
Relays: A New Approach for the Finite Departure

Problem in Overlay Networks∗

Christian Scheideler Alexander Setzer

Abstract

A fundamental problem for overlay networks is to safely exclude leaving
nodes, i.e., the nodes requesting to leave the overlay network are excluded from it
without affecting its connectivity. To rigorously study self-stabilizing solutions to
this problem, the Finite Departure Problem (FDP) has been proposed [12]. In the
FDP we are given a network of processes in an arbitrary state, and the goal is to
eventually arrive at (and stay in) a state in which all leaving processes irrevocably
decided to leave the system while for all weakly-connected components in the
initial overlay network, all staying processes in that component will still form
a weakly connected component. In the standard interconnection model, the
FDP is known to be unsolvable by local control protocols, so oracles have been
investigated that allow the problem to be solved [12]. To avoid the use of oracles,
we introduce a new interconnection model based on relays. Despite the relay
model appearing to be rather restrictive, we show that it is universal, i.e., it
is possible to transform any weakly-connected topology into any other weakly-
connected topology, which is important for being a useful interconnection model
for overlay networks. Apart from this, our model allows processes to grant and
revoke access rights, which is why we believe it to be of interest beyond the scope
of this paper. We show how to implement the relay layer in a self-stabilizing
way and identify properties protocols need to satisfy so that the relay layer can
recover while serving protocol requests.

1 Introduction

Once distributed systems become large enough, membership changes in these systems
are not an exception but the norm. This particularly holds for peer-to-peer systems
but is also true for large server-based systems as servers may need to be taken offline
for some maintenance or new servers need to be included in the system to improve or
maintain the service quality. So protocols need to be in place to allow members of a
distributed system to join and leave it without disrupting its functionality. The most
basic requirement for maintaining the functionality of a system is that it stays weakly
connected. While this is easy to guarantee when new members join a system, it is
not so easy to guarantee when members leave the system, in particular, if multiple
members want to leave the system at the same time. In the literature on peer-to-
peer systems, many proposals for leave protocols have already been made (see, e.g.,
[30, 23, 15, 29, 3, 11]). However, most of these solutions cannot give any guarantees if
the system is not in some well-defined state. Distributed systems can easily be pushed
into a non-well-defined state if there are network partitions or faulty members, so it
would be desirable to have leave protocols that do not need any assumptions on the
system state.

In order to rigorously study the problem of guaranteeing weak connectivity for any
situation in which a collection of members (henceforth also simply called processes)

∗This work was partially supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (SFB 901).

1

ar
X

iv
:1

80
9.

05
01

3v
1

 [
cs

.D
C

]
 1

3
Se

p
20

18

wants to leave the system, Foreback et al. [12] introduced the Finite Departure Problem
(FDP). In the FDP the leaving processes have to irrevocably decide in finite time
when it is safe to leave the network, i.e., their departure does not cause the network to
get disconnected. Foreback et al. showed that there is no self-stabilizing local-control
protocol for the FDP. At the heart of the proof are two serious problems: The standard
assumption used in overlay networks research that a process may freely pass knowledge
about its neighbors to any one of its neighbors has the effect that a process v cannot
locally decide whether v is critical for the connectivity of the network or not, simply
because it does not have any control on and thereby potentially incomplete knowledge
about its incoming connections (i.e., the set of processes knowing its address). Also,
when assuming asynchronous communication, where message may have arbitrary finite
delays, a process v may not know whether messages carrying critical connectivity
information are still on their way to v. This caused Foreback et al. to introduce the
NIDEC oracle, which gives a process v the power to determine whether its address is
still known somewhere in the system (NID is a short form of ”no ID”) and whether
there are still messages on their way to v (EC is a short form of ”empty channel”).

Is it possible to avoid the use of oracles by using a different link layer model? We
show that this is indeed the case. In fact, we need two layers: a self-stabilizing link
layer and, on top of that, a self-stabilizing relay layer, which is our main innovation.
On top of the relay layer, a self-stabilizing local-control protocol can then be designed
to solve the FDP problem without the use of an oracle. While the link layer ensures
that a process is aware of the messages that are still in transit along its outgoing
connections, the relay layer gives the processes the power to rigorously control who
is allowed to send messages to it. Despite appearing to be rather restrictive, we
show that the relay concept is universal in a sense that one can get from any weakly
connected topology to any other weakly connected topology while staying weakly
connected throughout the transformation process. Because the relay layer now allows
the rigorous study of access control problems in overlay networks, which opens up
new directions like rigorous studies on the DoS-resistance of overlay networks (given
that messages can only be sent via relay connections), we expect it to be of interest
beyond this paper.

1.1 System model

We consider a distributed system consisting of a set of processes that are interconnected
to each other (with more details on the type of interconnections once we introduce
relays in the next section). The processes are controlled by a local-control protocol that
specifies the variables and actions that are available in each process. We assume that
there is a reliable link layer that transmits messages from processes to other processes
based on an ID of the target process contained in the message. More specifically, each
process specifies a set of variables, called buffers containing messages to be sent to
other processes and the ID of the respective target process is stored along with the
buffer or inside the message. We assume that the link layer may take an arbitrary but
finite amount of time to process a message that was put into one of these variables, but
messages never get lost. We assume the link layer makes sure that every transmitted
message will eventually be removed from the buffer it was taken from after it has been
processed by the receiver. There are no resources available beyond the processes and
the link layer as specified above (such as shared storage or a gateway), so the processes
entirely rely on themselves and the link layer in order to handle certain tasks. This
implies that there is no way for two disconnected components of processes to connect
to each other.

There are two types of actions that a protocol can execute. The first type has the
form of a standard procedure 〈label〉(〈parameters〉) → 〈commands〉, where label is
the unique name of that action, parameters specifies the parameter list of the action,
and commands specifies the commands to be executed when calling that action. Such

2

actions can be called locally (which causes their immediate execution) or remotely. In
fact, we assume that every message must be of the form 〈label〉(〈parameters〉), where
label specifies the action to be called in the receiving process and parameters contains
the parameters to be passed to that action call. All other messages are ignored by
the processes. The second type has the form 〈label〉 : 〈guard〉 → 〈commands〉, where
label and commands are defined as above and guard is a predicate over local variables.
We call an action whose guard is simply true a timeout action.

The system state is an assignment of values to every variable of each process
(including its buffers). An action in some process v is enabled in some system state
if its guard evaluates to true, or if there is a message requesting to call it that was
transmitted to the process by the link layer and has not been processed yet.

A computation is an infinite fair sequence of system states such that for each
state Si, the next state Si+1 is obtained by executing an action that is enabled in Si.
This disallows the overlap of action executions, i.e., action executions are atomic. We
assume weakly fair action execution, meaning that if an action is enabled in all but
finitely many states of a computation, then this action is executed infinitely often.
Note that a timeout action of a process is executed infinitely often. Besides this, we
place no bounds on process execution speeds, and no restrictions on the execution
order of enabled actions, i.e., we allow fully asynchronous computations and non-FIFO
message delivery.

1.2 Problem statement

A protocol is self-stabilizing with respect to a set of legitimate states if it satisfies the
following two properties:

Convergence: starting from an arbitrary system state, the protocol is guaranteed to
eventually arrive at a legitimate state.

Closure: starting from a legitimate state the protocol remains in legitimate states
thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regardless of
their nature. Moreover, a self-stabilizing protocol does not have to be initialized as it
eventually starts to behave correctly regardless of its initial state. A formal definition
of the FDP can be found in [12], which we briefly recap in the following.

1.2.1 Definition of the Finite Departure Problem

We assume each process to be either tagged as leaving or staying, and this information
is available in a read-only Boolean variable called leaving. A leaving process makes
a decision to leave the system by executing the stop command. A process that has
executed stop will be inactive (i.e., none of its actions will be enabled) from that point
on, otherwise it is called active. A process p can safely leave a system if the active
processes of its weakly connected component are still weakly connected without p.

In the Finite Departure Problem (FDP) the problem is to eventually reach a state
in which (i) every staying process is active, (ii) every leaving process is inactive, and
(iii) for each weakly connected component of the initial network, the staying processes
in that component still form a weakly connected component. Such a state is called a
legitimate state for the FDP. Our goal is to come up with a self-stabilizing local-control
protocol for the FDP, i.e., it satisfies the convergence and closure property w.r.t.
these legitimate states. For the convergence we only consider initial states in which
all processes are initially active (as inactive processes are equivalent to non-existing
processes). We also restrict the initial state to contain only a finite number of messages
in the buffers. Without this assumption, there might be an infinite number of corrupted
messages, which would make it impossible to guarantee convergence in finite time in

3

general. Finally, we do not allow the presence of connections to non-existing processes
as is normally assumed in self-stabilizing topologies (see, e.g., [4, 27, 32, 31, 22]). Note
that this does not make the problem trivial because even under that assumption there
is no self-stabilizing local-control protocol for the FDP [12].

1.3 Related work

The idea of self-stabilization in distributed computing was introduced in a classical
paper by E.W. Dijkstra in 1974 [6], in which he investigated the problem of self-
stabilization in a token ring. In the past 10 years, several self-stabilizing local-control
protocols have been proposed for various overlay networks (e.g., [26, 18, 10, 2, 19, 4]),
but none of them has considered the leaving of nodes as an individual problem until
the work of Foreback et al. [12]. In that work, two problems are considered: the
Finite Departure Problem (FDP) and the Finite Sleep Problem (FSP). The authors
show that there is no self-stabilizing local-control protocol for the FDP, so oracles
are investigated that allow the FDP to be solved. In the FSP, the leaving processes
do not have to make an irrevocable decision when to leave the network. They just
fall asleep whenever they think it is safe to do so, but they will be woken up again
as long as there are still messages in their channel. So the goal of the FSP is just
to ensure that eventually a state is reached where all leaving nodes are permanently
asleep. Foreback et al. show that for the FSP problem, a self-stabilizing local-control
protocol does exist. While their protocol only works together with a self-stabilizing
protocol for arranging nodes in a sorted list, more universal protocols for the FSP were
presented in [22]. Another extension of the results in [12] was presented in [13]. In
that paper, the authors study churn in general (including join and leave requests) and
consider the case that neither the number of churn requests in total, nor the number of
concurrent churn requests can be bounded by a constant. They prove that a solution
to this problem is possible if and only if not every request needs to be satisfied.

Aside from these results, there has been research on self-stabilizing link layers [8, 9]
which even guarantee FIFO-delivery, thus giving stronger guarantees than required
for the relay layer.

1.3.1 Related work concerning relays

To the best of our knowledge, our relay concept has not been proposed before in the
distributed systems community. Of course, there is a long history of using relays
in communication networks. Relays are commonly used when two devices are too
far away from each other to exchange information directly, like in wireless networks,
or if two devices cannot interact directly because of firewalls. Relay networks have
also been used to improve availability (a prominent example are Resilient Overlay
Networks [1]), to provide anonymity (a prominent example is the TOR network [7]),
or to improve performance (a prominent example is AKAMAIs IPA Relay service). In
general, most of the peer-to-peer systems and overlay networks proposed so far are
using their members as relays for the exchange of requests or information between its
members.

Our relay concept also has some interesting connections to the access control
domain. Due to the delete and stop commands, it is possible to grant and revoke
access rights with relays. There is a huge amount of literature on access control in
distributed systems. For surveys on access control approaches in various contexts such
as operating systems, file systems, distributed systems, and web-based systems, see
e.g. [5, 20, 25, 16, 21, 24]. Important requirements for access control schemes are

• Integrity: It should not be possible to construct, tamper with or steal an access
right.

4

• Propagation: There should be mechanisms in place controlling the transfer of
access rights.

• Revocation: It should be possible to revoke an access right.

Interestingly, our relay approach can satisfy these requirements if the processes cannot
tamper with the relay layer.

The simplest ways of controlling access rights are to use passwords or cryptographic
keys, but these can easily be delegated from one process to another. Another simple
way is to use access control lists (ACLs), which gained prominence in the 1970s
with the advent of multiuser systems like UNIX. In distributed systems, the ACL
approach usually requires a trusted third party, in order to prevent tampering with the
ACLs. Other popular access control models are Role-Based Access Control (RBAC),
Attribute-Based Access Control (ABAC), Policy-Based Access Control (PBAC), and
Risk-Adaptive Access Control (RAdAC). For all of these models, various variants have
been proposed depending on the context in which they are used and the focus on
particular properties. In most of the implementations of these models, trusted third
parties are used as well since otherwise it is hard to guarantee integrity and prevent
uncontrolled propagation of access rights. More decentralized approaches keep track
of delegation chains which is somewhat similar to our relay approach: if one of the
delegations is revoked, all delegations beyond it will not be accepted any more so that
the corresponding processes will lose their access rights to certain objects. However,
to the best of our knowledge, this chaining approach has not been used in order to
control the interconnection of processes. An example where access rights are provided
via explicit communication channels is the Singularity operating system [17, 34]. A
key aspect of Singularity are Software-Isolated Processes (SIPs), which encapsulate
pieces of an application or a system and provide information hiding, failure isolation,
and strong interfaces. Communications between SIPs is through bidirectional, strongly
typed, higher-order channels. When a channel is created, both of its endpoints are
returned to the SIP that created it. These endpoints can be freely delegated along
existing channels but not replicated, which provides a more flexible form a access
control than our relay approach, but this still opens up the possibility of stealing
access rights resp. delegating them by mistake.

1.4 Our contributions

We present a novel approach for interconnecting processes which is based on so-called
relays. For this we introduce a novel relay layer that acts between the application
and the link layer and show that depending on the way an application uses this layer,
this relay layer can self-stabilize to a legal state in which a transfer of messages is
guaranteed. After that, we show that our relay approach is universal in a sense that
one can get from any weakly connected network to any other weakly connected network
while maintaining weak connectivity in the transformation process. In Section 3.1 we
show that existing solutions for the FDP can be transformed for our relay layer such
that they solve the FDP without the use of an oracle (assuming a reliable link layer
instead). Our relay concept also has some interesting connections to the access control
domain as we pointed out in Section 1.3.1.

2 The Relay Layer

We assume that all connections between processes happen through relays which are
managed by a so-called relay layer. Each process v is assumed to interact with its own,
separate relay layer RL(v) (so that it is clear which relay is owned by which process),
and RL(v) is required to reside at the same machine as v so that interactions between
v and RL(v) are local. Whenever a message needs to be sent to v, it has to go through

5

RL(v). Each RL(v) has a globally unique address, or short RID, that depends on
the address of its machine, so that messages can be sent to it from any other relay
layer that knows its RID. Furthermore, every relay layer RL(v) has a local buffer
RL(v).Buf that is used for the internal communication between relay layers: Every
RL(v).Buf is expected to consist of pairs (targetRID,message) in which targetRID
is the RID of the relay layer message is sent to by the link layer. Here message must
be an internal message (any other type of message will be ignored). The relay layer of
the entire system is the set of relay layers over all of its processes.

2.1 Relays

A relay is basically a socket that is non-transferably owned by exactly one process v,
and that can have both incoming connections from other relays as well as an outgoing
connection to some relay. More precisely, RL(v) maintains the following variables for
each relay r:

• r.ID: globally-unique identifier of relay r (containing the RID of its relay layer
so that messages can be sent to r when knowing its ID)

• r.state: is either alive or dead

• r.out: stores a (Key, ID) pair where Key is a set keys, and ID is the ID of the
target of the outgoing connection (if ID = ⊥ then r is a sink, i.e., messages are
forwarded to the process owning it)

• r.level ∈ N0: stores the distance of r (in hops) to the sink relay reached via its
outgoing connection (there is always a unique such one, see below)

• r.sinkRID: stores the RID of the sink of r, i.e., the RID of the relay layer of
the process that will receive messages sent via r

• r.In: set of triples of the form (key,RID,⊥) or (key,⊥, r′) for some relay r′,
where key is a globally unique key (depending on the RID of r’s relay layer),
RID specifies the address of the relay layer that can send messages to r via key,
and r′ is a relay via which key was supposed to be forwarded; depending on the
form, key is a confirmed or unconfirmed key

• r.Buf : stores all messages that the link layer should send to the relay layer with
RID r.out.ID if r.out.ID 6= ⊥ or to v if r.out.ID = ⊥

Note that we assume all buffers (i.e., RL(v).Buf and r.Buf for every relay r) to be
insert-only, i.e., only the link-layer can remove a message from them. Furthermore,
we assume all IDs in the system to be valid, i.e., for every ID in the system the
corresponding RID belongs to an existing process (it would be possible to lift this
assumption by introducing another oracle or by giving more power to the underlying
link layer, but this is beyond the scope of this paper).

The relay connections can be represented by a so-called relay graph.

Definition 1. Given any system state S, the relay graph G = (V,E) of S is a directed
graph that is defined as follows: V = R ∪ P , where R is the set of relays and P is the
set of active processes. E = EP ∪ ECh where EP is the set of all explicit edges and
ECh is the set of implicit edges. EP contains an edge (v, w) whenever

1. v ∈ P and w ∈ R and w is owned by process v,

2. v ∈ R and w ∈ R and relay v has an outgoing connection to relay w (i.e.,
v.out.ID = w.ID), or

3. v ∈ R and w ∈ P , and relay v is a sink relay of process w (i.e., v.out.ID = ⊥).

6

ECh contains an edge (v, w) whenever v ∈ R, w ∈ R and a reference to w is contained
in the parameter list of a message in v.Buf . Thus, while explicit edges can be used to
send messages, implicit edges cannot be used to send messages yet.

Observe that the third requirement on a legitimate state implies that every relay
graph is cycle-free.

2.2 Relay layer primitives

Whenever a process holds a reference to a relay r, which we denote by r̂, we assume
that it is a ”dark” reference, i.e., the variables of the relay cannot be accessed by
the process. However, the reference can be used by the processes to call a number
of primitives offered by the relay layer (in the following, we assume that all relays
mentioned below are owned by the calling process, i.e., they are or have been created
for it by its relay layer — relays not owned by the calling process will be ignored):

1. new Relay: returns a reference to a new sink relay r with a globally unique
identifier r.ID, r.state = alive, r.In = {}, r.out = ({},⊥), and r.level = 0.

2. delete r̂: prepares the relay referenced by r̂ for deletion, in a sense that the
relay layer sets r.In = {} and r.state = dead. This has the effect that r will
not accept any further messages, but r still continues to deliver the messages in
r.Buf . r is deleted by the relay layer once r.Buf is empty and all relay relay
keys sent via r have been confirmed or deleted.

3. merge(R): if for all relays r ∈ R, r.state = alive, r.out.ID is equal to some
common ID, r.level is equal to some common `, r.sinkRID is equal to some
common sinkRID and r.In = {}, the relay layer creates a new relay r′ with new
r′.ID, r′.state = alive, and r′.out = (Key, ID) with Key =

⋃
r∈R r.out.Key,

r′.level = `, r′.sinkRID = sinkRID, r′.In = {}, and r′.Buf =
⋃

r∈R r.Buf .
Also, all relays in R are deleted. A reference to r′ is returned back to the process.
(If one of the conditions above is not satisfied, merge does nothing.)

4. getRelays: returns (references to) the current set of all relays owned by v that
are still alive.

5. incoming(r̂): returns |r.In|

6. direct(r̂): returns true iff r.level ≤ 1

7. is-sink(r̂): returns true iff r.level = 0

8. dead(r̂): returns true iff r does not exist anymore or r.state = dead

9. same-target(r̂1, r̂2): returns true iff r1.out.ID = r2.out.ID

10. send(r̂, action(parameters)): if r is still alive, adds a message of the form
((key, r.ID, r.out.ID), action(parameters′)) for some arbitrary key ∈ r.out.Key
to r.Buf (where parameters′ is an adapted form of parameters explained
below), where (key, r.ID, r.out.ID) is called the header of the message.

Figure 1 gives examples of the uses of these primitives.
If a process v executes stop, v becomes inactive, and RL(v) immediately deletes

all sink relays and from then on periodically deletes all relays r with r.In = ∅ and
r.Buf = ∅. RL(v) continues to exist until all relays have been deleted, after which it
shuts down. We hightlight that protocols can prevent relay layers from existing forever
by making sure that all indirect relay connections (i.e., relay connections where none
of the endpoints is a sink) are closed eventually as we will prove.

Note that the fact that merge can be used to merge relays is the reason for why
the variable r.out.Key of a relay r has to be a set instead of a single value only: The

7

u
0 f
q

v
1 t
r

w
1 t
p

(a) Initial situation. u owns relay q, v owns
relay r and w owns relay p. By definition,
r and p are direct relays, whereas q is not.

u
0 f
q

v
1 t
r

0 t
s

w
1 t
p

(b) Situation after v has executed new
Relay, v has an additional (sink) relay s.
By definition, s is a direct relay.

u
0 f
q

v
1 t
r

1 t
s

w
1 t
p

0 t
s′

(c) Situation after v has executed
send(r̂, action(ŝ)) for some action action,
RL(w) (w is the so-called sink of r) has
created a new relay s′ with an outgoing
connection to s.

u
0 f
q

v
1 t
r

0 t
s

w
1 t
p

0 t
s′

(d) Situation after w has executed delete
ŝ′, s′ is marked as dead, s.In has been
updated (as s no longer has an incoming
connection), and the connection from s′

to s has been removed.

Figure 1: Example with three processes u, v, and w. The characters inside a relay r
denote (from left to right), |r.In|, the ID of r, and whether r is a direct relay. The
arrows indicate outgoing connections of relays.

merge could occur in an illegitimate state at which one of the merged relays may store
a correct key while another one does not. At this point it is not clear which one to
choose.

For convenience, in the following we will use RL(r) to denote the relay layer that
owns a relay r, RID(ID) to denote the RID contained in ID, RID(u) to denote the
RID of RL(u) and RID(r) to denote the RID of RL(r).

2.3 Message processing and action handling

All messages that can be sent by a process v are required to be remote method invo-
cations of the form action(parameters) (otherwise, they will be ignored by RL(v)).
More precisely, a process v calls send(r̂, action(parameters)) to ask RL(v) to send out
a message via r. For simplicity, we assume parameters to consist of a sequence of ob-
jects, some of which are relay references, and all other objects do not contain any relay
reference at all. We assume that each action has a fixed number of parameters and spec-
ifies which of its parameters are relay references. When send(r̂, action(parameters))
is called for an alive relay r, there are two possibilities: If r is a sink, i.e., r.out.ID = ⊥,
then action(parameters) is put into r.Buf such that the process owning r will re-
ceive action(parameters). Otherwise, RL(r) for every relay reference ŝ contained
in parameters creates a new globally unique key key, inserts (key,⊥, r) into s.In
and replaces ŝ by the quadruple (key, s.ID, s.level + 1, s.sinkRID). We refer to
these quadruples by the term relay parameter, the first entry of which is called
its key, the second is called its id, the third is called its level, and the fourth its
sinkRID. Furthermore we assume that there is a part of each generated key that
depends on the generating process and can be used to check whether a key key was
generated by a process u, in which case we say key belongs to u. Let the list of
parameters resulting from the replacements be parameters′. Then, RL(r) puts a
transmit(((key, r.ID, r.out.ID), action(parameters′))) message into r.Buf where
key is an arbitrary element from r.out.Key. The pseudocode of the send() action can
be found in Listing 1.

Listing 1: Pseudocode for message processing

1 send (r̂ , a c t i on (parameters)) →

8

2 i f r.state = alive then
3 i f r.out.ID 6= ⊥ then // r i s not a s ink r e l a y
4 l e t s1,sk denote a l l parameters o f action that are r e l a y
5 r e f e r e n c e s
6 f o r every i ∈ {1, . . . , k} do
7 c r e a t e a new g l o b a l l y unique key key
8 si.In := si.In ∪ {(key,⊥, r)}
9 s′i := (key, si.ID, si.level + 1, si.sinkRID)

10 r e p l a c e si in parameters by s′i
11 l e t key be a r b i t r a r y such that key ∈ r.out.Key
12 r.Buf := r.Buf ∪ {transmit(((key, r.ID, r.out.ID), action(parameters′)))}
13 e l s e
14 r.Buf := r.Buf ∪ {action(parameters)}

We assume that the link layer for every relay r eventually processes every message
in r.Buf without changing its contents. The link layer makes sure that every message
m′ ∈ r.Buf for a relay r is either processed by the process v owning r, in case that
outID = ⊥, or successfully delivered to the process whose relay layer has the RID
contained in r.out.ID. After the link layer has processed a message m′ in r.Buf for a
relay r, it removes m from r.Buf .

Definition 2 (Valid message header). A message m of the form
((key, inID, outID), action(parameters)) is said to have a valid header for relay r
if r.ID = outID, and either (key,RID,⊥) ∈ r.In with RID = RID(inID), or
(key,⊥, r′) ∈ r.In and r′.sinkRID = RID(inID).

When a message m = ((key, inID, outID), action(parameters)) is received by a
process w, RL(w) acts according to the Pseudocode given in Listing 2. We assume
that probe(controlKeys, keySequence) is a dedicated action type used for the relay
layers only, in which controlKeys is a set and keySequence is a sequence of keys.

Listing 2: Pseudocode executed by RL(w) when a message m is received by w

15 transmit(m = ((key, inID, outID), action(parameters))) →
16 i f the re i s a r e l a y r′ such that and r′.state = alive and m has a v a l i d
17 header f o r r′ then
18 i f (key,⊥, r′′) ∈ r′.In f o r some r e l a y r′′ owned by t h i s p roc e s s and
19 r′′.sinkRID = RID(inID) then
20 // f i r s t message r e c e i v e d v ia t h i s connect ion , a c t i v a t e i t
21 r′.In := r.In \ {(key,⊥, r′′)}
22 r′.In := r.In ∪ {(key,RID(inID),⊥)}
23 i f r′.out.ID = ⊥ then // r ’ i s a s ink r e l a y
24 i f action(parameters) = probe(controlKeys, keySequence) then
25 f o r every key′ ∈ controlKeys do
26 i f the re i s no r e l a y r′′ such that key′ ∈ r′′.out.Key then
27 l e t (key1, . . . , keyk) = keySequence
28 i f the re i s an RID such that (keyk, RID,⊥) ∈ r′.In then
29 RL.Buf := RL.Buf ∪ {(RID, probefail(key′, (key1, . . . , keyk))}
30 e l s e i f a l l i d s o f r e l a y parameters o f m belong to the
31 same RID senderRID then
32 // (otherwise , the message i s obv ious ly corrupted)
33 r′.Buf := r′.Buf ∪ {action(parameters)}
34 f o r each r e l a y param (key′, ID′, level′, sRID′) in parameters do
35 i f the re i s no r e l a y r′′ with key′ ∈ r′′.out.Key in RL(w) then
36 c r e a t e a new r e l a y s with :
37 s.ID := newID , where newID i s a new , g l o b a l l y unique
38 ID conta in ing the RID o f RL(w)
39 s.state := alive ,
40 s.out := ({key′}, ID′) ,
41 s.level := level′ , and
42 s.sinkRID := sRID′ , and

9

43 s.In := {} , and
44 s.Buf := {((key′, s.ID, ID′), probe({}, (key′)))}
45 r e p l a c e (key′, ID′, level′, sRID′) in parameters by ŝ
46 e l s e
47 r e p l a c e (key′, ID′, level′, sRID′) in parameters by ⊥
48 e l s e // m needs to be forwarded
49 r′.Buf := r′.Buf ∪ {transmit(m)}
50 r e p l a c e key by an a r b i t r a r y key′ ∈ r′.out.Key
51 r e p l a c e inID by r′.ID
52 r e p l a c e outID by r′.out.ID
53 i f action(parameters) = probe(controlKeys, keySequence) then
54 append key′ to keySequence
55 f o r every key′′ ∈ controlKeys do
56 i f the re i s a message m′ ∈ r′.Buf that conta in s a r e l a y
57 parameter with key key′′ then
58 remove key′′ from controlKeys
59 e l s e i f the re i s a r e l a y r′ s . t . r′.ID = outID and r′.state = alive then
60 // m does not have a v a l i d header f o r r′

61 RL.Buf := RL.Buf ∪ {(RID(inID),not authorized(m))}
62 e l s e i f outID conta in s the RID o f RL(w)
63 // there i s no r e l a y r′ s . t . r′.ID = outID and r′.state = alive
64 RL.Buf := RL.Buf ∪ {(RID(inID),out-relay-closed(outID))}

Recall that when a process v calls send(r̂,m), and m contains references to relays,
RL(v) replaces these references by relay parameters containing the necessary informa-
tion to establish a connection to these relays. Additionally RL(v) inserts (key,⊥, r) to
r′.In for every relay r′ that was contained in this message. These will be replaced by
(key,RID,⊥) after the message has been received by a process. To prevent (key,⊥, r)
entries in .In sets for which no corresponding messages in the system exist (which
would prevent .In from becoming empty after all other relays have been closed), a
probing is done via the probe() messages to check whether such a message m with a
relay parameter with key key exists: On the path from r to the sink relay, it is checked
whether m is contained in the buffer of the next relay on the path. If this is not the
case and the sink does not have a relay with that key, a probefail() message will
be sent in return to inform r′ about this. Note that the probefail() message type
contains two parameters: the key that was not found and the sequence of keys that
were used to get from the initiator of the probe() message to the sink. The latter is
used to find the way back to the initiator via the same path (in reverse order) that
the probe() message took. Details of this can be found in Listing 3.

Listing 3: Pseudocode executed upon probefail(key, keySequence)

65 probefail(key, keySequence) →
66 l e t key1, . . . , keyk = keySequence (k = |keySequence|)
67 i f the re i s a r e l a y r such that keyk ∈ r.out.Key then
68 i f k > 1 then
69 i f the re i s an RID such that (keyk−1, RID,⊥) ∈ r.In then
70 RL.Buf := RL.Buf ∪ {(RID, probefail(key, (key1, . . . , keyk−1)))}
71 e l s e
72 i f the re i s a r e l a y r′ such that (key,⊥, r) ∈ r′.In then
73 r′.In := r′.In \ (key,⊥, r)

When a not authorized(m) control message is received and there is a non-sink
relay r such that m could have been sent by this, the relay layer removes the key
contained in m from r.out.Key. If there is still at least one key left in r.out.Key, the
message is resent with another key. Otherwise, all elements (key,⊥, r) are removed
from r′.In for every relay r′, and r is deleted. The pseudocode of this action is given
in Listing 4.

Listing 4: Pseudocode executed upon not authorized(m)

10

74 not authorized(m = ((key, inID, outID, level), action(parameters))) →
75 i f the re e x i s t s a r e l a y r with r.ID = inID , r.out.ID = outID 6= ⊥ ,
76 r.level = level and key ∈ r.out.Key then
77 r.out.Key := r.out.Key \ {key}
78 i f |r.out.Key| > 0 then
79 r e p l a c e key in m by an a r b i t r a r y key′ ∈ r.out.Key
80 r.Buf := r.Buf ∪ {m}
81 e l s e // outgoing l i n k o f r i s broken / c l o s e d
82 // remove a l l ” pending ” (unconfirmed) r e l a y s sent v ia r
83 f o r a l l r e l a y s r′ do
84 f o r a l l keys key such that (key,⊥, r) ∈ r′.In do
85 r′.In := r′.In \ {(key,⊥, r)}
86 d e l e t e r

The Timeout action mainly detects and corrects all values that are obviously
corrupted and contradict to the definition of a legal state that will be given later.
In addition, for each relay r it serves the following purposes: First, it periodically
sends a ping(r.ID, r.level, r.sinkRID, key) message to every relay layer whose RID
is contained as the second parameter of a triple (key,RID,⊥) in r.In. This is to give
connected relays r′ with r′.out.ID = ID and key ∈ r′.out.Key the opportunity to
correct their level or sinkRID information and also to determine if there are relays
in r.In that do not exist. Second, it detects and fully removes deleted relays r that
do not need to be kept any more (e.g. because all of their messages have been
transmitted) and it also shuts down the relay layer if the process is dead and all
relays of it have been deleted. In case r is not a sink, it additionally sends out
an in-relay-closed(r.out.Key,RID(r), r.out.ID) message as to inform the relay
layer of the relay with ID r.out.ID that r has been closed. Third, its sends out the
aforementioned probe() messages. The full pseudocode of this action is given in
Listing 5.

Listing 5: Pseudocode of the periodically executed Timeout action

87 true →
88 f o r a l l r̂ ∈ getRelays do
89 i f r.out.ID = ⊥ then
90 r.level = 0
91 e l s e
92 i f r.level < 1 then
93 r.level := 1
94 i f r.out.ID = ⊥ and r.out.Key 6= {} then
95 r.out.Key = {}
96 i f r.out.ID 6= ⊥ and r.out.Key = {} then
97 d e l e t e r
98 f o r a l l (key,X, Y) ∈ r.In do
99 i f the re i s a (key,X ′, Y ′) ∈ r.In such that X ′ 6= X and Y ′ 6= Y

100 or i f the re i s a (key,X ′, Y ′) ∈ r′.In f o r some r e l a y r′ 6= r or
101 i f key does not belong to RL(r) then
102 r.In := r.In \ {(key,X, Y)}
103 f o r a l l (key,RID,⊥) ∈ r.In do
104 RL.Buf := RL.Buf ∪ {(RID, ping(r.ID, r.level, r.sinkRID, key))}
105 f o r a l l (key,⊥, r′) ∈ r.In do
106 i f r′ does not e x i s t then
107 r.In := r.In \ (key,⊥, r′)
108 f o r a l l x ∈ r.In such that x 6= (key,RID,⊥) and x 6= (key,⊥, r′)
109 f o r some RID RID and some e x i s t i n g r e l a y r′

110 r.In := r.In \ {x}
111 i f r.state = dead then
112 i f the re i s no r e l a y r′ owned by t h i s p roc e s s such that
113 (key,⊥, r) ∈ r′.In f o r some key key then
114 i f r.out.ID = ⊥ then

11

115 d e l e t e r
116 complete ly remove r
117 e l s e i f r.Buf = ∅ then
118 l e t RID be the RID o f t h i s r e l a y l a y e r
119 l e t oID := r.out.ID
120 RL.Buf := RL.Buf ∪ {(RID(oID), in-relay-closed(r.out.Key,RID, oID))}
121 complete ly remove r
122 i f the proce s s i s dead and r.In = {} and r.Buf = {} and there
123 i s no r e l a y r′ such that (key,⊥, r) ∈ r′.In f o r some key key then
124 d e l e t e r
125 i f the re i s a r e l a y r′ 6= r such that there i s a key ∈ r′.out.Key
126 such that key ∈ r.out.Key then
127 i f r′.ID > r.ID then
128 d e l e t e r
129 f o r every key ∈ r.Out.Key do
130 l e t keySequence be a sequence c o n s i s t i n g o f the s i n g l e
131 element key
132 l e t controlKeys be the s e t o f a l l keys key′ s . t . the re i s a
133 r e l a y r′ such that (key′,⊥, r) ∈ r′.In and there i s no message
134 in r.Buf conta in ing a r e l a y parameter with key key′

135 i f the cor re spond ing proce s s i s a l i v e or r.In 6= ∅
136 r.Buf := r.Buf ∪ {((key, r.ID, r.out.ID), probe(controlKeys, keySequence))}
137 i f the corre spond ing proce s s i s dead and r.In = ∅ and r.Buf = ∅
138 d e l e t e r
139 i f the proce s s i s dead and proce s s owns no r e l a y then
140 shut down t h i s r e l a y l a y e r complete ly

When a relay layer receives a ping(ID, level, sinkRID, key) message it checks
whether there is a corresponding relay r with r.out.ID = ID and key ∈ r.out.Key.
If there is no such relay, it responds to the relay layer owning the relay with id
ID with an in-relay-closed() message indicating that there is no such relay
with such a key. Otherwise, if r.level ≥ level + 1, it updates r.level to level and
r.sinkRID to sinkRID. If r.level < level + 1, it deletes r (in this case correcting
the value would be dangerous as this would allow for cycles in the relay graph).
The pseudocode of the ping() message is given in Listing 6 and the pseudocode of
the in-relay-closed(Keys, senderRID, ID), which basically removes every entry
(key,RID,⊥) from all .In sets such that key ∈ Keys, is given in Listing 7.

Listing 6: Pseudocode of the ping() action

141 ping(ID, level, sinkRID, key) →
142 i f ID 6= ⊥ then
143 i f the re i s a r e l a y r with r.out.ID = ID and key ∈ r.out.Key do
144 r.sinkRID := sinkRID
145 i f r.level > level + 1 then
146 r.level := level + 1
147 i f r.level < level + 1 then
148 d e l e t e r
149 e l s e
150 l e t u be the proce s s such that RID(u) = RID(ID)
151 l e t RID be the RID o f t h i s p roce s s
152 RL.Buf := RL.Buf ∪ {(RID(ID), in-relay-closed({key}, RID, ID))}

Listing 7: Pseudocode of the in-relay-closed() action

153 in-relay-closed(Keys, senderRID, ID) →
154 f o r every key ∈ Key do
155 i f p roce s s owns a r e l a y r s . t . (key,RID,⊥) ∈ r.In
156 f o r some RID then
157 r.In := r.In \ {(key,RID,⊥)}

12

When delete r̂ is called, RL(r) sets r.state to dead and sends an out-relay-
closed(r.ID) message to every relay layer whose RID is the second parameter of a
triple in r.In. Afterwards, it empties r.In so that no message can be received via r
from that point in time. The pseudocode of this is given in Listing 8.

Listing 8: Pseudocode executed upon delete r̂

158 delete r̂:
159 r . s t a t e := dead
160 f o r every (key,RID,⊥) ∈ r.In do
161 l e t u be the proce s s such that the RID o f RL(u) equa l s RID
162 RL.Buf := RL.Buf ∪ {(RID,out-relay-closed(r.ID))}
163 r.In := {}

Note that a relay r is not closed immediately during the execution of delete r̂. This
is to allow all messages still in r.Buf to be delivered first. Once this has happened,
the relay will be removed completely upon the execution of Timeout.

When a relay layer receives an out-relay-closed(ID) message and owns a relay
r with r.out.ID = ID, it removes all triples (key,⊥, r) from r′.In for every relay r′

owned by it, empties r.out.Key, sets r.out.ID to ⊥, and calls delete afterwards. The
pseudocode of this action can be found in Listing 9.

Listing 9: Pseudocode of the out-relay-closed() action

164 out-relay-closed(ID) →
165 i f t h i s p roce s s owns a r e l a y r such that r.out.ID = ID then
166 // remove a l l ” pending ” (unconfirmed) r e l a y s sent v ia r
167 f o r a l l r e l a y s r′ do
168 f o r a l l keys key such that (key,⊥, r) ∈ r′.In do
169 r′.In := r′.In \ {(key,⊥, r)}
170 r.out.Key := {}
171 r.out.ID := ⊥
172 d e l e t e r

2.4 Properties of the relay layer

In order to define legal states for the relay layer, we introduce the following notion of
a valid relay :

Definition 3 (Valid Relay). A relay r is valid iff

1. r.state = alive, and

2. r.ID is globally unique, and

3. r.out stores a pair (Key, ID) such that Key is a set, and

4. r.In only consists of triples (key,RID,⊥) with RID 6= ⊥ or (key,⊥, r′′) for a
valid relay r′′ owned by RL(r), and

5. every key key used as a first parameter of a triple in r.In is locally unique (i.e.,
it does not appear in any other triple in r.In or r′′.In for any relay r′′ 6= r) and
belongs to RID(r), and

6. there is no ping(r.ID, level, sinkRID, key) message in the system such that
level 6= r.level or sinkRID 6= r.sinkRID, or (key,⊥, r′′) ∈ r.In for any relay
r′′, and

7. there is no out-relay-closed(r.ID) message in the system, and

13

8. for every (key,RID,⊥) ∈ r.In there is no
not authorized(m = ((key, inID, r.ID, level), action(parameters))) message
in the system for any level and any inID such that RID(inID) = RID, and
for every (key,⊥, r′′) ∈ r.In there is no
not authorized(m = ((key, inID, r.ID, level), action(parameters))) message
in the system for any level and any inID such that RID(inID) = r′′.sinkRID,
and

9. for every (key,⊥, r′′) ∈ r.In, there is no probefail(key, (key1, . . .)) message
in the system such that key1 ∈ r′′.out.Key, and, let (r1 = r′′, r2, . . . , rk) be
the sequence of relays such that ri+1.ID = ri.out.ID for all 1 ≤ i < k and
rk.out.ID = ⊥, then either for a relay r′ owned by the process with RID
r′′.sinkRID such that r′.out.ID = r, key ∈ r′.out.Key, r′.level = r.level + 1,
there is a probe({}, key) message with a valid header in transit to r and there is
no probe(controlKeys, (key1, . . .)) message such that key ∈ controlKeys and
key1 ∈ r′′.out.Key in r′′′.Buf for any relay r′′′ /∈ {r1, . . . , rk−1}, or there is a
message m with a valid header for rj+1 in rj .Buf for some 1 ≤ j < k containing
a relay parameter with key key, and there is no probe(controlKeys, (key1, . . .))
message such that key ∈ controlKeys and key1 ∈ r′′.out.Key in r′′′.Buf for
any relay r′′′ /∈ {r1, . . . , rj}. In addition to all of these properties either

10. r is a sink, i.e., r.out = ({},⊥), r.level = 0, and r.sinkRID = RID(r), or

11. (a) r.out.ID 6= ⊥, and

(b) there is a valid relay r′ with r′.ID = r.out.ID, and

(c) r.level = r′.level + 1, and r.sinkRID = r′.sinkRID, and

(d) there is a key ∈ r.out.Key such that (key,RID,⊥) ∈ r′.In and RID =
RID(r), or (key,⊥, r′′) ∈ r′.In for a relay r′′ and r′′.sinkRID = RID(r)
and ((key, r.ID, r.out.ID),probe({}, key)) ∈ r.Buf , and

(e) for every key ∈ r.out.Key, there is no relay r′′′ 6= r owned by the same
process such that key ∈ r′′′.out.Key

(f) there is no in-relay-closed(Keys,RID(r), r.out.ID) message in transit
to RL(r′) such that key ∈ r.out.Key for a key ∈ Keys

Using this definition, we can define a valid relay graph as follows:

Definition 4 (Valid relay graph). A valid relay graph of a system state S is the
subgraph of the relay graph G = (R ∪ P,EP ∪ECh) of S such that every r ∈ R is valid
and every (v, w) ∈ ECh is due to a valid relay parameter.

Note that every valid relay graph is cycle-free due to Property 11c) of a valid relay.
We say a state S is legal if there is no difference between the relay graph of S and
its valid relay graph. Furthermore, we say an application is deliberate if it does not
delete a relay r′ if r′.In 6= ∅ (note that this includes that it does not call stop as long
as there are sink relays with incoming connections). Given the above definitions, we
obtain the following results whose proofs can be found in Appendix A:

Theorem 1. If the application is deliberate, every message sent via a valid relay r
will be received by the process u with RID(u) = r.sinkRID.

Thus the process u is also called the sink process of r. Observe that in the valid
relay graph, every relay r is connected via a directed path to some process v, which is
the sink process of r.

Theorem 2. If the application is deliberate, for every computation that starts in a
legal state every state is legal.

14

Theorem 3. If the application is deliberate, and does not send the reference of an
indirect relay (i.e., a relay r such that direct(r) = false) and does not send any
reference via a relay that is not valid, every computation will reach a legal state.

This implies:

Corollary 1. If the application does not issue any commands, starting from any
initial state S the system will reach a state S′ such S′ and every subsequent state are
legal.

Note that this resembles the classical definition of self-stabilization in which it is
assumed that starting from the initial state no change occurs to the system other than
by the self-stabilizing protocol.

Since the relay layer of a process that issues stop is not always shutdown immedi-
ately, the following is important as well:

Theorem 4. If the application does not keep an indirect relay for an infinite time,
all relay layers of inactive processes will eventually be shut down.

3 Universality of the relay approach

We introduce three rules for the manipulation of edges of a relay graph and show that
they are universal, i.e., using them it is possible to get from any arbitrary weakly
connected valid relay graph to any other weakly connected valid relay graph involving
the same set of processes. For simplicity, in this section any relay graphs we consider
are assumed to be valid relay graphs. The rules we present are an adaptation of known
rules introduced by Koutsopoulos et al. [22] (defined below) to our relay model. In
that work, the authors proved these rules to be universal in the common model, which
we will rely on in our proofs. For convenience, in the following, for a relay r, we denote
the process that stores the sink relay of r as the sink process of r. Furthermore, we
say a process u has a relay r to another process v if v is the sink process of r, and
u stores r̂ in one of its variables or there is a message in transit to u that will cause
such a reference to be created upon receipt. Additionally, a relay r is called a direct
relay if and only if direct(r) evaluates to true. Otherwise, r is called indirect. The set
IFR of relay rules consists of the following rules:

Relay Introduction Assume a process u has a relay r to a process v and another
relay s to a process w. Then u may send ŝ to v (via r).

Relay Fusion Assume a process u has two relays r and r′ with same-target(r̂, r̂′).
Then u may merge the two relays.

Relay Reversal Assume a process u has two relays r and s such that r 6= s and
incoming(r) = 0. Then u may send ŝ via r and subsequently delete r.

Examples of these rules are presented in Figure 2. The following is easy to show:

Theorem 5. IFR preserves weak connectivity, i.e., if any of the rules is applied to a
weakly connected relay graph G, then the resulting graph G′ is also weakly connected.

The idea of the proof is as follows: Relay Introduction does not delete any relay,
thus its application cannot harm the connectivity of the relay graph. Relay Fusion only
merges redundant relays. Last, Relay Reversal preserves weak connectivity because
although u deletes a connection to the sink process of r, the message sent causes an
edge from r to s (and thus there is an undirected path from u to the sink process of
r), see Figure 2c.

The universality of the three relay rules is given by the following theorem.

15

u

r

s
v

q
w

p
u

r

s
v

q

s′

w
p

(a) Left: Initial situation for Relay Introduction. Right: After u has sent ŝ to v (via r).

u
r′

r

v
q

u

r

v
q

(b) Left: Initial situation for Relay Fusion. Right: After u has deleted r′.

u

r

s
v

q
w

p
u

s
v

q

s′

w
p

(c) Left: Initial situation for Relay Reversal. Right: After u has sent ŝ to v (via r) and
deleted r.

Figure 2: Visualization of the rules in IFR.

Theorem 6. The rules in IFR are universal in a sense that one can get from any
weakly connected relay graph G = (V,E) to any other weakly connected relay graph
G′ = (V,E′), where w.l.o.g. E and E′ consist solely of explicit edges.

The proof of Theorem 6 will make of use of the universality of the (process) rules
introduced by Koutsopoulos et al. [22], which are restated in the following:

Introduction If a process u has a reference of two processes v and w with v 6= w,
u introduces w to v if u sends a message to v containing a reference of w while
keeping the reference.

Delegation If a process u has a reference of two processes v and w s.t. u, v, w are all
different, then u delegates w’s reference of v if u sends a message to v containing
a reference of w and deletes the reference of w.

Fusion If a process u has two references v and w with v = w, then u fuses the two
references if it only keeps one of these references.

Reversal If a process u has a reference of some other process v, then u reverses the
connection if it sends a reference of itself to v and deletes its reference of v.

In the following, we say a simple relay graph is a relay graph G = (P ∪R,E) such
that all edges in E are explicit and all relays in R are direct and such that every
sink relay in R has exactly one incoming connection. For such a graph, we define
the corresponding process graph as the multigraph CPG(G) = (P,E′) whose vertices
are the processes only and whose edge set contains an edge (u, v) with u, v ∈ P for
every edge (u′, v′) in G such that u′, v′ ∈ R and u′ is stored in a variable of u and v′

is stored in a variable of v. Note that there is a one-to-one relationship between a
simple relay graph and its corresponding process graph, i.e., given a process graph GP ,
there is a (except for isomorphism) unique relay graph GR with CPG(GR) = GP . We
say a set of relay rules RP emulates a process rule p if for every simple relay graph
GR and every possible application of p to CPG(GR), for each resulting process graph
G′P there is a simple relay graph G′R with CPG(G′R) = G′P that can be obtained by
applying rules from RP only. This definition enables us to state the following lemma:

16

Lemma 1. The relay rules in IFR emulate each of the process rules Introduction,
Delegation, Fusion, and Reversal.

Proof. The proof strategy is the same for every of the four rules: Let GR be an
arbitrary simple relay graph. Further, let GP = CPG(GR). We will then consider an
arbitrary application of the particular rule to GP and denote the resulting graph by
G′P . After that, we show that by applying rules from IFR to GR, it is possible to
obtain a graph G′R with CPG(G′R) = G′P . Thus, in the following we will use these
variable names.

We start with the Introduction rule. Applying the Introduction rule means that
for some process u with references of two other processes v and w in GP , u sends
a message to v containing a reference of w and keeps the reference. Thus, in the
resulting graph G′P , there is an additional edge (v, w). In GR, let u send its relay to v
to w, which resembles a Relay Introduction. Subsequently, let w create a new relay,
send this via the received relay, and close the received relay. Then this resembles a
Relay Reversal. In the resulting relay graph G′R, all that has changed compared to
GR is that v now has an additional direct relay to w. Thus, in CPG(G′R) all that has
changed compared to CPG(GR) is that there is an additional edge (v, w), thus this
graph is isomorphic to G′P .

Next, we deal with the Delegation rule. Applying the Delegation rule means that
for some process u with references to two processes v and w in GP s.t. u, v, w are all
different, u sends a message to v containing a reference a reference of w and deletes
the reference of w. Thus, the resulting graph G′P differs from GP in that there is an
additional edge (v, w) and the edge (u,w) is removed. In GR, let u send its relay to v
to w and delete the relay to w. This resembles the Relay Reversal rule. After that,
let w create a new relay, send this via the received relay, and close the received relay.
Then this resembels the Relay Reversal rule, again. In the resulting relay graph G′R,
all that has changed compared to GR is that v now has an additional direct relay to
w and u no longer has its relay to w. Thus CPG(G′R) = G′P , again.

For the Fusion rule, it is obvious that Safe Fusion emulates the process rule Fusion.
Last, applying the Reversal rule means that some process u that has a reference of

some other process v, sends a reference of itself to v and deletes its reference of v. In
the relay graph, u would create a new relay, send it via the relay to v and subsequently
delete its relay to v, which resembles a Safe Reversal. This finishes the proof.

Applying this lemma we can finally prove Theorem 6:

Proof of Theorem 6. The idea of the proof is the following: Assume graph G =
(R∪P,E) is weakly connected. First, we show how to transform G into a simple relay
graph G1 over the same processes that is weakly connected as well. The universality
of the process rules from [22] and Lemma 1 imply that it is possible to transform this
graph into another simple relay graph G2 with CPG(G2) = (P,E2) by using the rules
in IFR, which is defined such that (w, v) ∈ E2 if and only if in G′ there is an edge
(r, s) such that r is stored by v and s is stored by w. Last, we show how to transform
G2 into a graph isomorphic to G′, which finishes the proof.

To transform G into G1, we proceed as follows: As long as there is still an indirect
relay r stored by any process v with incoming(r) = 0, v applies Relay Reversal as
follows: v creates a new relay r′, sends this relay via r and subsequently closes r. This
strictly decreases the number of indirect relays in every iteration. Note that as soon
as there is no indirect relay r with incoming(r) = 0 any more, there cannot be any
indirect relay at all (recall that there cannot be any cycles in the sequences of relay
connections). Note that by Theorem 5, since we applied Relay Reversal only, the
resulting graph G1 is still weakly connected. Furthermore, G1 is a simple relay graph.
Thus, as described above, it is possible to transform this graph into a graph G2 as
described above.

17

To transform G2 into G′, consider an arbitrary sink relay s in G′ and let T be
the subgraph of G′ that contains all relays r with sink relay s. Note that T is a tree
because we assume the relay layer to be in a legitimate state. Thus, for a relay r in
T , define childrenT (r) as the set of relays s with an edge (s, r) in T . Similarly, for
a relay r 6= s in T , define parentT (r) as the relay s for which there is an edge (r, s)
in T . By the definition of G2, every process storing a relay r of T (in G′) stores (in
G2) a direct relay to each process storing a relay r′ ∈ childrenT (r) (in G′). Denote
by LT (i) the set of relays at level i of T . First of all, the process storing s (the root of
T) in G′ creates a new relay r (which in the end will be the equivalent of s). Then, it
sends r to each process storing a relay r′ ∈ childrenT (r) (in G′) and closes each of
the relays to a process storing a relay r′ ∈ childrenT (r) (in G′), i.e., the relays via
which the relay was sent, thus performing a Relay Reversal. This way, every process
storing a relay r′ in LT (1) (in G′) receives a relay r′′ whose endpoint is equivalent to
parentT (r′′). Then, for every level i ≥ 1 ascending, every process storing a relay r′ in
LT (i) sends the relay it received to each of the processes storing relays in childrenT (r′)
closes the relays via which it sent this relay, thus performing a Relay Reversal, too.
Similarly, every process storing a relay in LT (i + 1) receives a relay r′ whose endpoint
is equivalent to parentT (r′′). In the end, we obtain the desired tree T . Since s and
thus also T was chosen arbitrarily and since there is no edge in G2 that is not removed
in the transformation, this finishes the proof.

Recall that we dealt with valid relay graphs in this section. Luckily, by Theorem 3
one can show: For every protocol that uses only the primitives in IFR for the
manipulation of edges in the relay graph and only uses references of direct relays in
introductions, the underlying relay layer will self-stabilize, i.e., it will reach a state
S such the relay graph of S is equal to the valid relay graph of S and starting from
any such state for every subsequent state S′ the relay graph of S′ will be equal to the
valid relay graph of S′.

3.1 How to adapt classical protocols to the relay model

One of the benefits of the relay model is that a wide range of protocols designed
for the standard interconnection model (e.g., [14, 18, 19, 28, 33]) can be adapted
to the relay model. In [32] it was shown that a wide range of protocols for static
strongly-connected topologies that preserve weak-connectivity can be transformed such
that the interaction between nodes can be decomposed into the rules Introduction,
Delegation, and Fusion (Theorem 1 of that work). Lemma 1 of this work yields
that these rules can be emulated by the relay rules in IFR such that the resulting
graph consists of direct relays only. Putting this together, the aforementioned class of
protocols can be adapted to the relay model.

4 Conclusion and Outlook

We introduced Relays, a new model for the interconnection of processes in a network.
While we motivated the introduction of this model by that the FDP can be solved in
this model, our model has numerous additional advantages, which is why we think it
has great potential for future research.

For instance, observe that our model offers facilities for admission control that the
common interconnection model does not offer: In the standard model, the possession
of a reference to another process u admits the sending of a message to u and u is
unable to revoke this right. In the relay model, in contrast, each process is able to
delete a relay and thus revoke the right to send a message to this relay. Even worse
in the standard model, a reference can be copied and introduced to other processes
without permission of u. Although it is possible to forward a relay reference also in
the relay model, such an action only establishes an indirect connection. To create

18

a direct relay connection, permission of u would still be required. This has a huge
advantage in the scenario of Distributed Denial-of-Service attacks if we assume that
the attacker has no access to the relay layer (which may be reasonable if the relay layer
is implemented using secure hardware): If an attacker v forwards a relay reference r
to other processes in order to attack the sink process of r, the bandwidth of the attack
is not the sum of the individual bandwidths of all participating processes, but limited
by the bandwidth of v. Thus, forwarding the relays does not yield any advantage for
the attack.

Another advantageous property of the relay model whose power is yet to be
determined is the fact that processes can create multiple relays as pseudonyms.
Whereas in the original model, each process was uniquely defined by its reference that
was even propagated to the application layer, in the relay model applications only
know locally valid references. Although applications can check whether two relays
have the same next target, it is not possible for them to determine whether the sink
process of two relays with different next targets is equal. This way, a process could
use different sink relays for different purposes in the network and no other processes
would be able to link this process’s activities, thus achieving anonymity.

A Proofs of the theorems from Section 2.4

In this section we present some lemmata and proofs not contained in the main part
due to space contraints.

Lemma 2. If the application does not delete a relay r′ if r′.In 6= ∅, for every alive
relay r such that (a) r.out.ID = ⊥, or (b) Property 11 holds, delete r is only called
when r is deleted by the application.

This lemma implies that the interal calls of delete r according to the pseudocode
do not occur on a valid relay as long as the above prerequisites are fulfilled.

Proof. For the proof, we check all lines that contain a call of delete:

1. Line 86: If this line is executed, this means that the relay layer owning r has re-
ceived a not authorized(m = ((key, inID, outID, level), action(parameters)))
message with r.ID = inID, r.out.ID = outID 6= ⊥, r.level = level and
key ∈ r.out.Key. In this case, we are in Case (b) (since r.out.ID = outID 6= ⊥).
Due to Property 11d) and the fact that Property 8 holds for r′ (since r′ is valid),
the receipt of this message cannot have caused |r.out.Key| to become zero after
the removal of key and so this call of delete cannot occur.

2. Line 97: If this line is executed, Property 11d) must have been violated, yielding
a contradiction.

3. Line 115: If this line is executed, r.state = dead before, yielding a contradiction.

4. Line 124: If this line is executed, u is dead, yielding a contradiction.

5. Line 128: If this line is executed, r.out.ID 6= ⊥ and Property 11e) must have
been violated before, yielding a contradiction.

6. Line 148: If this line is executed, r.out.ID 6= ⊥ and for r Property 11c) or for
the relay r′ with r′.ID = r.out.ID Property 10 and Property 6 must have been
violated, yielding a contradiction.

7. Line 172: If this line is executed, r.out.ID 6= ⊥ and for the relay r′ with
r′.ID = r.out.ID Property 10 and Property 7 must have been violated, yielding
a contradiction.

19

Lemma 3. If the application does not delete a relay r′ if r′.In 6= ∅ and does not send
any reference via a relay that is not valid, every valid relay r remains valid as long as
r is not deleted by the application (including being merged).

Proof. Assume that the application does not delete a relay r′ if r′.In 6= ∅, and let r be
the valid relay that is the first to become invalid without being deleted itself. Denote
by u the process owning r. We handle all different cases that may cause r to become
invalid.

Note that r.state is only changed when delete r̂ is called. If this is done by the
application, there is nothing to be proven. According to Lemma 2 and the fact that r
is valid, there is no other occasion at which this happens. Thus Property 1 holds.

Next Check that r.ID and the form of r.out are never changed for any existing
relay, thus Property 2 and Property 3 hold.

Regarding Property 4, note that if (key,RID,⊥) is added to r.In then RID 6= ⊥.
Furthermore, note that when a new (key,⊥, r′′) is added to r.In, then r′′ is owned
by RL(r) and when this happen, a relay reference is sent via r′′. By the assumption
r′′ is thus a valid relay and the property holds. There are no other types of elements
added to r.In.

For Property 5 note that the only occasion at which a key becomes the first
parameter of an element in r.In that has not been a first parameter of an element in
r.In before, is in Line 8 in which key has just been uniquely generated.

For Property 6 note that a ping(r.ID, level, sinkRID, key) message is sent only
during Timeout and only with level = r.level and sinkRID = r.sinkRID and key
such that (key,RID,⊥) ∈ r.In which by Property 5 prevents (key,⊥, r′′) ∈ r.In to
hold.

For Property 7, note there are two occasions at which an out-relay-closed(ID)
message is sent: In Line 64 in Listing 2 and in Line 162 in Listing 8. In both cases,
the RID contained in ID is the RID of the sending process and the relay with id ID
either does not exist or is dead. So, if such a message is sent, r cannot have been valid
before.

For Property 8, check in the pseudocode that the only occasion at which a
not authorized(m = ((key, inID, r.ID, level), action(parameters))) message is
only sent in Line 61, in which case m did not have a valid header for r, i.e., key
was not the first parameter of any triple in r.In. Furthermore, note that whenever
a new key key is added as the first parameter of a triple to r.In, key has just been
created as a globally unique key. Thus, adding an element to r.In also does not violate
Property 8.

For Property 9, first note that according to the pseudocode for a probefail(key, (key1, . . .))
message to be created, a probe(controlKeys, (key1, . . .)) message such that key ∈
controlKeys must have been received by a sink relay r′′′. By Property 9 this must have
been a relay owned by the process with RID r′′.sinkRID and this process must have
a relay r′ such that key ∈ r′.out.Key, in which case the probefail() message is not
sent (see Line 26 and thereafter). Next consider an arbitrary triple (key,⊥, r′′) ∈ r.In
for a relay r′ owned by the process with RID r′′.sinkRID such that r′.out.ID = r,
key ∈ r′.out.Key, r′.level = r.level + 1, and there is a probe({}, key) message with
a valid header in transit to r. Note that either this message remains in transit or is
received by r, in which case the tuple would be removed from r.In (in which case we are
finished). Furthermore, note that no probe(controlKeys, keySequence) message such
that key ∈ controlKeys is ever put into r′′′.Buf for some relay r′′′ /∈ {r1, . . . , rk−1}
because of Lines 53-58 in Listing 2 and the fact that Property 9 held before. Thus,
now consider an arbitrary triple (key,⊥, r′′) ∈ r.In such that for the sequence
of relays (r1 = r′′, r2, . . . , rk), such that ri+1.ID = ri.out.ID for all 1 ≤ i < k
and rk.out.ID = ⊥, there is a message m with a valid header for rj+1 in rj .Buf
for some 1 ≤ j < k containing a relay parameter with key key, and there is no

20

probe(controlKeys, (key1, . . .)) message in rl.Buf for any j < l < k such that
key ∈ controlKeys and key1 ∈ r′′.out.Key. Note that Property 11b implies that all
ri are valid for 1 ≤ i ≤ k. If the message m is received by rj+1 then either j + 1 < k,
in which case the message will be put into rj+1.Buf and the property still holds, or
j + 1 = k, in which case rk is a sink owned by the process with RID r′′.sinkRID
and upon receipt of m, that relay layer will generate a probe({}, key) message and
send it to r (see Line 44 in Listing 2). The only missing part for Property 9 is
that no probe(controlKeys, (key1, . . .)) message such that key ∈ controlKeys and
key1 ∈ r′′.out.Key is ever put into r′′′.Buf for some relay r′′′ /∈ {r1, . . . , rj}. This,
again, is ensured by Lines 53-58 in Listing 2 and the fact that Property 9 held before.

Assume r is a sink and Property 10 holds true. Note that r.out is never changed
for a sink relay with r.out.Key = {}. Additionally, check that r.level is only changed
if r.out.ID = ⊥ and r.level 6= 0, or r.out.ID 6= ⊥. Furthermore, r.sinkRID is only
changed if r.out.ID = ⊥ and r.sinkRID 6= sinkRID(r) or r.out.ID 6= ⊥. Thus, in
this case, the lemma follows.

Now assume r is valid and r.out.ID 6= ⊥. Recall that since r.out.ID is never
changed, Property 11a) remains true.

We now consider Property 11b): Assume the relay r′ with r′.ID = r.out.ID
becomes invalid. Since r is the first relay to become invalid without being deleted by
the application, r′ must have been deleted by the application for this to occur. By the
restriction on deletions, however, r′.In = ∅ must have held. This, however, contradicts
Property 11d) for r′.

Next assume that a violation of Property 11c) causes r to become invalid. In the
case we consider, this only happens if RL(u) receives a ping(ID, level, sinkRID, key)
message with ID = r.out.ID and r.level 6= level+1 or r.sinkRID 6= sinkRID, which
would contradict either Property 6 for r′ according to Property 11b) or Property 11c.

For Property 11d) check that a key is only removed from r.out.Key if RL(u) receives
a not authorized(m = ((key, inID, outID, level), action(parameters))) message with
r.ID = inID, r.out.ID = outID 6= ⊥, r.level = level and key ∈ r.out.Key. For those
keys key ∈ r.out.Key such that (key,RID(r),⊥) ∈ r′.In or (key,⊥, r′′) ∈ r′.In and
r′′.sinkRID = RID(r), according to Property 11b), this cannot happen due to Prop-
erty 8 for r′. Now consider the case that the last triple (key, . . . , . . .) ∈ r′.In such that
key ∈ r.out.Key that fulfills Property 11d) is removed from r′.In. According to the
pseudocode and the fact that r′ is valid, if the triple is of the form (key,RID(r),⊥)
this only happens when RL(r′) receives an in-relay-closed(Keys,RID(r)) message
with key ∈ Keys (and by Property 5, key belongs to RL(r′) because it was stored
in r′.In). According to Property 11f) such a message cannot have been in transit to
RL(r′) before. If, however, the triple is of the form (key,⊥, r′′) ∈ r′.In, then according
to the pseudocode either the triple is replaced by a triple (key,RID,⊥) such that
RID = r′′.sinkRID = RID(r) (see Lines 19-22), in which case the property still holds,
or RL(r′) receives a probefail(key, (key1, . . .)) message such that key1 ∈ r′′.out.Id,
which cannot be due to Property 9. Thus, the property still holds.

For Property 11e), note the check in Line 35 of Listing 2 and the fact that only in
the subsequent line, a new key is added to r′out.Key for any relay r′.

For Property 11f) note that an in-relay-closed(key,RID(r), ID) message with
key ∈ r.out.Key is only sent by RL(r) and only if either r is dead (according to Prop-
erty 11e), which is a contradiction, or RL(r) received a ping(ID, level, sinkRID, key)
message such that ID 6= r.out.ID or key /∈ r.out.Key, but then the message would
not violate Property 11f.

This concludes the proof of the lemma.

Definition 5 (Valid relay parameter). A relay parameter (key, ID, level, sinkRID)
contained in a message m in a buffer r.Buf is valid iff

1. r is valid, and

21

2. there is no other relay parameter with key key, and

3. ID 6= ⊥ and the relay r′ with r′.ID = ID is valid, and

4. level = r′.level + 1, and sinkRID = r′.sinkRID, and

5. (key,⊥, r′′) ∈ r′.In for some valid relay r′′ owned by the same process as r′ and
r′′.sinkRID = r.sinkRID, and key belongs to RL(r′) and

6. all IDs contained in relay references in m belong to the same RID, and

7. there is no relay r′′′ in the system such that key ∈ r′′′.out.Key, and

8. there is no message m in the system using key key, and

9. there is no probefail(key, (key1, . . . , keyk)) message in the system with key1 ∈
r′′.out.Key

10. for every probe(controlKeys, (key1, . . . , keyk)) message m′ in the system with
key ∈ controlKeys such that for the first element key1 in keySequence, key1 ∈
r′′.out.Key, there is a sequence of relays (r1 = r′′, r2, . . . , rk, . . . , rs), s ≥ k + 2
such that ri+1.ID = ri.out.ID for all 1 ≤ i < s and keyj ∈ rj .out.Key for all
1 ≤ j ≤ k and m′ is stored in rk.Buf , and m /∈ rl.Buf for all 1 ≤ l ≤ k, and
m ∈ ri′ .Buf for some k < i′ < s, and

11. there is no in-relay-closed(Keys,RID, ID) message in the system with
key ∈ Keys and ID = r′.ID

Lemma 4. If the application does not delete a relay r′ if r′.In 6= ∅, each relay
parameter created from a valid relay by sending a message via a valid relay is a valid
relay parameter. Furthermore, every valid relay parameter is either received by a sink
and turned into a relay or remains valid.

Proof. Note that a relay parameter is created with a unique key (which satisfies
Property 2) and with ID = r′.ID where r′ is the relay from which the relay parameter
is created. Thus, if r′ is valid, Property 3 holds. Since we assume the relay parameter
is sent via a valid relay, Property 1 initially holds also. For Property 4 to Property 6,
also check the way a relay parameter is created and for Property 5 the fact that the
relay r′′ via which the relay parameter is sent is valid. For Property 7 to Property 11,
note that since key is uniquely created, no such message or relay can exist at that
point in time.

We now check that every relay parameter remains valid as long as it remains in
the buffer it is in. Property 1 remains valid due to Lemma 3. The same holds for
Property 3 and the fact that relay parameters are never changed. This argument also
implies Property 4. Property 2 again follows from the fact that relay parameters are
created with a unique key. Let us now assume that Property 5 becomes false. By
Lemma 3 and the fact that the sinkRID is never changed for a valid relay, this can
only happen because (key,⊥, r′′) is removed from r′.In. According to the pseudocode,
this happens at the following occasions:

• In Line 21, in which case r′ receives a message using key key, which contradicts
Property 8.

• In Line 85, in which case prior to the change there must have existed a
not authorized(m = ((key, inID, outID, level), action(parameters))) message
with key ∈ r′′.out.Key and |r.out.Key| = 1. Since r′′ is valid, this contradicts
Property 11d) together with Property 8 of Definition 3 for r′.

• In Line 73, but this requires a probefail(key, keySequence) message with
key1 ∈ r′′.out.Key contradicting Property 10.

22

• In Line 102, but that line is only executed if Property 5 of r′ is violated, which
cannot be the case according to Property 3.

• In Line 110, but that line is only executed if r′′ does not exist, which contradicts
Property 5.

• When delete r′ is called: this does not occur due to Lemma 2 and the fact that
r′.In 6= ∅ and the assumption of the lemma.

• In Line 169, but this requires an out-relay-closed(ID) with r′′.out.ID = ID
to be received which contradicts to the fact that r′′ is valid and Property 7 of
Definition 3

For Property 6 note that the relay references inside a message are never changed. For
Property 7 note that this could only become violated if r′′′ is created from a relay
parameter with key key. This, however, would contradict Property 2. For Property 8
note that whenever the key of a message is set, it is set to a key from s.out.Key for a
relay s, which cannot be key due to Property 7. For Property 9 note that whenever
an existing probefail(key, keySequence) message is changed, only keySequence
is truncated from the end. Thus, the only occasion at which Property 9 might
become false is when a probefail(key, keySequence) message is created. This only
happens at a sink s upon receipt of a probe(controlKeys, keySequence) message with
key ∈ controlKeys. However, this requires this probe() message to having been in
r′′′.Buf for some relay r′′′ with r′′′.out.ID = s.ID, which contradicts Property 10 since
s.out.ID = ⊥. For Property 10 check that every probe(controlKeys, keySequence)
message created does not violate this property due to the way these messages are
created and the fact that for key ∈ controlKeys they are sent via r′′ only and r′′ is
valid. Thus, assume a probe() message p is delivered from a buffer ri.Buf to the relay
layer with RID RID(ri.out.ID). There, for the relay ri+1 with ri+1.ID = ri.out.ID, a
key key ∈ ri+1.out.Key is appended to keySequence. If there is a message containing a
relay parameter with a key contained in keySequence (i.e., m according to Property 2),
this key is removed from keySequence. So either p is no longer as defined in Property 10
or otherwise it fulfills the requirements of Property 10 still if they held before. For
Property 11 check both cases in which a in-relay-closed(Keys,RID, ID) message
with key ∈ Keys is sent. The first is in Line 120 which requires a relay r′′′ with
key ∈ r′′′.out.Key contradicting Property 7. The second is in Line 152 which requires
a ping(ID, level, sinkRID, key) message which due to Property 5 of a valid relay
parameter and Property 6 and Property 5 of a valid relay does not exist.

Next assume the message containing the relay reference is transmitted from r.Buf
to the process whose relay layer has the RID contained in r.out.ID and let s be
the relay with s.ID = r.out.ID. There are two options now: If s is not a sink, i.e.,
s.out.ID 6= ⊥, the message is put into s.Buf , and only Property 1 and Property 6
can have become invalid due to the transmission. However, they still hold due to
Property 11b) and Property 11c) of a valid relay. If s is a sink, due to Property 6, the
corresponding message is not discarded by the protocol executed when the message is
received. Thus according to the pseudocode and the fact that Property 7 holds, the
relay parameter will be turned into a relay.

Lemma 5. If the application does not delete a relay r′ if r′.In 6= ∅, each relay created
from a valid relay parameter is a valid relay.

Proof. Assume a relay r is created from a valid relay parameter (key, ID, level,
sinkRID). This happens when the message m containing the valid relay parameter
is received by a relay layer such that the relay with ID outID is a sink. Note r is
created with r.state = alive, a globally unique r.ID a pair r.out and empty r.In.
Thus, Property 1 to Property 9 are statisfied.

23

Furthermore r is created such that r.out.ID = ID and by Property 3 of a valid
relay parameter, the relay r′ with r′.ID = r.out.ID is valid, i.e., Property 11a) and
Property 11b) hold true.

According to Property 4 of a valid relay parameter, Property 11c) of a valid relay
holds as well.

For Property 11d) of a valid relay, first note that before the relay parameter
was received, the corresponding message was stored in r′′′.Buf for a relay r′′′ be-
fore and r′′′.out.ID = outID (if the message was not delivered this way, in which
case it must have been in the system initially, then the relay is not created from
a valid relay parameter). By Property 1 of a valid relay parameter, r′′′ was valid,
thus r′′′.sinkRID = RID(outID) by Property 11c) of a valid relay. Thus, ac-
cording to Property 5 of a valid relay parameter, (key,⊥, r′′) ∈ r′ for some valid
relay r′′ and r′′.sinkRID = outID. Since upon creation of the relay r, the mes-
sage ((key, r.ID, r.out.ID),probe({}, key)) is put into r.Buf , and key was put into
r.out.Key, and because of Property 11, Property 11d) of a valid relay holds for r.

For Property 11e) check Line 35.
Property 11f) follows from Property 11 of a valid relay parameter.

Lemma 6. If the application does not delete a relay r′ if r′.In 6= ∅, every alive relay
r with r.out.ID = ⊥ becomes a valid relay unless it is deleted by the application.

Proof. First of all notice that r does not get deleted unless by the application according
to Lemma 2. Note that r.state = alive by assumption (yielding Property 1), r.ID
is globally unique by the assumption that there are no corrupted IDs in the system
(yielding Property 2), Property 3 is satisfied by Timeout, and Property 4 and
Property 5 are satisfied by Line 102 and Line 110 in Listing 5, with one exception:
For those triples (key,⊥, r′′) that violate Property 4 in that r′′ is not valid, note that
all these triples will eventually be removed, either because they are replaced by the
other kind of triples or becase the probing failed.

Notice also that by Line 90 and Line 95, Property 10 of a valid relay will be fulfilled
after the next execution of Timeout.

For Property 6 check that any ping() message with first parameter r.ID is sent only
by RL(r) as ping(r.ID, r.level, r.sinkRID, key) and only such that (key,RID,⊥) ∈
r.In for some RID (this happens in Line 104). Further note that as soon as Property 10)
holds, it will hold forever, i.e., r.level and r.sinkRID will never change. Thus as soon
as after this point in time all existing ping() messages with first parameter r.ID have
been received, Property 6 holds and holds forever.

For Property 7 check that unless r is deleted, an out-relay-closed(r.ID) message
could only be created in Line 64 by RL(r) (due to the preceding “if”) if r is dead.
Thus, as soon as all out-relay-closed(r.ID) messages initially in the system are
received, Property 7 holds forever.

To see that Property 8 will eventually become true check in the pseudocode that
a not authorized(m = ((key, inID, r.ID, level), action(parameters))) message is
only sent in Line 61 and only by RL(r). For this line to be executed, however, there
must be no (key,RID,⊥) ∈ r.In with RID = RID(inID), and no (key,⊥, r′) ∈ r.In
such that r′.sinkRID = RID(inID). Thus such a message violating Property 8 is
never sent out and as soon as all of these message initially in the system have been
received, Property 8 will hold forever.

For Property 9, we first note that every probe() message will not be forwarded
infinitely often. Note that every message received by an arbitrary relay r′′ is only
forwarded to the relay with ID r′′.out.ID and that the value of r′′.out.ID cannot
be changed for an existing relay. Thus, if a probe() message is forwarded infinitely
often, then there must be a cycle (r0, . . . , rk, rk+1 = r0) of relays that this message tra-
verses infinitely often. However, for some l ∈ {0, . . . , k}, rl.level < rl+1modk.level + 1
must hold, and any receipt of a ping() message by RL(rl+1modk) can only increase

24

rl+1modk.level. Thus, at some point in time the ping(ID, level, sinkRID, key) mes-
sage sent during Timeout to RL(rl) with ID = rl.out.ID and key ∈ rl.out.Key
will cause rl to be deleted and the cycle will be broken, yielding a contradiction.
Second, not that every probefail(key, keySequence) message cannot be forwarded
infinitely often, as keySequence is strictly decreasing during every forwarding. Thus,
eventually all probe() and probefail() message initially in the system will be gone.
The proof that no messages contradicting Property 9 are created is analogous to the
corresponding part in the proof of Lemma 3.

All in all, as soon as Timeout is executed on r, and all initial messages have
vanished, r will be valid.

For convenience, in the following we say a message m has a target r if m ∈ r′.Buf
for some relay r′ such that r′.out.ID = r.ID.

Lemma 7. If the application does not delete a relay r′ if r′.In 6= ∅, for every alive
relay r that does not get merged with another relay or deleted by the application and
such that with r.out.ID = r′.ID for a valid relay r′, the following holds: If r fulfills
Property 11 of a valid relay, r will become a valid relay. Otherwise, r will become a
valid relay or become deleted in finite time.

Proof. When r gets merged or deleted by the application, we are done. Thus, in the
following we assume that r is not merged or deleted in finite time.

Property 1 through Property 5 and Property 7 through Property 9 will be fulfilled
after finite time for similar arguments as in Lemma 6. If Property 11 holds, Property 6
will also follow for similar reasons (here, Property 11b) and Property 11c) imply that
r.level and r.sinkRID will not change any more). Thus we are done in this case.

In the following assume that r does not get deleted in finite time at all (because
otherwise we are done). Note that Property 11a) and Property 11b) holds by assump-
tion. We will now show that at some point in time either Property 11e) will hold
forever or r will be deleted. After that we show that the same holds for Property 11f)
and Property 11d) and also for Property 11c).

For Property 11e) check that in case the property is violated, Line 128 of the Time-
out action makes sure it becomes satisfied (either by removing key from r.out.Key
or from r′′′.out.Key). Furthermore, note that the only occasion at which a key key is
added to r′′′.out.Key for a relay r′′′ owned by the same process as r is in Line 40, in
which due to Line 35 key /∈ r.out.Key holds. Thus, once Property 11e) holds, it will
hold forever.

For Property 11f), note that according to the pseudocode, only RL(r) could send
such an in-relay-closed(Keys,RID(r), r.out.ID) message with key ∈ r.out.Key.
However, as long as r is alive, according to the pseudocode, a message in-relay-
closed(Keys,RID(r), r.out.ID) with key ∈ Keys can only be sent if RL(r) receives
a ping(r.out.ID, level, sinkRID, key) and key /∈ r.out.Key, yielding a contradiction.
Thus, no such message is ever sent. Thus as soon as all in-relay-closed() messages
initially in the system have vanished, no one contradicting Property 11f) will be
created.

Now assume Property 11d) is violated. First of all, note that no key is added
to r.out.Key because this only happens during the creation of r. Furthermore, note
that every ((key, r.ID, r.out.ID),probe({}, key)) ∈ r.Buf will eventually be deliv-
ered to r′ causing RL(r′) to replace (key,⊥, r′′) by (key,RID(r),⊥) in r′.In. Thus,
eventually for every key ∈ r.out.Key, either key is not the first parameter of a
triple in r′.In at all or (key,RID,⊥) ∈ r′.In. Observe that r during Timeout
will eventually send probe() messages with target r′ for every key ∈ r.out.Key.
If for every key key of these keys (key,RID,⊥) /∈ r′.In or RID 6= RID(r), and
(key,⊥, r′′) /∈ r′.In or r′′.sinkRID 6= RID(r), according to the pseudocode in List-
ing 2, the relay layer of r will receive not authorized() messages for all of these
messages causing it to remove the keys from r.out.Key (note the little subtlety that

25

r.level might have changed in the meanwhile in which case the code is not executed,
but this can happen only a finite number of times since r.level is only decreased,
see the pseudocode in Listing 6). Once the last key has been removed, r will be
deleted. Thus Property 11d) holds eventually. Note that Property 11d) holds forever
for two reasons: First of all, a key is only removed from r.out.Key if RL(r) receives a
not authorized(m = ((key, inID, outID, level), action(parameters))) message with
r.ID = inID, r.out.ID = outID 6= ⊥, r.level = level and key ∈ r.out.Key. Due
to Property 8 for r′, this cannot happen for at least one key ∈ r.out.Key. Sec-
ond, a valid relay r′ only removes a (key,⊥, r′′) from r′.In if it replaces them by
(key,RID,⊥) and it only removes a (key,RID,⊥) from r′.In if it receives a in-relay-
closed(Keys,RID, r′.ID) message with key ∈ Keys. This cannot happen since we
already proved that there will be no message contradicting Property 11f).

For Property 11c) assume that Property 11d) already holds (which will be the case
as we have just proven) and let key ∈ r.out.Key such that (a) (key,RID,⊥) ∈ r′.In
and RID = RID(r), or (b) (key,⊥, r′′) ∈ r′.In and r′′.sinkRID = RID(r) and
((key, r.ID, r.out.ID),probe({}, key)) ∈ r.Buf . We consider both cases individually.
In Case (a), during Timeout, RL(r′) will send a ping(r′.ID, r′.level, r′.sink, key)
message with target r. Upon receipt of this message, RL(r) will either delete r
or update the values of r such that Property 11c) is fulfilled. In Case (b), the
((key, r.ID, r.out.ID),probe({}, (key))) message in r.Buf will eventually be delivered
to RL(r′) in which case according to Line 21f. in Listing 2, (key,⊥, r′′) in r′.In will
be replaced by (key,RID(r.ID),⊥). After this we are in Case (a). Note that since
Property 6 holds for r′, and r.level and r.sinkRID are only changed due to the receipt
of a ping() message, Property 11c) will hold forever.

All in all, we obtain the claim of the lemma.

Lemma 8. For every call of merge(R) such that there is a valid relay r ∈ R, either
merge does nothing or the resulting relay r′ is a valid relay.

Proof. Check that if merge(R) does not do nothing then for all relays r′ ∈ R, r′.state =
alive, r′.out.ID = r.out.ID, r′.level = r.level, r′.sinkRID = r.sinkRID, and r.In =
{}. Furthermore, for the new relay r′′ created it holds that r′′.ID is a new ID,
r′′.state = alive, and r′′.out = (Key, ID) with r.Key ⊆ Key r′′.level = r′.level,
r′′.In = {}, and r′′.Buf =

⋃
r∈R r.Buf . Thus Property 1 through Property 8 follow

immediately from the fact that r was valid an the fact that r′′.In = ∅. PropertyR10
also follows from the fact that r was valid and that all relays r′ ∈ R are deleted during
merge.

Proof of Theorem 1. Follows from Property 3 and Property 4 of a valid relay and
the fact that according to the pseudocode the message is always forwarded from r to
r′ (as defined in Definition 3 until it is received by a process with r.out.ID = ⊥.

Proof of Theorem 2. Note that every sink relay created (via new Relay) becomes
a valid relay. Furthermore, according to Lemma 3, every valid relay remains a valid
relay. Additionally, every relay reference created becomes a valid relay reference
according to Lemma 4 (note that it can only be created from a valid relay and only
sent via a valid relay). Furthermore, by that lemma, every relay reference remains a
valid reference. Besides, by Lemma 5 every relay created by a message receipt will be
a valid relay. Last, by Lemma 8 every relay created by a merge will be a valid relay.
Since there are no other occasions at which relays are created, the claim follows.

Proof of Theorem 3. Note that every sink relay created becomes a valid relay and
that by Lemma 6, every sink relay will eventually become valid. By Lemma 3, they
will remain valid forever. Thus starting from some state S, only valid sink relays will
exist.

26

Note that after S, every relay parameter of a sink relay created is a valid relay
parameter by Lemma 4. Thus as soon as all relay parameters still in the system in
state S have been received or deleted, say at state S′, all relay parameters created
from sink relays will be valid. Thus, every relay r created such that r.out.ID = r′.ID
for a sink relay r′ is a valid relay. Furthermore, every existing relay r such that
r.out.ID = r′.ID for a sink relay r′ will become valid or get deleted by Lemma 7.
Thus at some state S′′, all direct relays are valid and will remain valid by Lemma 3.

The claim then follows from the assumption of the lemma and Lemma 4, Lemma 5
and Lemma 8.

Proof of Theorem 4. Recall that when a process v executes stop, RL(v) immedi-
ately deletes all sink relays and periodically deletes all relays r with r.In = ∅ and
r.Buf = ∅.

First of all, assume for contradiction that on an inactive process there is a relay r
such that r.In 6= ∅ forever. Since r is not a sink relay, r.out.ID 6= ∅.

We first consider all (key,⊥, r′′) ∈ r.In. Consider the sequence of relays (r1 =
r′′, r2, . . . , rk), such that ri+1.ID = ri.out.ID for all 1 ≤ i < k and rk.out.ID = ⊥
(note that this sequence must be finite or at some point in time upon receipt of a ping()
there will be a mismatch causing a relay on that sequence to be deleted). If all of the
relays in this sequence are never deleted, they will become valid for similar reasons
as in the proof of Lemma 7. Otherwise, all relays of the sequence will eventually
be deleted for similar arguments as in this proof. Thus, eventually either r′′ will be
deleted (in which case (key,⊥, r′′) will be removed from r.In) or r becomes valid. In
this case, however, according to Property 9 at some point in time, rk will receive a
message containing a relay parameter with key key upon which it will create a probe()
message to r with that key, or it already has. As soon as this message is received,
(key,⊥, r′′) will be replaced by (key,RID,⊥ in r.In. Note that no new (key,⊥, r′′)
are added to r.In because the process owning r is dead.

Now we consider the (key,RID,⊥) ∈ r.In. Due to the pseudocode of Timeout in
Listing 5, r.level ≥ 1 will eventually hold. Thus, r will for every (key,RID,⊥) ∈ r.In
eventually send a ping(r.ID, r.level, r.sinkRID, key) message to the relay layer with
RID RID. Upon receipt of this message, either a message in-relay-closed({key},
RID, r.ID) will be sent to RL(r) causing r to remove (key,RID,⊥) from r.In, or
for a relay r′′ with key ∈ r′′.out.Key, r.level ≥ 2 afterwards or that one is deleted. In
both cases it will eventually be deleted (in the first case according to the assumption).
Thus at some point in time the ping(r.ID, r.level, r.sinkRID, key) message will be
returned by an in-relay-closed({key}, RID, r.ID) causing r to remove the entry
from r.In. Note that a (key,RID,⊥) is only added to r.In if before there was a
corresponding (key,⊥, r′′) ∈ r.In. Thus, at some point in time all element in r.In will
have vanished.

Now assume that r.In = ∅ but r.Buf 6= ∅. Note that in this case no message
is added to r.Buf according to the pseudocode. Thus, eventually r.In = ∅ and
r.Buf = ∅, after which r will be deleted.

Once all relays of a relay layer have been deleted, it will shut down during
Timeout.

References

[1] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient
overlay networks. In Proc. of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 131–145, New York, NY, USA, 2001. ACM.

[2] James Aspnes and Yinghua Wu. O(logn)-time overlay network construction from
graphs with out-degree 1. In Proceedings of the 11th International Conference on
Principles of Distributed Systems, (OPODIS ’07), pages 286–300, 2007.

27

[3] John Augustine, Gopal Pandurangan, Peter Robinson, Scott T. Roche, and Eli
Upfal. Enabling robust and efficient distributed computation in dynamic peer-to-
peer networks. In Proc. of the 56th IEEE Annual Symposium on Foundations of
Computer Science (FOCS ’15), pages 350–369, 2015.

[4] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building self-
stabilizing overlay networks with the transitive closure framework. Theor. Comput.
Sci., 512:2–14, 2013.

[5] Nelly Delessy, Eduardo B. Fernandez, M. M. Larrondo-Petrie, and Jie Wu.
Patterns for access control in distributed systems. In Proceedings of the 14th
Conference on Pattern Languages of Programs, PLOP ’07, pages 3:1–3:11, New
York, NY, USA, 2007. ACM.

[6] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, 1974.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proc. of the 13th Conference on USENIX Security
Symposium (SSYM ’04), pages 21–21, Berkeley, CA, USA, 2004. USENIX Associ-
ation.

[8] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil.
Stabilizing data-link over non-fifo channels with optimal fault-resilience. Inf.
Process. Lett., 111(18):912–920, 2011.

[9] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shantanu Sharma. Self-
stabilizing end-to-end communication in (bounded capacity, omitting, duplicating
and non-fifo) dynamic networks - (extended abstract). In 14th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
’12), pages 133–147, 2012.

[10] Shlomi Dolev and Ronen I. Kat. Hypertree for self-stabilizing peer-to-peer systems.
Distributed Computing, 20(5):375–388, 2008.

[11] Maximilian Drees, Robert Gmyr, and Christian Scheideler. Churn- and dos-
resistant overlay networks based on network reconfiguration. In Proc. of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’16),
pages 417–427, 2016.

[12] Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Schei-
deler, and Thim Strothmann. On stabilizing departures in overlay networks. In
Proc. of the 16th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS ’14), pages 48–62, 2014.

[13] Dianne Foreback, Mikhail Nesterenko, and Sébastien Tixeuil. Infinite unlimited
churn (short paper). In Proc. of the 18th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS ’16), pages 148–153, 2016.

[14] Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid,
and Hanjo Täubig. A note on the parallel runtime of self-stabilizing graph
linearization. Theory Comput. Syst., 55(1):110–135, 2014.

[15] Thomas P. Hayes, Jared Saia, and Amitabh Trehan. The forgiving graph: a
distributed data structure for low stretch under adversarial attack. Distributed
Computing, 25(4):261–278, 2012.

[16] Vincent C Hu, David Ferraiolo, and D Richard Kuhn. Assessment of access
control systems. US Department of Commerce, National Institute of Standards
and Technology, 2006.

28

[17] Galen Hunt, James R Larus, Martın Abadi, Mark Aiken, Paul Barham, Manuel
Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, et al. An
overview of the singularity project. Technical report, Technical Report MSR-TR-
2005-135, Microsoft Research, 2005.

[18] Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo
Täubig. Skip+: A self-stabilizing skip graph. J. ACM, 61(6):36:1–36:26, 2014.

[19] Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. Towards
higher-dimensional topological self-stabilization: A distributed algorithm for
delaunay graphs. Theor. Comput. Sci., 457:137–148, 2012.

[20] Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. Access control and the
resource description framework: A survey. Semantic Web, 8(2):311–352, 2017.

[21] Hristo Koshutanski. A survey on distributed access control systems for web
business processes. I. J. Network Security, 9(1):61–69, 2009.

[22] Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann. Towards
a universal approach for the finite departure problem in overlay networks. In
Proc. of the 17th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS ’15), pages 201–216, 2015.

[23] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. Towards worst-case churn
resistant peer-to-peer systems. Distributed Computing, 22(4):249–267, 2010.

[24] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. Usage control in computer
security: A survey. Computer Science Review, 4(2):81–99, 2010.

[25] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos D. Keromytis,
and Sotiris Ioannidis. Decentralized access control in distributed file systems.
ACM Comput. Surv., 40(3):10:1–10:30, 2008.

[26] Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler. Corona: A
stabilizing deterministic message-passing skip list. Theor. Comput. Sci., 512:119–
129, 2013.

[27] Rizal Mohd Nor, Mikhail Nesterenko, and Sébastien Tixeuil. Linearizing peer-
to-peer systems with oracles. In Proc. of 15th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS ’13), pages 221–
236, 2013.

[28] Melih Onus, Andréa W. Richa, and Christian Scheideler. Linearization: Locally
self-stabilizing sorting in graphs. In Proc. of the 9th Workshop on Algorithm
Engineering and Experiments, (ALENEX ’07), 2007.

[29] Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. DEX: self-healing
expanders. In Proc. of the 28th IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’14), pages 702–711, 2014.

[30] Jared Saia and Amitabh Trehan. Picking up the pieces: Self-healing in reconfig-
urable networks. In Proc. of the 22nd IEEE International Symposium on Parallel
and Distributed Processing (IPDPS ’08), pages 1–12, 2008.

[31] Christian Scheideler, Alexander Setzer, and Thim Strothmann. Towards estab-
lishing monotonic searchability in self-stabilizing data structures. In Proc. of 19th
International Conference on Principles of Distributed Systems (OPODIS ’15),
pages 24:1–24:17, 2015.

29

[32] Christian Scheideler, Alexander Setzer, and Thim Strothmann. Towards a univer-
sal approach for monotonic searchability in self-stabilizing overlay networks. In
Proc. of the 30th International Symposium on Distributed Computing (DISC ’16),
pages 71–84, 2016.

[33] Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology
P2P systems. In Proc. of the 5th IEEE International Conference on Peer-to-Peer
Computing (P2P ’05), pages 39–46, 2005.

[34] Ted Wobber, Aydan Yumerefendi, Mart́ın Abadi, Andrew Birrell, and Daniel R.
Simon. Authorizing applications in singularity. In Proc. of the 2nd ACM SIGOP-
S/EuroSys European Conference on Computer Systems (EuroSys ’07), pages
355–368, New York, NY, USA, 2007. ACM.

30

	1 Introduction
	1.1 System model
	1.2 Problem statement
	1.2.1 Definition of the Finite Departure Problem

	1.3 Related work
	1.3.1 Related work concerning relays

	1.4 Our contributions

	2 The Relay Layer
	2.1 Relays
	2.2 Relay layer primitives
	2.3 Message processing and action handling
	2.4 Properties of the relay layer

	3 Universality of the relay approach
	3.1 How to adapt classical protocols to the relay model

	4 Conclusion and Outlook
	A Proofs of the theorems from Section ??

