Skip to main content

Brief Announcement: Optimal Self-stabilizing Mobile Byzantine-Tolerant Regular Register with Bounded Timestamps

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11201))

Abstract

This paper investigates on the implementation of a self-stabilizing regular register emulated by n servers that is tolerant to both mobile Byzantine agents, and transient failures in a round-free synchronous model. Differently from existing Mobile Byzantine tolerant register implementation, this paper considers a more powerful adversary where (i) the message delay (i.e., \(\delta \)) and the period of mobile Byzantine agents movement (i.e., \(\varDelta \)) are completely decoupled and (ii) servers are not aware of their state i.e., they do not know if they have been corrupted or not by a mobile Byzantine agent.

We claim the existence of an optimal protocol that tolerates (i) any number of transient failures, and (ii) up to f Mobile Byzantine agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The \((\varDelta S, CUM)\) model abstracts distributed systems subjected to proactive rejuvenation [22] where processes have no self-diagnosis capability.

References

  1. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Practically stabilizing SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci. 81, 692–701 (2015)

    Article  MathSciNet  Google Scholar 

  2. Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved Byzantine agreement algorithm for synchronous systems with mobile faults. Int. J. Comput. Appl. 43(22), 1–7 (2012)

    Google Scholar 

  3. Bazzi, R.A.: Synchronous Byzantine quorum systems. Distrib. Comput. 13(1), 45–52 (2000)

    Article  Google Scholar 

  4. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile Byzantine agreement. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 76–90. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_6

    Chapter  Google Scholar 

  5. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M.: Optimal self-stabilizing synchronous mobile Byzantine-tolerant atomic register. Theor. Comput. Sci. 709, 64–79 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based storage in Byzantine asynchronous message-passing systems. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC 2015) (2015)

    Google Scholar 

  7. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Self-stabilizing mobile Byzantine-tolerant regular register with bounded timestamp. Research report. http://arxiv.org/abs/1609.02694

  8. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Optimal mobile Byzantine fault tolerant distributed storage. In: Proceedings of the ACM International Conference on Principles of Distributed Computing (ACM PODC 2016), Chicago, USA. ACM Press, July 2016

    Google Scholar 

  9. Bonomi, S., Potop-Butucaru, M., Tixeuil, S.: Byzantine tolerant storage. In: Proceedings of the International Conference on Parallel and Distributed Processing Systems (IEEE IPDPS 2015) (2015)

    Google Scholar 

  10. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Optimal storage under unsynchronized mobile Byzantine faults. In: 36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong Kong, 26–29 September 2017

    Google Scholar 

  11. Buhrman, H., Garay, J.A., Hoepman, J.-H.: Optimal resiliency against mobile faults. In: Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS 1995), pp. 83–88 (1995)

    Google Scholar 

  12. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. CACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  13. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile faults. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020438

    Chapter  Google Scholar 

  15. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Comput. 11(4), 203–213 (1998)

    Article  Google Scholar 

  16. Martin, J.-P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36108-1_21

    Chapter  Google Scholar 

  17. Martin, J.-P., Alvisi, L., Dahlin, M.: Small Byzantine quorum systems. In: 2002 Proceedings of International Conference on Dependable Systems and Networks. DSN 2002, pp. 374–383. IEEE (2002)

    Google Scholar 

  18. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC 1991), pp. 51–59 (1991)

    Google Scholar 

  19. Reischuk, R.: A new solution for the Byzantine generals problem. Inf. Control 64(1–3), 23–42 (1985)

    Article  MathSciNet  Google Scholar 

  20. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile Byzantine agreement on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_17

    Chapter  Google Scholar 

  21. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

    Article  Google Scholar 

  22. Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., Verissimo, P.: Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE Trans. Parallel Distrib. Syst. 4, 452–465 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French state funds managed by the ANR (Agence Nationale de la Recherche). This work has been also partially supported by the INOCS Sapienza Ateneo 2017 Project (protocol number RM11715C816CE4CB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bonomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S. (2018). Brief Announcement: Optimal Self-stabilizing Mobile Byzantine-Tolerant Regular Register with Bounded Timestamps. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics