Skip to main content

A Light-Weight Tightening Authentication Scheme for the Objects’ Encounters in the Meetings

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11251))

Included in the following conference series:

Abstract

Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. In order to prevent a new object from joining, many previous research works applied the initial authentication process in the wireless sensor network and the wireless Internet of Things (IoT) network generally. However, the majority of the former articles only focused on a central authority (CA) or a key distribution center (KDC) which increased the computation cost and energy consumption for the specific cases in IoT. Hence, in this article, we address these issues through an advanced authentication mechanism, including key-based management and rating-based authentication. The scheme reduces costs between an object and its peers effectively. We refer to the mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild it into a new larger random dataset. Our protocol uses the new dataset as an algorithm’s input. It enables the protocol to handle authentication rigorously for unknown devices into the secure zone. The proposed scheme helps to increase flexibility in difficult contexts, resource-constrained conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, R., Pal, A.K., Kumari, S., Karuppiah, M., Conti, M.: A secure user authentication and key-agreement scheme using wireless sensor networks for agriculture monitoring. Future Gener. Comput. Syst. 84, 200–215 (2018)

    Article  Google Scholar 

  2. Amin, R., Biswas, G.: A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks. Ad Hoc Netw. 36, 58–80 (2016)

    Article  Google Scholar 

  3. Amin, R., Kumar, N., Biswas, G., Iqbal, R., Chang, V.: A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Future Gener. Comput. Syst. 78, 1005–1019 (2018)

    Article  Google Scholar 

  4. Čapkun, S., Hubaux, J.P., Buttyán, L.: Mobility helps security in ad hoc networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, pp. 46–56. ACM (2003)

    Google Scholar 

  5. Capkun, S., Hubaux, J.P., Buttyan, L.: Mobility helps peer-to-peer security. IEEE Trans. Mobile Comput. 5(1), 43–51 (2006)

    Article  Google Scholar 

  6. Chuang, M.C., Lee, J.F.: TEAM: trust-extended authentication mechanism for vehicular ad hoc networks. IEEE Syst. J. 8(3), 749–758 (2014)

    Article  Google Scholar 

  7. Ciobanu, R.I., Dobre, C.: CRAWDAD dataset upb/hyccups (v. 2016-10-17), October 2016. https://doi.org/10.15783/C7TG7K. https://crawdad.org/upb/hyccups/20161017/2012. Traceset: 2012

  8. Dang, T.K.: Ensuring correctness, completeness, and freshness for outsourced tree-indexed data. Inf. Resour. Manag. J. 21, 59–76 (2008)

    Article  Google Scholar 

  9. Das, A., Islam, M.M.: Securedtrust: a dynamic trust computation model for secured communication in multiagent systems. IEEE Trans. Depend. Secur. Comput. 9(2), 261–274 (2012)

    Article  Google Scholar 

  10. De Meulenaer, G., Gosset, F., Standaert, F.X., Pereira, O.: On the energy cost of communication and cryptography in wireless sensor networks. In: IEEE International Conference on Wireless and Mobile Computing Networking and Communications, WIMOB 2008, pp. 580–585. IEEE (2008)

    Google Scholar 

  11. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based framework for high integrity sensor networks. ACM Trans. Sens. Netw. (TOSN) 4(3), 15 (2008)

    Google Scholar 

  12. Khemissa, H., Tandjaoui, D., Bouzefrane, S.: An ultra-lightweight authentication scheme for heterogeneous wireless sensor networks in the context of Internet of Things. In: Bouzefrane, S., Banerjee, S., Sailhan, F., Boumerdassi, S., Renault, E. (eds.) MSPN 2017. LNCS, vol. 10566, pp. 49–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67807-8_4

    Chapter  Google Scholar 

  13. Michalevsky, Y., Nath, S., Liu, J.: MASHaBLE: mobile applications of secret handshakes over bluetooth LE. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 387–400. ACM (2016)

    Google Scholar 

  14. Moon, A.H., Iqbal, U., Bhat, G.M.: Implementation of node authentication for wsn using hash chains. Procedia Comput. Sci. 89, 90–98 (2016)

    Article  Google Scholar 

  15. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 277–295. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_17

    Chapter  Google Scholar 

  16. Porambage, P., Schmitt, C., Kumar, P., Gurtov, A., Ylianttila, M.: PAuthKey: a pervasive authentication protocol and key establishment scheme for wireless sensor networks in distributed IoT applications. Int. J. Distrib. Sens. Netw. 10(7), 357430 (2014)

    Article  Google Scholar 

  17. Son, H.X., Dang, T.K., Massacci, F.: REW-SMT: a new approach for rewriting XACML request with dynamic big data security policies. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 501–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_40

    Chapter  Google Scholar 

  18. Theodorakopoulos, G., Baras, J.S.: On trust models and trust evaluation metrics for ad hoc networks. IEEE J. Sel. Areas Commun. 24(2), 318–328 (2006)

    Article  Google Scholar 

  19. Thi, Q.N.T., Si, T.T., Dang, T.K.: Fine grained attribute based access control model for privacy protection. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 305–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48057-2_21

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National University HoChiMinh city (VNU-HCM) under grant number B2018-20-08. We also thank D-STAR LAB members for their meaningful help during this manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kim Khanh Tran or Minh Khue Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, K.K., Pham, M.K., Dang, T.K. (2018). A Light-Weight Tightening Authentication Scheme for the Objects’ Encounters in the Meetings. In: Dang, T., Küng, J., Wagner, R., Thoai, N., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2018. Lecture Notes in Computer Science(), vol 11251. Springer, Cham. https://doi.org/10.1007/978-3-030-03192-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03192-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03191-6

  • Online ISBN: 978-3-030-03192-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics