l + i− 1,c+ 1)= +∂ψ , and

(3) ∀s ∈ R[∼ϕ] either

(1) s is ∂ -sequence-discarded, or

(2) ∃t ∈ R[ϕ] ∂ -sequence-consumable, t ≻ s, and

(3) if ∃w ∈ R[∼ϕ] ∂ -sequence-applicable, t ≻ w, then

(1) ∀α j ∈ A(t), α j is ∂ -consumed, otherwise

(2) ∀αk ∈ A(r), αk is ∂ -consumed.

Negative proof tags are trivial to deduce, and therefore omitted.

Example 4. Consider D = ({α,β},R,≻= /0), where

R = {r0 : α ⇒ ϕ ; χ ;ψ , r1 : β ⇒∼χ}.

At P(3,3) we prove +∂ϕ , while P(4,3) =−∂ χ (r1 is sequence-applicable and r0 is not

stronger than r1). Therefore, r0 cannot prove ψ .

Proof tags for sequences in the antecedent and multi-sets in the conclusion

We lastly take into account multi-sets in the conclusion. When considering a ‘team

defeater fight’, two scenarios are possible. In the former, we draw a conclusion only if

there is a winning team defeater for each literal in the conclusion. In the latter, we limit

the comparison on the individual literal (and thus the latter solution is less strict than

the former).

Strict provability does not change with respect to the one described in the previous

section, and is therefore omitted.

+∂ : If P(l + i,c+ 1) = +∂ϕ , then

(1) +∆ϕ ∈ P(l,c) or

(2) (1) −∆∼ϕ ∈ P(l,c) and

(2) ∃r ∈ Rsd [ϕ , j] ∂ -sequence-consumable and

(3) ∀s ∈ R[∼ψ] such that ψ ∈C(r) either

(1) s is ∂ -sequence-discarded, or

(2) ∃t ∈ R[ψ] ∂ -sequence-consumable, t ≻ s, and

(3) if ∃w ∈ R[∼ϕ] ∂ -sequence-applicable, t ≻ w, then

(1) ∀α j ∈ A(t), α j is ∂ -consumed, otherwise

(2) ∀αk ∈ A(r), αk is ∂ -consumed.

14 Authors Suppressed Due to Excessive Length

Consider D of Example 4, where this time C(r) = {ϕ ,χ ,ψ}. There is no rule

stronger than r1, and thus no conclusion can be defeasibly proven.

+∂ : If P(l + i,c+ 1) = +∂ϕ , then

(1) +∆ϕ ∈ P(l,c) or

(2) (1) −∆∼ϕ ∈ P(l,c) and

(2) ∃r ∈ Rsd [ϕ , j] ∂ -sequence-consumable and

(3) ∀s ∈ R[∼ϕ] either

(1) s is ∂ -sequence-discarded, or

(2) ∃t ∈ R[ϕ] ∂ -sequence-consumable, t ≻ s, and

(3) if ∃w ∈ R[∼ϕ] ∂ -sequence-applicable, t ≻ w, then

(1) ∀α j ∈ A(t), α j is ∂ -consumed, otherwise

(2) ∀αk ∈ A(r), αk is ∂ -consumed.

Consider D of Example 4, again with C(r) = {ϕ ,χ ,ψ}. This time r1 can prevent

only to prove +∂ χ (and, analogously, r0 prevents to conclude +∂∼χ), and thus we

prove +∂ϕ as well as +∂ψ .

4 Conclusions, related and further work

We have dealt with the problem of manipulating resource consumption in non-monotonic

reasoning. The combination of linear and defeasible features in a logical system is a

complete novelty in the community of computational logic and knowledge representa-

tion.

Variants of SDL have been investigated so far as a means for devising business

process traces [13,12,4]. While the idea is closely related to outline in the Introduction

that a derivation corresponds to a trace in a process, the approach based on variants of

SDL are not able to handle loops and, in general, repetitions of tasks. These aspects are

elegantly captured by the sub-structural aspects presented in the paper.

Studies on light linear logic versions, with specific aspects of linearity related to

resource consumption have been devised such as light and soft linear logic [3,5]. Ap-

plications of linear logic to problems indirectly related to business processes such as

Petri Nets can be found in [9] and in [17,2]. However, such approaches are not able to

handle in a natural fashion the aspect of exceptions. The representation of exception

would require complex rules and encyclopaedic knowledge of the scenarios described

by the processes encoded by rules/sequents.

The most important properties we aim at proving for a logical non-monotonic sys-

tem are consistency and coherence4. Although we cannot report a formal proof of con-

sistency and coherence for the logical system so far, we have exhaustively determined

the conditions for interference of the sub-structural and the non-monotonic aspects of

RSDL, and the formalisation of these derives the aforementioned properties.

A logical system enjoys the finite model property when for every set of formulae,

the associated meaning to each formula requires a finite set of elements in the semantics

for every model of that set. In the case of RSDL, the semantics is determined by the

derivations that are possible given a theory.

4 In DL, a theory D is consistent if, for no literal ϕ , D ⊢ +#ϕ and D ⊢ +# ∼ ϕ; D is coherent

if, for no literal ϕ , D ⊢+#ϕ and D ⊢ −#ϕ , # ∈ {∆ ,∂}.

Resource-driven Substructural Defeasible Logic 15

As a consequence of the aforementioned notions we shall prove one property that

regards acyclic RSDL. The Atom Dependency Graph5 of a defeasible theory has been

defined in many different contexts, specifically in the analysis of preferences, as in

[6]. Acyclic RSDLs are theories in which no cycle appears in the Atom Dependency

Graph. This means that when a rule is used to produce a conclusion, the resources in

the antecedent of the rules cannot be replenished, and we reach nodes, literals, that can

be produced by the theory only if they are given (node, with no incoming edges in the

Atom Dependency Graph).

Theorem 1. Acyclic finite RSDL theories enjoy the Finite Model Property.

Proof. If there are no cycles in the Atom Dependency Graph, every time a rule is used

to derive a positive conclusion (strict or defeasible), the number of available resources

decreases. Accordingly, the maximum number of literals that can appear in a proof P is

bounded and proportional to the number of literals occurring in the head of rules in a

given theory. Consequently, every derivation is finite. Hence, the theory has the Finite

Model Property.

Note that the theory with α as a fact and the rule α ⇒ α can generate a derivation

with infinitely many occurrences of α . The acyclicity condition allows us to compute

in finite time the extension of a theory. However, this is not the case for cyclic theory,

where the computation is not guaranteed to terminate. Accordingly, we can state the

following result.

Theorem 2. The problem of computing extensions of cyclic RSDL theories is semi-

decidable.

For acyclic theories, we have the finite model property. Therefore, since acyclic

theories can be checked for model existence in finite time, when the model does not

exists, and by brute force methods (for instance by simply computing all the possible

sequences of any finite length) we can trivially claim the following result.

Theorem 3. The problem of computing extensions of acyclic RSDL theories is decid-

able.

Generally speaking, the extension computation problem is likely to be decidable

for larger classes of pure acyclic theories. In particular, when cycles are conservative

(cycles that do not produce new instances of the same literal), or when a cycles are

limited in the extension by some rules that consume the literals generated in the cycles

themselves before such literals could be used to allow other rules fire, it is possible to

guarantee the finite model property. This is a matter of future investigations.

DL has been introduced as a means for managing non-monotonic aspects of logical

conclusion/derivation mechanisms. DL is efficient in terms of time and space, being

the problem of computing the extension of a defeasible theory linear in the number of

literals in the theory. This property, however, cannot be claimed for RSDL. In particular,

5 In the Atom Dependency Graph the atomic propositions are the nodes, and there is a directed

edge between nodes if there is a rule containing the source or its negation in the body, and the

target or its negation in the head.

16 Authors Suppressed Due to Excessive Length

we can show that RSDL can be used to represent classical 3-SAT problem, and there-

fore prove that the complexity of this problem cannot be polynomial on deterministic

machines.

The basic idea of reducing 3-SAT is as follows. A 3-SAT problem P is a clause

representing a finite conjunction of triplets (ti), each formed by three literals (t1
i , t

2
i , t

3
i),

that we assume to be conjuncted in the sub-clause, where we ask whether the clause is

satisfiable, or not.

We map each literal appearing in the clause in a positive literal t̂x
i (with x = 1,2,3),

not appearing in the clause, and add one positive literal t̂i for every triplet, again not

appearing in the triplets. Subsequently, we add one rule t̂i ⇒ t̂x
i for each of the three

values x = 1,2,3 and three rules t̂x
i ⇒ tx

i for each of the values x = 1,2,3. Finally, we

add one fact for every literal t̂i. Conclusively, we have mapped every triplet in six RSDL

rules. The resulting RSDL theory has a derivation containing at least one literal for

each clause if and only if the original problem P is a satisfiable clause. For example,

consider the clause (α ∨β ∨ γ)∧ (¬α ∨¬β ∨ δ). Using c1 and c2 for the triplets, and

c1
1,c

2
1,c

3
1,c

1
2,c

2
2,c

3
2 for the elements in the triplets, the theory encoding the clause is:

c1

c2

c1 ⇒ c1
1

c1 ⇒ c2
1

c1 ⇒ c3
1

c2 ⇒ c1
2

c2 ⇒ c2
2

c2 ⇒ c3
2

c1
1 ⇒ α

c2
1 ⇒ β

c3
1 ⇒ γ

c1
2 ⇒∼α

c2
2 ⇒∼β

c3
2 ⇒ δ

In this paper we presented the general idea of how to develop a logic combining fea-

tures for sub-structural logic and defeasible reasoning, and we provided some general

results about meta-theoretic properties (e.g., decidability and computational complex-

ity). More research is required to determine the correct boundary between decidable and

undecidable problems for these types of hybrid combinations and to provide a full map

of the computational complexity analysis of the various options. However, the outline

we discussed in this section seems to indicate that this is not a straightforward task. In

this paper, we did not address the issue of how to model the motivational attitudes of

the agents, we left the investigation of how to extend the framework to integrate with

the framework of [8,7]. Related to this, we shall look at the problem of Business Pro-

cess Compliance, in order to determine how to employ RSDL for marking up traces of

processes corresponding to the execution of the a theory.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible

reasoning logics and its implementation. In: Horn, W. (ed.) ECAI. pp. 459–463. IOS Press

(2000)
2. Engberg, U., Winskel, G.: Completeness results for linear logic on petri nets. Ann. Pure Appl.

Logic 86(2), 101–135 (1997)
3. Gaboardi, M., Marion, J.Y., Ronchi Della Rocca, S.: Soft linear logic and polynomial com-

plexity classes. Electronic Notes in Theoretical Computer Science 205(C), 67–87 (2008)
4. Ghooshchi, N.G., van Beest, N., Governatori, G., Olivieri, F., Sattar, A.: Visualisation of com-

pliant declarative business processes. In: EDOC 2017. pp. 89–94. IEEE Computer Society

(2017)
5. Girard, J.Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)
6. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of

defeasible theories. In: RuleML 2010. pp. 104–118. LNCS 6403, Springer (2010)

Resource-driven Substructural Defeasible Logic 17

7. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The rational behind

the concept of goal. Theory and Practice of Logic Programming 16(3), 296–324 (2016)

8. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible

logic. Journal of Autonomous Agents and Multi Agent Systems 17(1), 36–69 (2008)

9. Kanovich, M., Ito, T.: Temporal linear logic specifications for concurrent processes. In: LICS

1997

10. Küngas, P., Matskin, M.: Linear logic, partial deduction and cooperative problem solving. In:

DALT II. pp. 263–279. LNCS 3476, Springer (2004)

11. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Pro-

gramming, vol. 3. Oxford University Press (1987)

12. Olivieri, F., Cristani, M., Governatori, G.: Compliant business processes with exclusive

choices from agent specification. In: PRIMA 2015. pp. 603–612. LNCS 9387, Springer

(2015)

13. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business process de-

sign by declarative specifications. In: PRIMA 2013. pp. 213–228. LNCS 8291, Springer

(2013)

14. Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent interactions. In:

AAMAS ’07. pp. 28:1–28:8. ACM (2007)

15. Pham, D.Q., Harland, J., Winikoff, M.: Modeling agents’ choices in temporal linear logic.

In: DALT V. pp. 140–157. LNCS 5397, Springer (2008)

16. Rao, J., Küngas, P., Matskin, M.: Composition of semantic web services using linear logic

theorem proving. Information Systems 31(4-5), 340–360 (2006)

17. Tanabe, M.: Timed petri nets and temporal linear logic. In: ICATPN 1997. pp. 156–174.

LNCS 1248 (1997)

	Resource-driven Substructural Defeasible Logic

